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Although testing, contact tracing, and case isolation programs can mitigate COVID-19
transmission and allow the relaxation of social distancing measures, few countries world-
wide have succeeded in scaling such efforts to levels that suppress spread. The efficacy of
test-trace-isolate likely depends on the speed and extent of follow-up and the prevalence
of SARS-CoV-2 in the community. Here, we use a granular model of COVID-19 trans-
mission to estimate the public health impacts of test-trace-isolate programs across a range
of programmatic and epidemiological scenarios, based on testing and contact tracing data
collected on a university campus and surrounding community in Austin, TX, between
October 1, 2020, and January 1, 2021. The median time between specimen collection
from a symptomatic case and quarantine of a traced contact was 2 days (interquartile
range [IQR]: 2 to 3) on campus and 5 days (IQR: 3 to 8) in the community. Assuming a
reproduction number of 1.2, we found that detection of 40% of all symptomatic cases
followed by isolation is expected to avert 39% (IQR: 30% to 45%) of COVID-19 cases.
Contact tracing is expected to increase the cases averted to 53% (IQR: 42% to 58%) or
40% (32% to 47%), assuming the 2- and 5-day delays estimated on campus and in the
community, respectively. In a tracing-accelerated scenario, in which 75% of contacts are
notified the day after specimen collection, cases averted increase to 68% (IQR: 55% to
72%). An accelerated contact tracing program leveraging rapid testing and electronic
reporting of test results can significantly curtail local COVID-19 transmission.
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severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a global
pandemic on March 11, 2020 (1) and has claimed at least 5 million lives as of January
5, 2022 (2). Prior to the distribution of effective vaccines, countries relied on nonphar-
maceutical interventions to mitigate the spread of the disease, such as school closures,
travel restrictions, shelter-in-place orders, and closure of nonessential commercial activi-
ties (3). Although such measures have slowed transmission, their psychological, social,
and economic costs have been substantial (4). Specifically, socially distanced populations
are at increased risk of developing depression, anxiety, and loneliness (5, 6). Surveys from
college students have shown that more than 70% of the participants had increased stress
levels during the pandemic (7). Children experienced food insecurity, limited social and
emotional development, and decreased academic achievement because of COVID-
19–related school closure and remote education (8). The global economic growth was esti-
mated to be an annualized rate of �4.5% to �6% (9) and the US gross domestic product
decreased by 3.5% in 2020 (10), largely because of the pandemic-associated mortality,
morbidity, and productivity loss caused by social distancing policies (11). In order to safely
relax these costly measures, additional intervention strategies are required to prevent new
waves of the COVID-19 pandemic, such as cocooning high-risk populations, wearing face
masks, vaccination, and extensive testing, contact tracing, and isolation (henceforth, test-
trace-isolate) programs (12, 13).
Tracing and testing close contacts of someone with COVID-19 can identify new cases

earlier than self-identification of symptoms; immediate isolation can then limit transmission
to others (14). Contact tracing has traditionally been used by public health departments to
control a myriad of infectious diseases, including tuberculosis, HIV, Ebola, and SARS (15).
Despite historic use, COVID-19 contact tracing efforts have been implemented with mixed
success across the globe (16). Successful programs in South Korea, Singapore, and China
(17) have relied heavily on the use of digital technology to enhance routine surveillance of
cases. In South Korea, where testing is widespread, the number of cases remained under
30,000 until mid-November 2020, when a third pandemic wave led to a rapid rise in case
counts (18). South Korea initially kept case counts low by integrating data from case inter-
views, medical records, Global Positioning System (GPS) from mobile phones, credit card
transactions, and footage from video cameras to identify as many contacts as possible (19,
20). The first two waves were characterized by local clusters that were aggressively and
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effectively contained via these measures. However, during the third
wave, delayed social distancing policies and widespread community
transmission challenged these efforts. Contact tracing resources in
South Korea were eventually diverted toward vaccination as the
country’s case load surged in 2021 (21). In Singapore, traditional
surveillance methods were initially extended to include contact
tracing of suspected cases (20) and the use of Bluetooth-based
technology on mobile phones to rapidly identify close contacts. A
separate electronic visitor registration system was developed to
track visitors to places providing essential services (20). Unlike
South Korea, Singapore maintained its aggressive contact tracing
efforts (22, 23) in addition to implementing strict social distancing
measures, resulting in only 832 deaths as of January 5, 2022 (24).
Contact tracing has been less effective in other countries, such

as the United States and United Kingdom. Privacy concerns have
impeded mass use of digital tracing technology (16). Instead, pub-
lic health authorities have primarily relied on phone interviews
with cases and contacts (25). This highly manual process is slower
and may be less comprehensive than digital approaches, especially
when relying on voluntary participation by cases (26), insufficient
public health resources, and long delays in receiving test results
(27). In the United States, 55% of survey respondents in early
September 2020 reported a test turnaround time of more than 3
days (28); in Singapore, the average delay was 1 day (29). Data
collected from 62 health departments across the United States
between June 25 and July 24, 2020 (30) illustrate the delays and
gaps that have plagued test-trace-isolate programs throughout the
pandemic, with a median of 57% (interquartile range [IQR]:
27% to 82%) of cases interviewed within 1 day of receipt of a
positive test result (which does not account for the initial test
turnaround time) and a median of 55% (IQR: 32% to 79%) of
contacts reached within 1 day of the interview. Higher caseloads
were associated with even longer delays and lower proportions of
cases immediately investigated. During this period, North Caro-
lina counties reported a median delay of 6 days between specimen
collection and contact notification, suggesting a diminished capac-
ity to interrupt transmission during a pandemic surge (31).
In March 2020, when the pandemic emerged in the city of

Austin, TX, Dell Medical School at the University of Texas at
Austin (UT) began contact tracing through a partnership with
Austin Public Health. By June 2020, 281 student and commu-
nity volunteers were recruited and trained. Existing software
applications were configured to capture data from COVID-19
cases and their contacts, and the onboarding and scheduling of
volunteers were automated for efficiency. As cases surged in
summer 2020, local laboratory and contact tracing operations
that relied heavily on human resources became strained. Public
health authorities rapidly procured additional isolation facilities
and scrambled to determine an effective allocation of limited
contact tracing resources. Specifically, they faced a trade-off
between tracing coverage (i.e., the numbers of contacts traced
per index case) and tracing speed (i.e., time between identifica-
tion of index case and notification of infected contact). In this
study, we use a COVID-19 transmission model informed by
local COVID-19 hospital admissions and contact tracing data to
evaluate the impact of test-trace-isolate efforts on mitigating the
pandemic. We estimate the impacts of expanding test availability
while accelerating contact tracing on the expected number of
SARS-CoV-2 infections over an 7-mo period.

Results

Between October 1, 2020, and January 1, 2021, symptomatic
cases sought a COVID-19 test a median of 2 days (Fig. 1A) after

symptom onset both at UT (campus) (IQR: 1 to 4) and in the
surrounding community (community) (IQR: 1 to 6). Case
reports (i.e., positive test confirmation) were acquired by the con-
tact tracing program (Fig. 1B) a median of 2 days after specimen
collection on campus (IQR: 1 to 2) and a median of 6 days
(IQR: 4 to 10) in the community. Contacts of cases tested on
campus were notified of their exposure (Fig. 1C) a median of
1 day following receipt of the index case report (IQR: 0 to
2 days). For cases tested in the community, contacts were typi-
cally notified on the day of case report receipt (median: 0, IQR:
0 to 1 days). Among the 620 cases reported from campus testing
sites, 519 cases (83.7%) were successfully interviewed. Of the
133 cases that tested in the community, 96 cases (72.2%) were
successfully interviewed (Table 1). Among all named contacts,
1,144 out of 1,506 contacts (76.0%) were notified of their expo-
sure on campus and 133 out of 194 contacts (68.6%) were noti-
fied in the community. The total testing and tracing delay
(Fig. 1D) was a median of 2 days (IQR: 2 to 3) and 5 days (IQR:
3 to 8) for cases on campus and in the community, respectively.

Assuming symptomatic cases are tested and isolated an average
of 2 days after symptom onset, we simulated two epidemic scenar-
ios across all combinations of three symptomatic case detection
ratios, four levels of contact tracing coverage, and two lags between
specimen collection from the index case and contact notification.

We projected that the total number of COVID-19 infections
in the Austin–Round Rock Metropolitan Statistical Area
(MSA) from November 8, 2020, to May 31, 2021, would total
45,992 (IQR: 26,506 to 84,578) and 471,143 (IQR: 269,684
to 680,501) assuming R0 = 0.95 and R0 = 1.2, respectively
(Fig. 2). From November 8, 2020, to May 31, 2021, isolating
40% of symptomatic cases 2 days after their symptom onset
(i.e., at the time of specimen collection) would be expected to
reduce the total number of COVID-19 cases by 39.3% (IQR:
28.3% to 49.0%) and 39.4% (IQR: 29.5% to 44.8%) in the
low-transmission (R0 = 0.95) and high-transmission (R0 = 1.2)
scenarios, respectively (Fig. 2). These effect sizes account for
the cumulative impact of isolation on averting multiple genera-
tions of transmission. A higher symptomatic detection ratio of
80% would be expected to further mitigate spread, with corre-
sponding reductions in overall infections of 57.8% (IQR:
45.7% to 69.9%) and 69.1% (IQR: 58.4% to 72.7%) across
the 7-mo study period. Under the 40% case detection scenario,
if we also traced and isolated 25%, 50%, or 75% of contacts
within 5 days of specimen collection, then the expected reduc-
tions in infections would increase only slightly to 39.5% (IQR:
29.7% to 45.5%), 40.4% (IQR: 31.8% to 46.3%), and 41.0%
(IQR: 32.4% to 47.5%), respectively. The expected impacts
would be significantly larger if we assumed testing and tracing
delays were shortened to the levels in the campus setting (i.e., 2
days), with expected cases averted increasing to 46.2% (IQR:
35.3% to 52.0%), 53.2% (IQR: 41.9% to 58.4%), and 59.1%
(IQR: 48.2% to 64.6%), respectively (Fig. 2B), during the 7th-
mo period. If the delay is shortened to a single day, the
expected cases averted would increase to 50.0% (IQR: 39.2%
to 55.5%), 59.4% (IQR: 49.4% to 64.6%), 67.6% (IQR:
55.1% to 71.7%), respectively, within the study period. In the
most optimistic scenario of an 80% symptomatic case detection
rate combined with 75% contacts isolated or quarantined the
next day of specimen collection, we estimated that contact trac-
ing could avert 90.4% (IQR: 86.9% to 91.7%) of infections.

Assuming R0 = 1.2, a 40% symptomatic case detection rate
would be expected to flatten the epidemic curve and an 80%
detection rate would be expected to effectively contain spread
(Fig. 3). Contact tracing could further suppress transmission,
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especially when accelerated. If test turnaround time and contact
tracing takes as long as 5 days, it would be expected to have
only a modest impact on population-level disease burden.
However, if contacts are traced within 2 days, a pessimistic sce-
nario of a 40% symptomatic case detection rate and 25% trac-
ing success rate would avert an expected 3.9 (IQR: 2.5 to 5.6)
infections per index case traced; a more optimistic scenario of
an 80% detection rate and 75% success rate would be expected
to increase the impact of each traced index case to 7.4 (IQR:
5.2 to 8.7) infections averted (Fig. 3).
We estimated the impact of isolation on secondary transmis-

sion from successfully traced contacts, depending on the delay
between index case specimen collection and isolation of the
traced contacts, assuming a 40% symptomatic case detection
rate with a 2-day lag between symptom onset and testing and a
50% contact tracing success rate. If a contact is isolated within
1 day of the index case’s specimen collection, then isolation
occurs after an estimated 20.6% of the case’s total infectivity
has transpired, effectively blocking 79.4% of overall infectivity.

For the observed 2- and 5-day delays in tracing, contact isola-
tion is expected to block 55.1% and 15.6% of infectivity,
respectively (Table 2). At a reproduction number of R0 = 1.2,
these estimates imply that a 1-, 2-, or 5-day lag between index
case specimen collection and contact isolation will prevent
65.1% (IQR: 53% to 70%), 53% (IQR: 43% to 58%), or
40.4% (IQR: 32% to 47%) of secondary infections from the
isolated contacts, respectively.

Discussion

Using a mathematical model of COVID-19 transmission, we esti-
mated the epidemiological impacts of contact tracing and isolation
based on data from a large contact tracing program in Austin,
TX. The symptomatic case detection rate and speed of contact
tracing are positively correlated with reduced transmission. Given
the observed pace of contact tracing in the Austin community,
our model projects that contact tracing in similar contexts would
only modestly reduce transmission beyond reductions achieved
through the isolation of index cases. The more rapid contact trac-
ing on UT’s campus may have had a greater impact on preventing
spread, which could be amplified by increasing the proportion of
contacts successfully traced. We estimate that reducing the delay
between specimen collection of the index case and contact isola-
tion from 5 to 2 days would reduce the number of secondary
infections by 40%. The importance of case detection and rapid
isolation is also noted in a modeling study by Grantz et al. (33).
The authors found that in most scenarios, the largest expected
reductions in transmission result from increasing the proportion
of cases detected and isolated. Only when a sufficient proportion
of cases are detected do other factors, such as speed and contact
coverage, begin to matter.

Table 1. Cases investigated and contacts notified by UT
contact tracing from October 1, 2020, to January 1, 2021,
in Austin, TX

% of cases
interviewed

(No. of interviewed/
total reported)

% of contacts
notified

(No. of notified/
total reported)

Campus 83.7% (519/620) 76.0% (1,144/1,506)
Community 72.2% (96/133) 68.6% (133/194)

Fig. 1. Delays associated with seeking test, test turnaround, and contact tracing of cases reported from community and campus testing sites from October 1, 2020,
to January 1, 2021, in Austin, TX. (A) Delay from symptom onset to specimen collection from an index case. (B) Delay from specimen collection from an index case, to
report of the index case to contact tracing. (C) Delay from report of an index case to notification of exposure to contacts. (D) Delay from specimen collection from an
index case to notification of exposure to contacts. Boxplots display medians, IQRs, and ranges; the star in B indicates an outlier from community testing sites.
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With sufficient testing and isolation in place (i.e., 40% of
symptomatic cases), we found that the addition of rapid and
effective contact tracing (i.e., 1-day delay achieving 75% coverage)
is expected to prevent roughly as many infections as doubling the
symptomatic isolation rate from 40% to 80%. However, the
addition of slow contact tracing (i.e., a 5-day delay) does little
to prevent transmission. Whether delayed or not, contact trac-
ing brings other unmeasured benefits. The case and contact
information gathered through interviews provides critical epide-
miological insight into disease transmission in various commu-
nities (34). During these interviews, contact tracers can provide
valuable health education, including information about mask
wearing, other precautionary behavior, and vaccination. Con-
tacts are encouraged to seek a test even if asymptomatic, which
can improve case detection. These interviews also provide an
opportunity to link cases and contacts to community resources
to address any unmet health, social, and economic needs during
their time in isolation or quarantine. Furthermore, the educa-
tion and emotional support provided by contact tracers can lead
to higher compliance with isolation and quarantine guidelines.
Given the many benefits of contact tracing, we believe these

results should inform strategic efforts to increase the effectiveness
rather than disband existing programs. Specifically, we find that
accelerating tracing efforts and increasing the fraction of contacts
successfully traced can reduce the COVID-19 burden. The con-
tact tracing success rate is largely dependent on case and contact
participation. While our estimates of case participation among
those that test in the community are similar to other settings
(26), we reported higher participation among cases that tested
on campus. Institutional settings, such as universities and work-
places, may be able to take advantage of a shared sense of social
responsibility and institutional identity to encourage higher par-
ticipation in the test-trace-isolate strategy.

The shorter test turnaround times estimated on UT campus in
comparison to the surrounding community reflect the efficiency
provided by same-day reporting alongside contact tracing at a sin-
gle institution. During epidemic surges, the increased demand on
laboratories and healthcare providers can significantly slow result
notification. For example, during the 2020 summer wave of
COVID-19 in Texas, a 7-day turnaround from specimen collec-
tion was common (35). Expanding laboratory capacity, as well as
interoperable public health surveillance and electronic health
record systems, can reduce such delays.

In addition, rapid antigen tests have the potential to signifi-
cantly improve contact tracing by accelerating that isolation of
cases and, through nearly instant in-person notification, encour-
aging compliance. Test kits such as the Abbott BinaxNOW have
been demonstrated to have high sensitivity and specificity in
community settings among cases with high viral load (36).
Increased investment in these point-of-care tests should be con-
sidered in high-risk settings such as daycares, schools, university
residences, jails, and other congregate settings.

Finally, test-trace-isolate programs could be improved
through backward contact tracing, which involves identifying
individuals who may have infected the index case and tracing
their contacts. Theoretical studies suggest that backward tracing
is especially effective when the index case is infected by a super-
spreader (37, 38). Our results indicate that the impact of test-
trace-isolate programs depends on tracing delays, which may be
more extreme for backward tracing.

The study period included a large winter COVID-19 surge
that peaked in January 2021. While other US counties reported
long lags between case reports and contact notification during
such peaks (31), UT managed to avoid delays using a large net-
work of on-call volunteers. In general, a flexible workforce of
public health professionals and volunteers that can pivot among
multiple activities may be key to managing infectious disease
surges. Reliable surveillance and predictive models can support
the adaptive management of essential personnel. Gardner and
Kilpatrick (39) even suggest that shifting personnel from high-
or low-burden areas to areas with intermediate burden of
COVID-19 could maximize impact on the epidemic. Similar to
the conclusions made by Gardner and Kilpatrick (39) and
Grantz et al. (33), our results highlight that tracing speed should
be prioritized over the proportion of contacts traced. On a given
day, if contact tracing programs are not able to call all reported
cases and contacts, they could prioritize and possibly reset their
priority list. The Centers for Disease Control and Prevention
(CDC) recommends prioritizing cases with recent symptom
onset or a recent positive test result for tracing (40). Priority
might also be given to highly infectious cases, such as those with
high viral loads or highly infectious variants. Alternatively, con-
tacts may be prioritized according to how recent or high risk
their exposures were (39, 41) and whether they live in high-risk
environments (e.g., long-term care facilities).

Our model is stratified by age and underlying conditions. While
some age groups engage in more frequent contacts than others, we
do not explicitly model individuals with anomalously large numbers
of contacts who could become superspreaders. Early identification
and isolation of superspreaders could lead to greater reductions in
transmission than those estimated. We also make the simplifying
assumption that symptomatic cases comply with testing and isola-
tion within 2 days of symptom onset and possibly before receiving
test results. However, data from a LatinX community in the United
States demonstrate that while adherence to self-isolation guidelines
may be moderate to high, the median time from symptom onset
to isolation can be as long as 7 days (42). Lower or delayed

Fig. 2. Expected COVID-19 attack rate from November 8, 2020, to May 31,
2021, across a range of scenarios for case detection and proportion of con-
tacts traced, assuming reproduction numbers of (A) R0 = 0.95 and (B) R0 = 1.2.
Red bars represent the projected number of COVID-19 cases per 100,000 in
the absence of testing. The left and right sets of bars correspond to 40% and
80% symptomatic case detection rates, respectively, assuming that detected
cases seek a test 2 days after symptom onset and isolate at the time of speci-
men collection for the duration of their infectious period. Blue and green
shading ranges from no contact tracing (light) to 75% of contacts isolated
(dark) either 5 days (blue) or 2 days (green) after specimen collection from
the index case. Bars and whiskers are medians and IQRs from 200 stochas-
tic simulations, respectively.
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compliance would lead to lower expected efficacy of index case
testing and isolation (SI Appendix, Section 3). We further assume
that only symptomatic cases seek testing, which was typical early in
the pandemic when testing was limited across the United States
(43). With expanded and rapid testing of presymptomatic and
asymptomatic cases, test-trace-isolate programs could further miti-
gate transmission of SARS-CoV-2.

Materials and Methods

We built a city-level susceptible-exposed-infected-recovered model of SARS-
CoV-2 transmission (SI Appendix, Fig. S1). The stochastic compartmental model

(SI Appendix, Section 1) incorporates city-specific age and risk structures, contact
patterns, and various testing and contact tracing efforts to measure the effective-
ness of testing and contact tracing. Stochasticity is introduced by sampling multi-
ple parameters from distributions for each simulation, as well as using the
τ-leap method (44, 45) to model stochastic transitions between the compart-
ments. We analyzed the model with a focus on the Austin–Round Rock MSA, but
the results could be applied to all US cities.

Local Testing and Contact Tracing. Data were collected through contact trac-
ing conducted by Dell Medical School, UT, working in partnership with Austin
Public Health from October 1, 2020, to January 1, 2021. The contact tracing pro-
gram received notifications of university-related COVID-19 cases from campus

Fig. 3. Expected COVID-19 incidence and cases averted per contact traced from November 8, 2020, to May 31, 2021, across a range of case detection and con-
tact tracing scenarios, assuming R0 = 1.2. (A) Median estimated weekly incident COVID-19 cases across 200 stochastic simulations. Red curves correspond to the
no testing or tracing scenario. Left and Right assume 40% and 80% of all symptomatics are detected and isolated, respectively. Orange curves correspond to test-
ing without tracing, blue curves assume 25% or 50% of the contacts of the confirmed cases are traced and isolated 5 days after the isolation of the confirmed
case, and green curves assume 25% or 50% of the contacts of the confirmed cases are traced and isolated after 2 days. The gray vertical shading represents
Thanksgiving break, winter break, and spring break for the local school district, and the other vertical lines represent other school holidays including Martin
Luther King Day, Presidents’ Day, and Easter (32). (B) Number of COVID-19 cases averted per contact successfully traced as a function of lag from specimen col-
lection from the index case to isolation of the contact. Left and Right assume 40% and 80% of symptomatic cases are detected, respectively. The blue shading
indicates contact tracing success rates of 25%, 50%, or 75%. The points are medians from 200 paired stochastic simulations, and the error bars are IQRs.

Table 2. Cumulative infectivity of a traced contact prior to isolation and percentage of infections averted by
isolation under two transmission scenarios

Days from index case specimen
collection to contact isolation

Cumulative infectivity
prior to isolation (%)

% of infections
averted (R0 = 0.95)

% of infections
averted (R0 = 1.2)

0 20.6 54 (42–66) 65 (53–70)
1 31.8 51 (39–63) 59 (48–65)
2 44.9 47 (35–59) 53 (42–58)
3 58.9 43 (31–54) 47 (35–53)
4 72.5 41 (29–52) 43 (33–49)
5 84.4 39 (28–51) 40 (32–47)

Two transmission scenarios: R0 = 0.95 and R0 = 1.2. Estimates assume a 40% detection rate for symptomatic cases, a 2-day lag between symptom onset and specimen collection from
the index case, and a 50% contact tracing success rate. Values are medians and IQRs from 200 simulations.
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testing sites. University-related cases testing at other sites in the city were identi-
fied in collaboration with Austin Public Health. Campus testing sites were open
on weekdays to both asymptomatic and symptomatic UT staff, faculty, and stu-
dents, as well as to patients of UT Health Austin at Dell Medical School. Only
cases with an indication of a recent infection with SARS-CoV-2 detected through
nucleic acid amplification tests or an antigen test were investigated. Contact trac-
ing was carried out through phone interviews to cases and contacts. Attempts
were made to call cases and their contacts up to three times. In this analysis, we
examined the delay from 1) index case symptom onset to specimen collection
among symptomatic cases (test delay); 2) specimen collection, to confirmation
and reporting of the test result, to contact tracing (test turnaround time); 3)
reporting of the test result to first attempt to notify a contact of an exposure (con-
tact tracing delay); and 4) specimen collection to first attempt to notify a contact
of an exposure (testing and tracing delay). We used data reported to Austin Pub-
lic Health by off-campus providers as a proxy for the test delay, test turnaround
time, and tracing delay in the community. Data from campus testing sites were
used to provide estimates of analogous delays at the university. We evaluated
the percentage of cases investigated (the number of cases investigated divided
by the number of cases reported to contact tracing) and the percentage of con-
tacts successfully notified of their exposure (the number of contacts successfully
notified of their exposure and interviewed among all contacts named during
case investigations). The University of Texas Institutional Review Board (IRB)
determined that the proposed activity is not research involving human subjects.

Transmission Model. We divided the population into five age groups: 0 to 4,
5 to 17, 18 to 49, 50 to 64, and 65+ y based on the 2017 American Commu-
nity Survey (46). Each age group was further separated into two risk groups
based on the prevalence of chronic health conditions (SI Appendix, Section 2).
Individuals who were not previously infected were considered susceptible to the
disease. Exposed people moved into a latent period, in which they were slightly
infectious but free of symptoms upon infection, and then proceeded into either
asymptomatic or symptomatic compartments, both of which were infectious.
Symptomatic individuals with severe disease moved into a hospitalized compart-
ment, and some went on to become deceased. Recovered individuals were con-
sidered fully immune to the disease.

To model the effects of testing, contact tracing, and isolation, we split the
exposed, asymptomatic, and symptomatic compartments into three subcompart-
ments: undetectable, detectable, and detected and isolated. The ratio of detect-
able to undetectable depended on the detection ratio for each compartment.
Individuals who were detectable moved into the isolated status after a period of
time. A full description of the model is provided in the SI Appendix. We assumed
that only symptomatic individuals seek COVID-19 testing voluntarily (referred to
as symptomatic case detection), it takes a symptomatic individual 2 days to seek
healthcare after symptom onset, and they are isolated at the time of the test. Fol-
lowing national contact tracing guidelines (25), contacts with symptoms are in
isolation and contacts without symptoms are in quarantine.

All model parameters were based on published literature about COVID-19, as
well as from discussion with Austin Public Health officials. We assumed the repro-
duction number to be 0.95 and 1.2, based on estimates of Rt from hospitaliza-
tion admission and discharge data on November 7, 2020 (47). The transmission

rate was calculated using the next-generation matrix method based on the speci-
fied reproduction number (48). Age-specific contact patterns were obtained
using the published contact matrices (49) and were adjusted based on the local
school calendar (32). We assumed 44% of infections happened before symp-
tom onset and sampled the incubation period parameter from a triangular dis-
tribution from 4.2 to 6.2 days, with a mean of 5.2 days (50). The infectiousness
of asymptomatic individuals was assumed to be 67% of that of symptomatic indi-
viduals (50), and the recovery periods of the symptomatic and asymptomatic indi-
viduals were assumed to be the same. If a symptomatic case was severe and
required hospital care, hospital admission was estimated to happen 5.9 days after
symptom onset (51). We sampled the hospitalization duration from a triangular
distribution from 9.4 to 12.8 days, with an average of 10.7 days, based on Austin
admissions and discharge data (52, 53). Deaths after hospitalization are estimated
to follow a triangular distribution from 5.2 to 10.1 days, with an average of 8.1
days (52, 53). Following the CDC’s planning scenarios, we assumed that the high-
risk population was 10 times more likely to be hospitalized and deceased after
hospitalization compared to the low-risk individuals in the same age group.

Stochastic simulations began with projected compartment occupancies (SI
Appendix, Table S1.8) based on estimates from a healthcare forecasting model
(54) fitted to local hospital admission and discharge data in the Austin–Round
Rock MSA (47) on November 8, 2020, and were updated in 2.4-h intervals. For
each epidemic scenario, we ran 200 simulations and reported the median and
IQR of weekly quantities. To quantify the effect of specific testing and tracing
delays, we calculated the cumulative infectivity of a contact at the time they
were notified of their exposure. This can be interpreted as the proportion of all
secondary infections from the index case that are expected to occur by the time
of notification in a scenario where the case is not isolated. Cumulative infectivity
was calculated based on published estimates for the daily infectiousness of a
case following symptom onset (55), with formulas provided in the SI Appendix.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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