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Abstract: Previous research has recognized the importance of eliminating safety violations in
the context of a social group. However, the social contagion effect of safety violations within a
construction crew has not been sufficiently understood. To address this deficiency, this research
aims to develop a hybrid simulation approach to look into the cognitive, social, and organizational
aspects that can determine the social contagion effect of safety violations within a construction crew.
The hybrid approach integrates System Dynamics (SD) and Agent-based Modeling (ABM) to better
represent the real world. Our findings show that different interventions should be employed for
different work environments. Specifically, social interactions play a critical role at the modest hazard
levels because workers in this situation may encounter more ambiguity or uncertainty. Interventions
related to decreasing the contagion probability and the safety–productivity tradeoff should be given
priority. For the low hazard situation, highly intensive management strategies are required before
the occurrence of injuries or accidents. In contrast, for the high hazard situation, highly intensive
proactive safety strategies should be supplemented by other interventions (e.g., a high safety goal)
to further control safety violations. Therefore, this research provides a practical framework to
examine how specific accident prevention measures, which interact with workers or environmental
characteristics (i.e., the hazard level), can influence the social contagion effect of safety violations.

Keywords: social contagion effect; routine safety violations; situational safety violations; system
dynamics; agent-based simulation

1. Introduction

Despite continuous efforts to promote construction safety over the last decades, construction
safety has not improved as much as in other industries, and it still suffers from a high rate of injuries
and accidents [1–4]. Such alarming trends are reported by occupational safety statistics throughout the
world [3,5–7], and construction safety appears to have reached a plateau [4,6–8]. Previous accident
investigations have revealed that up to 70% of occupational accidents are attributable to worker
safety violations [9]. Safety violations have been widely recognized as the main cause of construction
accidents [1,4–6,8]. Hence, there is heightened interest in correcting the safety violations of workers to
further improve safety in the construction industry.

Based on previous behavioral safety investigations, the violation of safety rules and procedures
is pervasive among construction workers [2,10]. For instance, Lipscomb et al. [11] reported that
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construction workers often did not wear fall protection equipment. Maano et al. [12] also found
that most construction workers failed to use personal protective equipment (PPE) while performing
tasks on site. Researchers have defined most safety violations as intentional but non-malevolent [13,14].
Here, “intentional” means that violations are distinct from human error and are committed
intentionally for various purposes, such as saving time [15]. Human errors are mainly derived
from informational problems, where the information is forgotten, incomplete, incorrect, or unknown,
while safety violations mainly involve motivational factors and are affected by social norms [16].
The term “non-malevolent” means that violators do not intend to cause accidents or damage to the
system [17], which is different from malevolent violations such as sabotage [13]. Construction workers
often encounter controversial situations where they balance conflicting objectives like safety and
productivity [18,19]. From this standpoint, a coworker’s safety violations can be practical and socially
contagious within the construction crew, because such deviations from formal safety procedures seem
to be well-intentioned and aimed at getting work done. Therefore, individuals can observe the safety
violations of coworkers and learn how to behave similarly [18,20].

In this research, the process by which individuals adopt their coworkers’ attitudes, beliefs,
or behaviors is called the “social contagion effect” [21]. Coworkers are critical sources of social
influence in the group context [22–25]. Previous empirical research has revealed that individuals are
more likely to break safety rules when they perceive more coworker safety violations [18]. However,
there is still lack of research on the dynamic mechanism of the social contagion effect of safety violations,
which are complex and might be influenced by cognitive, social, organizational, and environmental
aspects. Therefore, this research aims to provide an integrated simulation approach that can analyze
how different safety management strategies influence individuals’ decisions, and how the individual
observes and learns from coworkers’ safety violations at different sites with different hazard levels.
The simulation framework integrates both agent-based simulation (ABM) and system dynamics (SD).
The combination of the two frameworks can better define and capture the dynamics and uncertainty of
systems on construction sites because of their complementary strengths [26]. Specifically, in this model,
the worksite is designed with different levels of hazard and workload: ABM is used to represent the
decision rules of individual agents (e.g., workers and management) and the interactions among them;
SD is employed to capture the system level dynamics (e.g., the influence of safety goals). The proposed
framework has the potential to analyze the dynamic social contagion effect of safety violations and to
evaluate various safety management strategies before implementation.

2. Literature Review

This section presents the theoretical and empirical evidence for the social contagion effect of safety
violations within construction crews. This section also reviews previous research on construction
safety simulation and analyzes the necessity of developing a hybrid simulation framework.

2.1. Social Contagion Effect of Safety Violations

Coworkers have been regarded as an important source of social influence in a group context [22–25].
According to Latane [27], social influence is the function of power, proximity, and number of referents
exerting their influence. Coworkers tend to possess more field experience, have closer proximity
to fellow workers, and outnumber managers and supervisors [28]. Thus, coworkers have more
social influence on individuals [29]. Previous studies have explored various aspects of the social
contagion effect that coworkers have on individual workers [30–35]. For instance, Robinson and
O’Leary-Kelly [33] reported a positive relationship between the levels of antisocial behavior exhibited
by individuals and the levels exhibited by their coworkers. Pelps et al. [34] noted the social contagion
effect of turnover behavior among workers, where coworker turnover related behaviors could influence
an individual’s decision to quit. Brummelhuis et al.’s empirical research on absence behavior revealed
that individuals were more likely to call in sick when coworkers were often absent [35].
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Similarly, in the occupational safety domain, coworkers can also exert critical social influence
on individuals’ safety-related perceptions and behaviors [18,20]. For instance, Westaby et al. [36]
discovered that risk-taking behavior by coworkers is a significant predictor of young workers’
risk-taking tendency. Stride et al. [37] reported that regardless of organizational prescription,
individuals may learn safety norms from the unsafe behaviors of their coworkers. McLain [38]
showed that an individual’s beliefs of coworkers’ estimates of risk were positively related to their
own perceived safety risk. Therefore, safety violations need to be eliminated by considering the
social context of work groups, rather than merely focusing on the traditional and individual-oriented
control from management and supervisors (e.g., individual penalties and incentives) [5]. Despite the
increasing attention that has been paid to the influence of coworkers on individuals’ safety violations,
few studies have explored the underlying mechanism of the social contagion effect, through which
safety violation norms are formed within a construction crew [18].

On construction sites, a continuous tension tends to exist between the demands of accomplishing
production tasks and the requirement to protect workers from unwanted injuries or illnesses [19,39,40].
For instance, Mohamed’s empirical research revealed that work pressure is common in the construction
industry, which creates a perceived conflict between safety and productivity [40]. Considering the
dynamic complexity in the production process, construction workers often need to balance production
and safety objectives discretionarily [5]; they may deviate from some safety rules and procedures
to get the job done [19]. Therefore, coworkers can serve as critical role models and sources of social
information with regard to safety violations, which may influence an individual’s safety-related
decisions [18,20]. Individuals may be more inclined to break safety rules when perceiving higher levels
of coworker safety violations [18].

Liang et al. [18] developed and tested a social contagion model of safety violation, in which coworkers’
safety violations have a direct effect on individuals’ safety violations through the mechanism of social
learning [41]; the indirect effect can be explained with social information processing [42]. Both social
learning and social information processing theories identify horizontal dynamics through which
individuals are motivated to belong to their social group [35]. Liang et al.’s research provided empirical
evidence on the social contagion effect of coworker safety violations within a construction crew [18].
However, previous research has not yet produced sufficient understanding of the interactions between
the social contagion effect and the dynamic production process, different environmental conditions
(e.g., different hazard levels), and safety management interventions. Therefore, this research will
develop a hybrid simulation approach to model the dynamic process of the social contagion effect
of safety violations and to explore the effectiveness of various safety management strategies and
onsite conditions.

2.2. Hybrid Modeling and Simulation Method

A wide range of dynamic simulation models have been developed in previous studies to deal
with the complexity of safety-related behaviors on construction sites; among these, system dynamics
(SD) and agent-based modeling (ABM) are the most commonly used [3]. Goh et al. [43] demonstrated
the influence of production pressure on safety through the SD model. Similarly, Han et al. [44] applied
the SD to explore the processes by which production pressure influences onsite safety performance.
Shin et al. [1] developed an SD model to capture construction workers’ mental processes to analyze
the feedback mechanisms that determine safety attitudes and behaviors. Jiang et al. [2] extended
Shin et al. [1] work by taking into account many more underlying factors to create a holistic causation
model of construction workers’ unsafe behaviors. In contrast, several studies on safety-related behavior
have employed ABM to capture the adaptive decisions and actions of construction workers. Lu et al. [7]
observed the relationship between safety investment and safety performance as a complex adaptive
problem. They used ABM to investigate how the interactions between the worksite environment,
individual workers, and different types of safety investments influenced safety [7]. Choi et al. [5]
developed a socio-cognitive model based on ABM that integrated social influence into the cognitive
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process to explore methods to control construction workers’ unsafe behaviors. Although these
simulations have greatly contributed to understanding the underlying mechanism of safety-related
behaviors, they used either SD or ABM alone. Hybrid studies that can combine the strengths of SD
and ABM in handling the dynamic complexity of safety problems on construction sites has not yet
been fully explored.

The SD is a top-down approach for representing a homogenous system that is described by the
feedback structure from an aggregate level [45]. By contrast, as a bottom-up approach, the ABM can
capture the heterogeneity of agents at the individual level but has limitations in modeling the macro
system [26,46]. As evidenced by previous studies on the consumer choice behaviors of sustainable
products [46,47], the diffusion process of innovative technologies [48], and the impact of alternative
economic policies on water use and pricing [49], the different mechanisms of SD and ABM mean
that they can have complementary roles and, therefore, achieve a better understanding of complex
systems [26]. Nasirzadeh et al. [50] have developed an SD-ABM simulation model to investigate
the social influence on safety violations. However, their model mainly focused on the safety-related
interactions between different onsite contractors without paying sufficient attention to the social
contagion effect of safety violations within a construction crew. Moreover, above study did not
take into account the critical roles of the management and the environmental factor (i.e., the hazard
level) [3,50]. Therefore, it is necessary to develop a hybrid SD-ABM simulation model that represents
the system and individual level dynamics to explore the social contagion effect of safety violations in
detail and to quantify the effectiveness of various interventions.

3. Development of the Hybrid SD-ABM Simulation Approach

This research proposes a hybrid SD-ABM simulation approach to understand the social contagion
effect of safety violations. The SD method captures the system level dynamics, which are derived from
the cause–effect relationships between the macro system factors. For instance, increasing accidents can
lead to a higher accident-control pressure and a much stricter management in terms of safety violations.
On the other hand, a low production rate can cause an increased production pressure, making workers
more prone to commit safety violations. The ABM method describes the heterogeneous individual
worker interactions with other components (e.g., coworkers and management) and the consequences
of behaviors (e.g., whether a violation can cause an accident or not) in the construction project.

The conceptual framework of the hybrid simulation approach was established on the basis of
Sterman’s general priority for combining agents into the SD method [51]. As shown in Figure 1,
this framework considers two different parts: (1) the system level dynamics and (2) the safety-related
decision rules and the social interactions of the agents. The system level dynamics generate
the information that can influence the safety-related decisions of agents (e.g., the social support
environment decreases workers’ safety violation tendency). The behavior resulting from individual
decision processes can consequently change the system state (e.g., the amounts of accidents caused by
safety violations) and alter the information from the system (e.g., accident control pressure), which will
further affect individual agents. The cycle of information exchange between the system and individual
parts operates continuously, which determines the dynamic social contagion effect of safety violations.
The hybrid SD-ABM model will be developed using the Anylogic software. Anylogic is a reliable
Java-based simulation tool that has functional advantages in combining SD and ABM [52,53].
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3.1. Defining the Virtual Construction Environment

Previous construction simulation studies have tended to use cells or grids to represent the
workplace, because construction activities can always be divided into basic tasks dispersed around
the site with varying degrees of workloads and hazards [7,54,55]. Therefore, a typical cell-based
virtual construction site adapted from Lu et al. [7] is employed to represent main onsite characteristics.
As shown in Figure 2, this virtual construction is constituted by 92 × 84 cells of 1 m2 each; while only
the gray areas represent buildings under construction (totaling 3600 cells of 1 m2 each). Each cell
demands a certain workload varying from 0 (no workload) to 20 (heavy workload) and has a hazard
level from 0 (a very safe place where no accidents will happen) to 200 (a very dangerous place where
associated safety protection activities should be performed to avoid unwanted accidents and injuries).
There are two main temporary roads for transporting construction materials. Three tower cranes are
key sources of dynamic hazards on the construction site; therefore, a dynamic danger zone with cells
under the crane jib is generated, which have hazard levels varying between 160 and 200.
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3.2. Defining the Decision Rules and Social Interactions of Agents

The decision rules and social interactions between heterogeneous agents are modeled using ABM.
Specifically, the components of ABM in this research include the decision rules for safety violations,
the interactions between management and workers, and the social contagion effect of safety violations.

3.2.1. Decision Rules for Safety Violations

This research assumes that worker agents have two main states, namely, approachingTask and
implementingTask (shown in Figure 3). ApproachingTask identifies that if the cells occupied by
workers have 0 workload, the worker agents will move to another cell nearby. Once the workers reach
a cell with a workload, they will begin to operate the workload and the worker state will transfer from
approachingTask to implementingTask (shown in Figure 3). Considering that accidents and injuries
often occur during task implementation rather than the approaching process [56], this research mainly
focuses on safety violations during the task implementation.
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Safety violation herein refers to a specific way of task implementation, where individuals work
around the blocks or barriers implemented in tasks to get jobs done faster [57]. Some blocks are
intentionally included as important controls (e.g., the safety rules and procedures) to improve safety.
In contrast, other blocks or barriers (e.g., lack of proper safety resources and adverse work environment)
are unintentional; these are not anticipated in the design of the work procedure. This research regards
such unintentional blocks as “situational constraints” and categorizes safety violations into routine and
situational violations based on whether situational constraints are the main cause for violations [18].
Routine violations occur when workers work around some safety procedures in order to realize
organizational benefits (e.g., getting the job done in a timely manner) or personal gain (e.g., saving
time or effort). In contrast, situational violations tend to be driven by situational constraints in tasks,
which make it difficult or impossible to follow the rules [15].

Worker agents will first check the working environments to verify the existence of situational
constraints via situational checking (shown in Figure 3). This research assumes that if there is the
presence of situational constraints, worker agents will commit situational safety violations. If there
is no situational constraint, they will further compare the hazard level in the current cell with
their acceptable hazard level via safety checking (shown in Figure 3). According to Wilde’s theory



Int. J. Environ. Res. Public Health 2018, 15, 2696 7 of 27

of risk homeostasis [58], perceived hazard levels and acceptable hazard levels are the two main
dimensions that determine risk-taking behaviors. Specifically, construction workers will commit
routine safety violations if the perceived hazard level is lower than the acceptable value; otherwise,
they will be compliant with the safety procedure and proceed with normal task implementation.
The acceptable hazard level of each worker is controlled by a variable acceptable hazard. After going
through the above decision-making process, workers will select a specific way to implement the task.
The implementation time is determined by the workload level in the current cell and the workers’
production speed controlled by the variable production speed. Therefore, the worker state will change
from implementing task to approaching task after the time delay needed to complete the current task.

There are three possible outcomes when safety violations are committed. In the first outcome,
there is no accident; instead there is an increased production speed since the worker has made a tradeoff
between safety and production, sacrificing safety for productivity. The increased rate of production is
determined by the variable productionIncr (i.e., production increase). The second outcome is a near
miss incident, which involves a dangerous situation that has the potential to generate accidents, but
that does not cause injuries or material damage [59]. In the third outcome, the worker agents will
suffer from injuries or accidents and will consequently stop their work for three days to represent the
production loss caused by accidents [7]. A previous accident experience can also negatively influence
workers’ attitude toward safety, namely, their acceptable hazard level [37]. This research assumes
that the acceptable hazard level will decrease by 5 or 50, if the worker agent experiences a near-miss
incident or accident, respectively.

3.2.2. Interactions between Management and Workers

The interactions between frontline management and workers are critical for the workers’ perception of
the formal safety rules established at the organizational level, which further influences their decisions to
balance safety and productivity [60]. Safety feedback and safety improvement are two main supportive
behaviors from management to prevent worker safety violations onsite [61]. In this research, safety
feedback refers to the warnings from the management when they find that workers are not following
safety rules. By contrast, a safety improvement is the corrective action from management where
they find and remove situational constraints that workers are exposed to (e.g., make PPE much more
available for workers). If the situational constraint is addressed by the management, the workers will
not commit situational safety violations (shown in Figure 3). This research assumes that management
initiates safety feedback and safety improvement only when the hazard level that workers are exposed
to is higher than their tolerance. This means that they will not make any feedback toward the safety
violations or make any corrective actions toward the situational constraints if they think the hazard
level is very low. In addition, this research assumes that management can only modify safety violations
and situational constraints within a limited distance and also only within a specific probability lower
than 1.0, reflecting different management capacities or the limited management energies allocated
to safety. These factors are represented by the variables distance, safety feedback rate, and safety
improvement rate.

3.2.3. Social Contagion Effect of Safety Violations

Regarding the interactions between construction workers, this research mainly focuses on the
social contagion effect of safety violations. The social contagion effect refers to the process by which
individuals adopt coworkers’ safety-related attitudes and behaviors [21], which is critical for the
formation of safety-related norms within a construction crew. Previous empirical studies have revealed
that coworkers’ safety violations have a social contagion effect on individuals [18]. When more
coworker safety violations are perceived, individuals will have a higher hazard acceptance level
because they tend to adapt themselves to the social norm within construction crews [18]. Specifically,
individuals can perceive a tolerable hazard level within their crews based on the interpretation of their
coworkers’ safety violations and their memories of their coworkers’ past behaviors. Previous studies
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have tended to use memory capacity in the process of perceiving social norms [5,62]. In this research,
perceived tolerable hazard levels within a crew is the weighted sum of previous hazard tolerance
levels and the current average hazard coworkers are exposed to when they implement tasks (shown in
Equations (1) and (2)):

TC(t)
i =

(
1 − 1

m

)
TC(t−1)

i +
1
m
(

1

c(t)i

c(t)i

∑
ci=1

HA(t)
ci )) (1)

HA(t)
ci =

1

t(t)ci

v(t)ci

∑
vci=1

HA(t)
vci

(2)

where TC(t)
i denotes the perceived hazard tolerance level within a crew at time t; TC(t−1)

i denotes the
perceived hazard tolerance level in time t − 1; m represents individual’s memory capacity regarding
coworker safety violations; HA(t)

ci represents the average hazard level the c(th)i coworker is exposed to

during task implementation at time t; HA(t)
vci

is the hazard level the c(th)i coworker is exposed to during

the v(th)ci violation; c(t)i is the coworker number of individual i at time t; v(t)ci is the total number of safety

violations of the c(th)i coworker at time t; and t(t)ci represents the total number of tasks (i.e., the number

of cells that this worker passes through) completed by the c(th)i coworker at time t.
However, the influence from coworkers can be affected by formal safety rules [5,62], namely, the

hazard tolerance level of management, which is represented by TM(t). According to Ahn et al. [62],
individuals form their own internal rules for behaviors by combining formal rules from management
and the informal social norms from coworkers. This research defines TR(t)

i as the final perceived

hazard tolerance level, determined by a weighted sum of the hazard tolerance level in the crew TC(t)
i

and the hazard tolerance level of management TM(t) (shown in Equation (3)). w(t)
i represents the

attitudinal ambivalence toward safety compliance, which refers to the extent to which an individual
simultaneously holds positive and negative attitudes toward safety compliance [63]. When workers
have higher attitudinal ambivalence, they are more likely to be influenced by coworkers’ safety
violations, because they have not yet established firm beliefs regarding safety behaviors [18]:

TR(t)
i = w(t)

i TC(t)
i + (1 − w(t)

i )TM(t) (3)

Then, individuals will adapt their acceptable hazard level to perceived hazard tolerance as
established by the coworkers’ safety violations and formal safety rules; the adaptation process is
shown in Equation (4). Here, the contagion probability is a parameter representing the extent to which
individuals will be influenced by coworker safety violations and formal safety rules. The contagion
probability ranges from 0 to 1, where 0 denotes individuals that do not change their behaviors even
under external influences, while 1 describes individuals that are completely determined by external
influences. Therefore, this variable helps capture situations where individuals might have different
responses to the same external influences [52]:

AR(t)
i = (1 − contagion probability)∗ AR(t−1)

i + contagion probability ∗ TR(t)
i (4)

3.3. Defining the System Level Dynamics

In this research, the system level dynamics are modeled via SD, the structure of which is shown
in Figure 4. The specific description and calculation process are presented in Table 1. The stocks
(i.e., the square blocks) represent a change of the worker state (e.g., near-miss and accident) and the
number of certain types of interactions between management and workers (e.g., safety improvement
number and safety feedback number). Unlike the traditional single SD model, the rate of change in
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a stock is determined by agent behaviors (shown in Figure 1, where behaviors influence the system
state). Nevertheless, the stocks play the same role as in the traditional SD model because they describe
variables that accumulate or deplete over time [26]. Some intermediate variables are introduced and
determined by other variables in the calculation process. For example, this research regards the ratio
of the total number of safety improvements and the safety feedback received by coworkers within
the crew from the management to the total number of coworkers’ safety violations as a proxy of the
perceived safety specific social support. This means that when individuals observe more interactions
between management and their coworkers, and there are less coworker safety violations, they will
perceive higher safety specific social support. This assumption is based on previous empirical studies
that showed that individually perceived safety-specific social support is inversely related to coworker
safety violations [18]. Based on the path coefficients in the social contagion model established by
a previous empirical study [18], the ambivalence toward safety compliance is determined by the
weighted sum of the perceived safety-specific social support and the perceived production pressure.
Some variables are predefined inputs such as safeGoal and proacMan, which represent the safety goal
and the intensity of proactive management strategies, respectively. The outputs are generated for
different agents (shown in Figure 4). For instance, attitudinal ambivalence toward safety compliance is
an output for worker agents, whereas the safety improvement rate, safety feedback rate, and tolerable
hazard level are outputs for the management agents. These outputs will become the inputs of the
agents, consequently alter their behaviors, and further influence the state of the system (shown with
the red lines in Figure 4).
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Table 1. Descriptions and equations for variables involved in the SD model.

Variables Types Description/Equation

Number of safety improvement Stock The total number of safety improvements received by coworkers in an individual’s construction crew
Number of safety feedback Stock The total number of safety feedback received by coworkers in an individual’s construction crew

Number of coworker safety violations Stock The total number of coworker safety violations in an individual’s construction crew

Perceived safety-specific social support Intermediate Perceived safety-specific social support = Min(1, ((Number of safety improvement + Number of safety
feedback)/Number of coworker safety violations) × scaling parameter (=100))

Perceived production pressure Intermediate

If (the productivity of work crew k >= the average productivity of all work crews) Perceived production pressure = 0;
If (the productivity of work crew k < the average productivity of all work crews) Perceived production pressure =

Min(1, ((the average productivity of all work crews-the productivity of work crew k)/the average productivity of all
work crews) × scaling parameter (=100))

Ambivalence toward safety compliance Output Attitude ambivalence = min (1, max (0, (0.68 × perceived production pressure-0.13 × perceived safety specific social
support))) [18]

Near-miss Stock The total number of near-miss incidents caused by safety violations
Accident Stock The total number of accidents caused by safety violations

safeGoal (safety goal) Input A predefined value for setting the weekly tolerable number of both near-misses and accidents
Safety performance gap Intermediate Safety performance gap = (near miss + 10 × accident-safeGoal)/safeGoal

Safety control pressure Intermediate
If (safety performance gap >= 1) safety control pressure = 1;
If (safety performance gap <= 0) safety control pressure = 0;

If (0 < safety performance gap < 1) safety control pressure = safety performance gap

proacMan (proactive management
strategies) Input

The proactive safety management, which is different from the reactive actions triggered by the safeGoal, can control the
lowest level of intensity of accident intervention measures (i.e., safety improvement rate, safety feedback rate, tolerable

hazard level, and distance) before the occurrence of near-misses and accidents.
Safety improvement rate Output Safety improvement rate = Max(1-proacMan, safety control pressure)

Safety feedback rate Output Safety feedback rate = Max(1-proacMan, safety control pressure)
Distance Output Distance = Max(5 × (1-pracMan), 5 × (safety control pressure))

Tolerable hazard level Output Tolerable hazard level = Min (100 × proacMan, 100 × (1-safety control pressure))
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4. Initialization and Validation of Baseline Model

Before performing the simulations, the simulation model is verified and validated. First,
the baseline model is developed by initializing the parameters regarding the system level dynamics,
the safety-related decision rules, and the social interactions. Next, a combination of verification and
validation techniques are applied to ensure the robustness and technical validity of the baseline model.

4.1. Initialization

There are 100 workers on the simulated construction site (shown in Figure 2), consisting of 5 work
crews with 20 workers in each work crew. According to the investigation by Lu et al. [7], a safety
supervisor usually inspects 20 workers on a construction site. Therefore, the number of managers
is initially five. Before each run of the simulation, the parameters acceptableHazard (i.e., acceptable
hazard level) and contagionPro (i.e., contagion probability), which describe workers’ acceptable hazard
level and how they are affected by the social interactions, respectively, are assigned different values to
represent the workers’ heterogeneous attributes. These parameters are assumed to follow a uniform
distribution, because the uniform distribution tends to be the most appropriate when the distribution
is unknown [59]. The range of acceptableHazard is from 20 to 180 to exclude extreme cases where
workers are absolutely risk-averse or risk-seeking. Similarly, the range of contagionPro is set from
0.1 to 0.9.

Breaking safety rules means that workers need to make a tradeoff between safety and productivity,
in other words, sacrificing safety to get the job done in a timely manner [18]. In this research, the
variable productionIncr (i.e., a production increase) is used to describe the increased production
when there is a safety–productivity tradeoff. This tradeoff reflects the organizational characteristics
where there is an unsuitability between safety and productivity onsite. The productionIncr herein is
conservatively assumed to be 0.2, which means that workers’ production speeds may be temporarily
increased by 20% when safety rules are violated. In addition, we assume that, under normal
task implementation (shown in Figure 3), one construction worker has a daily productivity of 20.
In this research, construction workers develop their perception of coworkers’ attitudes toward safety
violations (i.e., their tolerable hazard level) through observations of current coworker safety violations
and through the memory of their past behavior [5]. Workers are assumed to remember 28 days of
coworker safety-related behaviors on sites. In addition, as mentioned earlier, situational constraints
are critical causes for situational safety violations [18]. The probability of workers being exposed to
situational constraints is simply controlled by the task complexity, namely, the workload in each cell.
Lastly, workers within the same crew tend to interact much more frequently with each other than
with members in different crews. Thus, this research assumes that workers can observe other workers
within their own crews (i.e., clique), while social interaction across crews is limited (i.e., a sparse
network) [5,62].

In this research, management behaviors are controlled by four parameters: safety_feedback_rate,
safety_improvement_rate, distance, and tolerable_hazard_level (shown in Figure 4). The values
of these variables are determined by both the proacMan and safeGoal. The proacMan variable
describes the proactive safety management strategies that are implemented before the occurrence of
any negative safety outcomes (i.e., near-misses and accidents) [64], whereas safeGoal can be regarded
as the reactive response to poor safety performance which can influence the above four parameters
through safety control pressure (shown in Figure 4). The values of proacMan and safeGoal represent
the difference in the project safety culture. For the baseline model, the proacMan value is set as 0.5, and,
accordingly, the initial values of the safety_feedback_rate, safety_improvement_rate, distance, and
tolerable_hazard_level are 0.5, 0.5, 5, and 50, respectively. This means that management makes safety
improvement for situational constraints or gives safety feedback for safety violations by a probability
of 0.5. In addition, management has a tolerable hazard level of 50 and an inspection distance of 5 m.
By contrast, the safeGoal is initialized as 1.25 in the baseline model. Lastly, the distribution of the onsite
hazard level for the baseline model is set at a modest level by a triangular distribution of (0,100,200).
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4.2. Verification and Validation

Verification is the process of determining whether the implementation of the simulation model
is correct. Meanwhile, the validation is the process of determining whether the model has made a
reasonably true representation of the real world for the purpose of addressing the research questions [65,66].
A combination of commonly used verification and validation techniques in recent construction
simulation literature are adapted in this research [5,52,53].

4.2.1. Model Verification

The model verification was implemented by following the guidelines of Raoufi et al. [53] and
Azar et al. [52], because they also addressed a construction simulation based on the Anylogic software.
First, all mathematical equations (e.g., Equations (1)–(4)) were computed manually, whose results
were compared with the values calculated by the model [65]. Second, a code walkthrough and a
debugging walkthrough were performed to identify any possible programming errors [67]. Third,
it was ensured that the model components work as expected by closely observing and tracing the
changes in variables and the interactions of individual agents (e.g., worker agents) throughout the
duration of the simulation [67].

4.2.2. Model Validation

There are numerous methods with different levels of rigor that can be used for the validation
of simulation models. For instance, Zeigler et al. [67] distinguished three different types of validity:
replicative validity (i.e., “the model matches data already acquired from the real world”), structural
validity (i.e., “the model truly reflects the way in which the real world operates”), and predictive
validity (i.e., “the model matches data before being acquired from the real world”). Appropriate
validation methods can be determined according to the available data and the model’s intended
purpose [67]. The objective of this research was to explore the social contagion effect of safety violations
by considering the behavioral dynamics from both the individual level and the system level, rather
than to provide an accurate pinpoint prediction of safety violations. Therefore, this research mainly
focused on the replicative validity and the structural validity [5]. First, both the quantitative and
qualitative agreements between the simulation model and the empirical macrostructures of the subject
were examined to ensure the replicative validity [5]. Specifically, the model results were compared
with previous empirical studies to examine the qualitative agreements of the model [5,68]. Then,
national non-fatal injuries data were used to validate the quantitative agreement of the model [5].
Finally, some commonly used techniques (e.g., sensitivity analysis) were performed to enhance the
structural validity [68].

The qualitative agreement of the replicative validity was first examined. Figure 5 shows that
coworkers’ safety violations have a positive effect on individuals’ acceptableHazard level in the
baseline model (R2 = 0.32; p < 0.001). This result can be supported by social influence studies showing
that individuals adapt to social norms by observing how their coworkers behave in groups [34,35].
These include safety-related behaviors since Liang et al.’s previous empirical research revealed that,
within a construction crew, individuals who perceive more coworkers’ safety violations are more
likely to break safety rules [18]. As mentioned earlier, construction workers often encounter a conflict
between safety and productivity onsite [19]. As such, when coworkers break safety rules intentionally
to get the job done, individuals may observe these behaviors and learn how to operate in similar
situations [18].

The simulation results can also reproduce results from previous empirical studies on the effect
of attitudinal ambivalence toward safety compliance and safety violations [18,69,70]. As shown in
Figure 6, attitudinal ambivalence toward safety compliance has a positive relation with the acceptable
hazard level (R2 = 0.36; p < 0.001). Safety violations are often the result of attitudinal ambivalence
due to the contradiction between perceived cost and benefit. In other words, despite the potential
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benefits, workers are often reluctant to follow onsite safety rules due to the immediate costs, such as
slower pace, extra efforts, or personal discomfort [71]. Workers with high attitudinal ambivalence are
receptive to opposing the views of organizational safety procedures and are more likely to violate
safety rules [18]. In addition, the baseline model also strongly confirms previous arguments that the
perceived production pressure is a critical cause of safety violations on construction sites [6,43,72–74].
As illustrated in Figure 7, the perceived production pressure is positively related to the acceptable
hazard level (R2 = 0.26; p < 0.001). Production pressure is common onsite because of the high
interdependency between construction processes: a delay in one area can cause costly delays in
others [18]. Workers who perceive high production pressure will focus their attention more on how to
complete tasks quickly and cut corners more readily to avoid poor production performance [6,18].Int. J. Environ. Res. Public Health 2018, 15, x  13 of 28 
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It is noted that the values of R2 obtained from the above three linear regressions are not
very high. This suggests that more variables should have been included in these regressions.
Nevertheless, the significant p values in these regressions still indicate a real relationship between
these three variables (i.e., number of coworkers’ safety violations, attitudinal ambivalence toward
safety compliance, and perceived production pressure) and individuals’ acceptable hazard level.

To examine the quantitative agreement between the simulation results and empirical data, the
baseline model was executed 50 times, and the average values of several important indicators were
calculated (shown in Table 2). These simulation results were compared with empirical data from
previous studies. First, the average ratio of safety violations (i.e., the number of safety violations
per worker per day) was 0.32 (standard error σ = 0.090), which is consistent with the findings of
Sa et al. [75] and Fang and Wu [76]. Both studies reported that one-third of workers did not follow
safety rules on construction sites [75,76]. Second, the proportion of situational safety violations was 0.11
(standard error σ = 0.028); this can be supported by the investigation of Man et al. [15], which found
that 13% of safety violations are caused by situational constraints on site. Third, the ratio between
near-misses and accidents (equal to 1:8.18) approximately followed the Heinrich triangle, which
proposed that the ratio between accidents (including major and minor accidents) and near-misses is
approximately 1:10 [5,77]. Finally, the average rate of accidents (i.e., the number of accidents per 100
full-time workers) was 3.16 (standard error σ = 2.136), which is very close to the national incidence
rate of occupational injuries and illnesses in the construction reported by the U.S. Bureau of Labor
Statistics in 2016 (equal to 3.2) [78]. Therefore, the quantitative agreement between the simulation
results and empirical data can be validated.

Table 2. Quantitative agreement between the simulation results and empirical data.

Items Simulation Results Empirical Data

Ratio of safety violations 0.32 1/3 [75,76]
Proportion of situational safety violations 0.11 0.13 [15]
Ratio between accidents and near-misses 1:8.18 1:10 [77]

Rate of accidents 3.16 3.2 [78]
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In addition to the replicative validity, the structural validity of the baseline model was enhanced
by the following four steps. First, well-established theories in social sciences (e.g., social learning [41]
and social information processing [42]) and validated behavioral dynamic models (e.g., [5,52,62])
were adapted to describe the interaction rules among agents (i.e., workers and management).
Second, the casual loops in the system level (e.g., the determination of attitudinal ambivalence)
were developed mainly according to Liang et al. [18] previous empirical study. Third, the model
parameters (e.g., contagionPro and acceptableHazard) were initialized primarily according to previous
empirical studies or common principles used in construction safety simulation (e.g., [5,7]). Finally,
the sensitivity analyses were performed on the main parameters (i.e., safeGoal, proacMan, median
contagionPro, and productionIncr) to ensure that the model reacts to individual parameter changes
in a realistic manner. The values of these parameters were increased by 50% over their base value
individually. Then, the simulation model was run 50 times for each variation. The percentage changes
of the average values of the main model outputs are presented in Table 3. All above parameters can
influence the simulation results in the expected directions. First, increases in each parameter can
all lead to worse safety-related outputs (i.e., ratio of safety violations, rate of accidents, and rate of
near-misses). Among all the parameters, proacMan is the most influential factor for these safety-related
outputs. It was also observed that the rate of productivity only has a slight increase, because the
productivity cannot be increased significantly by violating more safety rules. Based on the above
techniques, the structural validity of the baseline model can be better ensured.

Table 3. Sensitivity analysis of the baseline model.

Model Output Base Value
Percentage Change of Model Outputs

safeGoal proacMan median
contagionPro productionIncr

Ratio of safety violations 3.15 +18.55% +48.52% +17.56% +14.71%
Rate of accidents 3.16 +18.95% +55.79% +23.16% +11.58%

Rate of near-misses 33.56 +19.13% +57.58% +10.31% +9.71%
Rate of productivity 19.35 +0.41% +0.96% +0.52% +1.38%

Note: median contagionPro refers to the median value of the contagion probability of all workers.

5. Factorial Experimental Design and Simulation Results

Factorial experimental design (FED) is commonly used by social scientists because it has the
advantage of testing the impact of a single variable as well as the potential interactions between two or
more variables simultaneously [79]. FED is also important for addressing safety issues because the
possible combination of interventions to improve safety performance is often not clearly stipulated [3].
Therefore, in this research, FED will be applied to determine influential safety interventions and their
potential interactions.

5.1. Factorial Experimental Design

In this research, 2k FED was performed to evaluate the main effects of four controllable factors
(i.e., safeGoal, proacMan, median contagionPro, and productionIncr) and their interactive effects on
construction workers’ safety behaviors. There are two credible levels (positive and negative) for each
of the above four key factors (shown in Table 4). Considering that there are four factors and that each
can be varied based on two levels, a total of 16 possible factor combinations can be obtained (shown
in Table 5). For each of the 16 intervention configurations, the simulation was run 50 times and the
average values of the main response variables (i.e., rate of accidents, ratio of routine safety violations,
ratio of situational safety violations, and rate of productivity) were calculated. In addition, different site
conditions (e.g., the hazard level) can be a source of interaction with the abovementioned 16 possible
intervention combinations and can further influence the social contagion effect of safety violations.
Therefore, the factorial experimental design will be implemented with three different hazard levels
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(i.e., low, modest, and high) to provide more insight on effective safety management strategies for
different site conditions. As mentioned earlier in Section 4.1, the hazard was assigned based on a
triangular distribution where the low hazard level was set at (0,50,200), the modest hazard level was
set at (0,100,200), and the high hazard level was set at (0,150,200). Lastly, the experimental design and
analysis of results were carried out using the Minitab 18.0 software package.

Table 4. The negative and positive levels for the four-factor experiments.

Factors Negative Level (−) Positive Level (+)

safeGoal 0.5 2
proacMan 0.2 0.8

median contagionPro 0.2 0.8
productionIncr 0.08 0.32

Note: median contagionPro refers to the median value of contagion probability of all workers.

Table 5. Experimental design matrix.

Design Point safeGoal proacMan median contagionPro productionIncr

1 - - - -
2 + - - -
3 - + - -
4 + + - -
5 - - + -
6 + - + -
7 - + + -
8 + + + -
9 - - - +
10 + - - +
11 - + - +
12 + + - +
13 - - + +
14 + - + +
15 - + + +
16 + + + +

Note: median contagionPro refers to the median value of contagion probability of all workers.

5.2. Simulation Results

The FED was performed for three different onsite conditions (i.e., the high, modest, and low hazard
levels), and the average values of the response variables (i.e., rate of accidents, ratio of routine violations,
ratio of situational violations, and rate of productivity) are captured in Tables 6–8, respectively, for each
hazard level. The main effects of the four input factors and their interactive effects are evaluated using
Standardized Pareto charts (shown in Figures 8–10). Pareto charts display a frequency histogram where
the length of each bar on the chart is proportional to the absolute value of its associated standardized
effect. The minimum statistically significant effect magnitude for a 95% confidence level (p ≤ 0.05) is
represented by the vertical line in the charts (=4.30).

The rate of accidents and the ratio of routine violations differed significantly for different intervention
combinations, while the ratio of situational violations and the rate of productivity only had slight
changes (shown in Tables 6–8). Situational violations are triggered by situational constraints, which is
different from the cognitive process of routine violations [18]. Although situational constraints can be
eliminated by management through safety improvements as mentioned in Section 3, the occurrence
of situational constraints tends to be random and transient; therefore, the effect from management
is limited. The moderate fluctuations of the rate of productivity are mainly because safety violations
cannot improve the productivity dramatically. In the FED, the degree to which one violation can
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improve productivity (i.e., the productionIncr) varied only from 0.08 to 0.32. The best outcomes
regarding the rate of accidents, ratio of routine violations, and ratio of situational violations can be
obtained when the safeGoal, proacMan, median contagionPro, and productionIncr are all set to low
levels (i.e., design point 1). Here, a lower safeGoal indicates a stricter safety goal, a lower proacMan
indicates highly intensive safety management strategies before the occurrence of accidents, a lower
median contagionPro indicates a lower probability that individuals will be influenced by coworkers’
safety violations, and a lower productionIncr indicates a lower tradeoff between productivity and
safety. By contrast, the worst outcomes can be observed when the safeGoal, proacMan, median
contagionPro, and productionIncr are all high (i.e., design point 16). In addition, construction workers
may break more routine safety violations as the hazard level decreases [1,15].

Table 6. Average response variables for the “modest” onsite condition.

Design
Point

Rate of
Accidents

Ratio of Routine
Violations

Ratio of Situational
Violations

Rate of
Productivity

1 1.000 0.052 0.034 19.038
2 1.200 0.081 0.034 19.047
3 2.330 0.213 0.035 19.125
4 5.400 0.405 0.037 19.205
5 1.467 0.086 0.034 19.028
6 2.233 0.121 0.034 19.038
7 4.633 0.355 0.035 19.180
8 7.700 0.544 0.037 19.262
9 1.233 0.058 0.034 19.174

10 1.100 0.074 0.035 19.217
11 2.700 0.253 0.036 19.545
12 4.300 0.424 0.038 19.844
13 1.600 0.131 0.034 19.262
14 1.900 0.161 0.035 19.331
15 4.567 0.375 0.036 19.733
16 6.200 0.560 0.038 20.077

Table 7. Average values of response variables for the “high” hazard onsite condition.

Design
Point

Rate of
Accidents

Ratio of Routine
Violations

Ratio of Situational
Violations

Rate of
Productivity

1 0.933 0.029 0.033 19.014
2 0.900 0.045 0.034 19.016
3 2.533 0.140 0.036 19.088
4 3.533 0.312 0.037 19.138
5 1.033 0.066 0.033 19.035
6 1.433 0.077 0.034 19.048
7 3.333 0.225 0.035 19.125
8 5.367 0.384 0.037 19.204
9 0.933 0.041 0.034 19.117

10 1.033 0.055 0.035 19.167
11 2.433 0.159 0.036 19.361
12 3.933 0.315 0.038 19.639
13 1.533 0.088 0.034 19.196
14 1.367 0.114 0.035 19.253
15 3.967 0.261 0.035 19.475
16 5.833 0.417 0.038 19.786
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Table 8. Average response variables for the “low” hazard onsite condition.

Design
Point

Rate of
Accidents

Ratio of Routine
Violations

Ratio of Situational
Violations

Rate of
Productivity

1 0.900 0.090 0.034 19.043
2 1.567 0.132 0.034 19.052
3 3.400 0.368 0.035 19.190
4 7.000 0.643 0.037 19.343
5 2.000 0.176 0.033 19.070
6 2.533 0.254 0.034 19.109
7 6.733 0.578 0.034 19.281
8 10.267 0.775 0.036 19.367
9 1.100 0.115 0.034 19.237

10 1.400 0.150 0.035 19.341
11 3.967 0.384 0.036 19.770
12 6.600 0.704 0.039 20.360
13 3.833 0.272 0.034 19.544
14 4.433 0.437 0.035 19.778
15 7.033 0.606 0.036 20.121
16 10.933 0.879 0.038 20.657
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The Standardized Pareto charts in Figures 8–10 are used to illustrate the main effect of each
factor and the interactive effects between factors. The results show that the factor proacMan has
a dominant-positive effect on three safety-related indicators (i.e., rate of accidents, ratio of routine
violations, and ratio of situational violations) for the three onsite conditions. This can be indicated by
the largest standardized effects of proacMan (denoted by B) on the associated response variables in
Figures 8a–c, 9a–c and 10a–c. By contrast, productionIncr can exert more positive effects on the rate of
productivity than other factors, indicated by D in Figures 8d, 9d and 10d. Some interactive effects with
statistical significance are found. For instance, the combination of safeGoal and proacMan (denoted by
A × B) has a positive effect on three safety-related indicators (shown in Figures 8a–c, 9a–c and 10a–c),
which means that a high safeGoal with a high proacMan would lead to worse safety performance.
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The main effect of the median contagionPro on the ratio of routine safety violations is statistically
significant across three hazard levels, and is stronger than those of the productionIncr, which can be
seen in Figures 8b, 9b and 10b. However, the median contagionPro have a lower effect on situational
safety violations than the productionIncr, which is indicated in Figures 8c, 9c and 10c.
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For the ratio of routine violations, proacMan, safeGoal, median contagionPro, and productionIncr
have higher effects at the modest hazard level. For instance, the median contagionPro can have a
stronger effect on routine safety violations when the hazard level is modest (standardized effect = 87.65,
p < 0.05, see Figure 8b) than those when the hazard level is high (23.19, p < 0.05, Figure 9b) or the hazard
level is low (25.30, p < 0.05, Figure 10b). This may be because the hazard in the work environment
plays a critical role for the onsite conditions characterized by high or low hazard levels (e.g., workers
are more likely to not emulate coworkers’ safety violations when the environment is very dangerous,
while workers will break safety rules regardless of coworkers’ behaviors in a safe environment).

The results also indicate the difference in the effects of above four factors on situational safety
violations for different hazard levels. For instance, the effects of median contagionPro in the case of
the modest hazard level (6.22, p < 0.05, Figure 8c) are higher than those for high hazard levels (1.11,
not significant, Figure 9c) and low hazard levels (2.33, not significant, Figure 10c).

6. Discussion

This research developed a hybrid SD-ABM simulation approach to understand the social contagion
effect of safety violations within construction crews. Well-established theories (e.g., social learning [41]
and social information processing [42]), validated models (e.g., [5,58,62,80]), and Liang et al. [18]
previous empirical study were used as a reference. The model was operated using the Anylogic
software, and associated verification methods were implemented. The model validity was also verified
by ensuring that there was an agreement between the baseline model and previous empirical studies
both qualitatively and quantitatively and by ensuring the structural validity based on a sensitivity
analysis [5]. Lastly, the FED method was employed to assess the main effects of four management
strategies (i.e., proacMan, safeGoal, median contagionPro, and productionIncr) and their interactive
effects for three different hazard situations (i.e., low-, modest-, and high-levels of hazard).

6.1. Effects of Proactive and Reactive Management Strategies

Previous studies have modeled organizational reactive responses to accidents by setting safety
goals (i.e., safeGoal) [2,3]. When setting a higher safety goal, organizations will have a higher accident
control pressure for responding poor safety performance (shown in Figure 3). Despite these reactive actions
being able to promote safety management systems, proactive management strategies (i.e., proacMan),
which are implemented prior to accidents or injuries, should be more important. Organizations that
have proactive management strategies are more likely to regard workers’ safety as a core value and
maintain a much lower tolerance toward onsite hazards. Such organizations will change safety systems
by taking preventive actions, such as decreasing the tolerable hazard level, enlarging the scope of
inspections, and increasing the feedback rate. Although setting a high safety goal can lead to much
stricter management actions, it is mainly driven by circumstance (e.g., poor safety performance) and
cannot ensure the continuity of safety efforts as a proactive strategy. The findings from the sensitivity
analysis and the FED indicated that proactive management strategies have a much stronger effect on
safety performance (i.e., rate of accidents, ratio of routine safety violations, and ratio of situational
violations) compared to setting safety goals. This is consistent with Jiang et al. [2] simulation regarding
construction safety, which also reported that preventive measures are much more effective than reactive
measures for controlling safety violations [2].

6.2. Effects of Contagion Probability and Safety–Productivity Tradeoff

The contagion probability and the safety–productivity tradeoff are two critical drivers concerning
the social contagion effect of safety violations within a construction crew. According to the theory
of planned behavior [81], an individual’s perceived difficulty in performing a particular behavior
(e.g., cutting corners) plays an important role in whether they will adopt the behavior or not.
The contagion probability (i.e., median contagionPro) can represent the extent to which a worker
follows coworker safety violations within a group context. In contrast, the tradeoff between safety
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and productivity (i.e., workers compromise safety to achieve effective production) serves as a major
system factor that facilitates the formation of safety violation norms [15,19,39,82]. The degree of
tradeoff is captured by the potential production increase (i.e., productionIncr) in this research, which
reflects the unsuitability between safety and productivity onsite. According to the results of FED
analyses, this research found that the contagion probability has significant effects on routine safety
violations, while the effects on situational safety violations are relatively lower or even insignificant.
This is in line with Liang et al. [18] empirical study, which revealed that routine safety violations are
much more contagious than situational safety violations. This is because routine safety violations
are more common onsite and they are often committed by experienced workers [83]. By contrast,
the safety-productivity tradeoff tends to have a higher effect on situational safety violations than the
contagion probability. Different from routine safety violations which are associated with individuals’
cognitive process (e.g., workers commit such violations by completing tasks using the least possible
effort) [84], situational safety violations are provoked by the organizational factors such as situational
constraints [18,85]. The poor suitability between safety and productivity, reflecting organizational
failures of establishing supportive environment with regard to the site, tools or equipment, should
have a greater effect on situational safety violations [84].

6.3. Effects of Different Work Environments

This research examined the effectiveness of four aforementioned managerial interventions on the
social contagion effect of safety violations for three different work environment hazard levels. As shown
in Section 5, the effects of four managerial interventions on routine safety violations and situational
safety violations are much stronger when the hazard level is modest than when the hazard level is low
or high (shown in Figures 8b,c, 9b,c and 10b,c). This is because social interactions play a significant
role in workers’ decision-making process for the modest hazard situation. Compared with the high
or low hazard levels, the modest hazard situation represents a much more ambiguous or uncertain
work environment, where individuals are more likely to seek social cues from their coworkers about
what behaviors are acceptable within a construction crew. As such, for the modest hazard situation,
the contagion probability (i.e., decreasing the median contagionPro) and safety–productivity tradeoff
(i.e., decreasing the productionIncr) should be given priority for controlling the social contagion effect.
Lastly, considering the significant effects of proactive management strategy, setting safety goals, and
their interactive effects (shown in Figure 8b,c), a high intensity of proactive management strategies
(i.e., a low proacMan value), and a high safety goal (i.e., a low safeGoal value) are also recommended
for the modest hazard environment.

By contrast, it seems that only the work environment plays a critical role for low or high hazard
levels. For the low hazard situation, the hazards that workers are exposed to are more likely to be
lower than their acceptable level, which leads to workers breaking more safety rules regardless of
coworkers’ safety violations. This may be the reason why the effects of the contagion probability and
the safety—productivity tradeoff can be so minimal (shown in Figure 10b,c) compared to the effects at
modest hazard levels. Moreover, most potential hazards should also be lower than the management
tolerable level, which makes management reluctant to provide feedback to safety violations or to
take actions to eliminate situational constraints. From this standpoint, highly intensive management
strategies (i.e., a low value of proacMan) should be adopted before the occurrence of accidents to
ensure a lower tolerable hazard level.

For the high hazard situation, conversely, the hazards that workers are exposed to are more
likely to be higher than their acceptable levels, which will make workers less prone to commit safety
violations. As such, the effects of contagion probability and the safety–productivity tradeoff also
become limited (Figure 9b,c). Moreover, at a high hazard situation, most potential hazards to which the
workers are exposed are so dangerous that they tend to be intolerable to the management. This could
explain why implementing a highly intensity of proactive management strategies cannot exert a larger
effect on safety violations. In this regard, to further control safety violations, highly intensive proactive
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management strategies should be supplemented by other interventions. Considering the significant
interactive effects between proactive management strategies and safety goals, choosing a high safety
goal is also recommended (i.e., a low value of safeGoal) to make the management system much more
sensitive to poor safety performance.

6.4. Theoretical Contributions

This research has several theoretical contributions. First, although coworkers serve as a critical
source of social influence within a social group context, research on how coworkers’ safety violations
influence individuals is still rare [86]. In this regard, this research can extend the current knowledge of
safety-related behaviors by modeling the dynamic social contagion effect of safety violations within
a construction crew. Second, this research sheds light on how to improve system adaptions to the
complexities and uncertainties through dealing with social contagion effect of safety violations onsite.
Thus, this research is, to some extent, consistent with the principle of resilience engineering which is a
widely used approach to ensure safety performance continuity in changing and uncertain settings [87].
Third, the proposed hybrid SD-ABM simulation approach integrates both the system level dynamics
and the individuals’ cognitive process and social interactions. This hybrid model can give a much more
accurate representation of the actual system compared to the traditional single methods (i.e., either SD
or ABM) that have been often used in construction safety simulations. Fourth, this research employed
the FED method to identify the most impactful interventions on safety violations for three different
situations (i.e., low-, modest-, and high-hazard situation). The FED can be a much more effective tool
than the traditional experimental methods (e.g., Monte Carlo analysis [7]) when the research involves
a number of factors and complicated interactions between these factors [3]. Considering that the FED
has not received enough attention in current safety-related simulations [3], this research can guide
future applications of FED in this research field.

6.5. Practical Implications

The findings from this research also have several practical implications. First, the results showed
that proactive management strategies can exert much stronger effects on safety violations than reactive
strategies (i.e., setting safety goals). Therefore, in addition to setting a high safety goal, organizations
should also consider interventions, including having a low tolerable hazard level, providing frequent
safety feedback, and inspecting safety widely. Second, management should take different actions to
control routine and situational safety violations. For routine safety violations, the tendency to which
individuals are influenced by coworkers’ safety violations should be decreased. To reduce contagion
probability, workers should be clearly informed that safety rests on everyone including themselves,
as they are the ones doing the tasks [82]. When the responsibility for safety can be internalized as a
social norm within the crew, the workers may become less susceptible to the norms of safety violations.
For situational safety violations, management should improve the suitability of safety procedures to
actual workflows; the appropriateness of safety equipment should also be ensured to avoid situations
that calls for a tradeoff between safety and productivity [88]. Such a supportive environment not only
can be helpful to reduce the situational constraints onsite, but also further motive workers to be active
in promoting workplace safety (e.g., assisting others to obtain safety equipment in a timely), which
will eventually reduce situational safety violations. Lastly, more attention should be paid to the effects
of different working environments (i.e., modest-, low-, and high-hazard situations). For the modest
hazard situation, management should give priority to the effects from social interactions by decreasing
individual contagion probability and safety–productivity tradeoff. For the low hazard situation, highly
intensive safety strategies should be required before the occurrence of injuries or accidents. For the
high hazard situation, highly intensive proactive safety strategies should be supplemented by other
interventions (e.g., a high safety goal) to further control safety violations. Therefore, this research
provides meaningful insight into how to prevent the social contagion effect of safety violations for
different hazard levels.
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6.6. Limitations and Future Research Directions

First, as Cooke [89] and Sterman [51] have stated, all models are limited and simplified representations
of the real world. The SD-ABM model proposed in this research is no exception, especially considering
that the hybrid simulation approach is implemented on a virtual construction site. Although such a
virtual site is hypothetical and simplified in many aspects, this limitation does not affect the purpose
of this research, which is to understand the social contagion effect of safety violations within a
construction crew. Thoughtful validation efforts are also conducted in this research to enhance the
model. Such efforts include ensuring the agreement between the baseline model and previous empirical
data and conducting a sensitivity analysis. In the future, the discrete event simulation (DES), which
can capture the construction processes more precisely, is suggested to enhance the proposed SD-ABM
simulation [3]. Second, this research assumes that workers have the same productivity rate when
they follow safety rules. The assumption of skill homogeneity is acceptable because of the following
reasons: (1) the high interdependence in construction tasks means that workers need to cooperate
with each other and have similar productivity; and (2) labor productivity is mainly determined
by specific project characteristics (e.g., construction technologies, leadership of management, and
incentive programs) [90]. Nevertheless, the productivity difference between workers with different
working experience (e.g., older and permanent workers tend to be more productive than younger and
temporary workers) can be explored in more detail in future research. Third, this research assumes that
workers can always perceive hazards and understand what they are being exposed to. However, their
ability to recognize hazards can be limited due to various factors, such as personal characteristics and
organizational conditions. Construction workers tend to underestimate the actual hazards onsite [91],
causing inappropriate decisions. Therefore, this model can be extended by considering a worker’s
ability to recognize hazards [5] and other intervention functions, such as accident learning and safety
training [2,92], to facilitate a more comprehensive analysis. Fourth, this research mainly focuses on the
effect of behavior-related interventions (i.e., safety supervision) without considering other technological
investments such as the application of real-time location systems to automatically monitor workers’
behaviors [93]. Therefore, a holistic model that integrates both safety supervision and the application of
technology can be established to further explore the effect of the project hazard level on the relationship
between the investment in safety and the safety performance [94]. Lastly, more validation studies are
suggested in the future by testing the proposed framework on real construction projects.

7. Conclusions

This research developed a hybrid SD-ABM simulation approach to understand the social contagion
effect of safety violations within a construction crew based on established social science theories
and previous empirical findings. The model confidence was built by implementing verification and
validation techniques. Finally, the FED method was used to explore the effectiveness of different
interventions for three different situations (low-, modest-, and high-hazard situations). The findings
imply that management should take different actions to control routine and situational safety
violations. In addition, different interventions should be implemented for different work environments.
Specifically, social interactions play a critical role at the modest hazard level because workers may
encounter more ambiguity or uncertainty. Interventions such as decreasing the contagion probability or
the safety–productivity tradeoff should be given priority. For the low hazard situation, highly intensive
proactive management strategies should be required. In contrast, for the high hazard situation, highly
intensive proactive safety strategies should be supplemented by other interventions (e.g., a high safety
goal) to further control safety violations. Therefore, the findings from this research allow users to
select effective interventions to control safety violations at different hazard levels. This research also
contributes to the application of the SD-ABM simulation approach to construction safety management.
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