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Purpose: The present study aimed to investigate whether cervical vagal nerve
stimulation (VNS) could prevent retinal ganglion cell (RGC) loss and retinal dysfunction
after ischemia/reperfusion (I/R) injury.

Methods: First, rats were randomly divided into sham group (n = 4) and VNS group
(n = 12). Activation of the nodose ganglia (NOG), nucleus of the solitary tract (NTS),
superior salivatory nucleus (SSN), and pterygopalatine ganglion (PPG) neural circuit were
evaluated by c-fos expression at 0 h after sham VNS and at 0 h (n = 4), 6 h (n = 4), 72 h
(n = 4) after VNS. Secondly, rats were randomly assigned to I/R group (pressure-induced
retinal ischemia for 1 h and reperfusion for 1 h in the right eye, n = 16) and I/R+VNS
group (right cervical VNS for 2 h during the I/R period, n = 16). The left eye of each rat
served as a control. Electroretinogram (ERG), RGC numbers, tumor necrosis factor-α
(TNF-α) and vasoactive intestinal polypeptide (VIP) levels in retina were determined.
Additionally, the level of VIP in PPG was evaluated.

Results: In the first part of the study, compared with the sham group, the VNS
group exhibited significantly increased expression of c-fos in NOG, NTS, SSN, and
PPG tissues at 0, 6, and 72 h. In the second part of the study, compared with
left eyes, retinal function in right eyes (as assessed by the a-wave, b-wave and the
oscillatory potential amplitudes of ERG and RGC data) was significantly decreased by
I/R. The decreased retinal function was attenuated by VNS. In addition, I/R induced
an increase in inflammation, which was reflected by elevated TNF-α expression in the
retina. VNS significantly attenuated the increase in I/R-induced inflammation. Moreover,
VIP expression in the retina and PPG, which may contribute to the inhibition of the
inflammatory response, was significantly increased after VNS.

Conclusion: VNS could protect against retinal I/R injury by downregulating TNF-α.
Upregulation of VIP expression due to activation of the NOG-NTS-SSN-PPG neural
circuit may underlie to the protective effects of VNS.

Keywords: vagal nerve stimulation, retina, ischemia/reperfusion, neuroprotection, inflammation, vasoactive
intestinal polypeptide

Abbreviations: I/R, ischemia/reperfusion; IOP, intraocular pressure; NOG, nodose ganglia; NTS, nucleus of solitary tract;
PPG, pterygopalatine ganglion; RGC, retinal ganglion cell; SSN, superior salivatory nucleus; TNF-α, tumor necrosis factor-α;
VIP, vasoactive intestinal polypeptide; VNS, vagal nerve stimulation.
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INTRODUCTION

Retinal ischemia/reperfusion (I/R) injury is a common
pathological process that develops in a variety of retinal disorders
including diabetic retinopathy, retinopathy of prematurity and
glaucoma, resulting in the progressive loss of retinal ganglion
cells (RGCs) and vision (Kaur et al., 2008; Narayanan et al., 2013;
Palmhof et al., 2018). Acute elevation of intraocular pressure
(IOP) followed by reperfusion was a well-established model
used to investigate the mechanisms of, and potential therapy for
retinal ischemia (Zheng et al., 2007; Mi et al., 2012; Palmhof et al.,
2018). Chi et al. (2014) used an acute IOP model to investigate
the underlying mechanism of RGC death and found that IOP
increases IL-1β expression and RGC death. Kim et al. (2017)
and Munemasa and Kitaoka (2012) found that expression of
pro-inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), is significantly increased after retinal I/R injury and
these increased cytokines can cause axon degeneration and
RGC loss. These researches have indicated that an increased
inflammatory response promotes neuron damage during retinal
I/R injury. Although previous studies have shown that some
medicines or operation can remit retinal reperfusion (I/R)
injury (Adams et al., 2018; Le et al., 2018), the side effects
and shortcomings of present therapy highlights the need for
improved therapies.

It has been reported that vagal nerve stimulation (VNS)
can protect against I/R injuries in multiple organs, including
the heart, kidney and cerebra, through its anti-inflammatory
properties (Zhao et al., 2013; Inoue et al., 2016; Xu et al.,
2018). The central vagal nerve center and nucleus of solitary
tract (NTS) can project parasympathetic nerves to the retina
and choroid through the superior salivatory nucleus (SSN) and
pterygopalatine ganglion (PPG) neural circuit (Agassandian et al.,
2003; Chunyan et al., 2015; McDougal and Gamlin, 2015; Li et al.,
2016b). Several studies have shown that the parasympathetic
nerve in these neural circuits can synthesize and release the
anti-inflammatory peptide-vasoactive intestinal peptide (VIP) to
protect the retina (Chandrasekharan et al., 2013; Chen L. et al.,
2015; Ganea et al., 2015; Cakmak et al., 2017; Atlasz et al., 2018).
These studies suggested that activation of the NTS-SSN-PPG
circuit could promote the release of vasoactive intestinal peptide
(VIP) However, whether VNS can protect the retina against I/R
injury through its anti-inflammatory property remains unknown.

In the present study, the IOP-induced retinal ischemia model
was applied to observe the effect of VNS on electroretinogram
(ERG), retinal ganglion cells (RGCs) and the expression level of
VIP and TNF-α in the PPG and retina. We hypothesize that VNS
could protect the retina against I/R injury by regulating VIP and
TNF-α via activation of the NTS-SSN-PPG pathway.

MATERIALS AND METHODS

Animal Preparation
Male SD rats (220 ± 20 g, supplied by the Experimental Animal
Center of Renmin Hospital, Wuhan University, China) were
fed a standard diet, provided water randomly and kept on a

12-h light/12-h dark cycle. All experimental procedures were
performed in accordance with the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research. The experimental
protocol was approved by the Ethics Committee of Renmin
Hospital, Wuhan University.

Establishment of the Retinal
Ischemia/Reperfusion (I/R) Model
Rats were anesthetized with an intraperitoneal (i.p.) injection of
xylazine (10 mg/kg) and ketamine (100 mg/kg). 1% tropicamide
was then used to dilate the pupils, and 0.5% tetracaine
hydrochloride was used to topically anesthetize the corneas. A 30-
gauge needle was cannulated into the right anterior chamber and
connected to a 0.9% saline reservoir, which maintained an IOP
of 90 mmHg for 1 h, followed by reperfusion for 1 h (Pinar-
Sueiro et al., 2013; Liu et al., 2016; Wang W. et al., 2018). The
success of the model was confirmed by a tonometer and by
observing the loss of the red reflex. Visualization of the red
reflex following needle withdrawal served as an indication of
retina reperfusion (Fang et al., 2013; Chi et al., 2014; Hashem
et al., 2017). The other eye remained untreated and served as a
control. Rats were placed on a temperature-controlled heating
pad to maintain body temperature at 37◦C throughout the whole
surgical intervention.

Vagal Nerve Stimulation
A ventral midline incision was made on the neck, then, the
muscles were retracted, and the right cervical vagal nerve was
isolated from the right carotid sheath. VNS (5 Hz, 1 ms pulse
width, 2 s interval) was applied via a pair of Teflon-coated silver
hooks connected to a stimulator (S20, Jinjiang, Chengdu City,
China). Surface ECG was continuously recorded during VNS.
The stimulation level was defined as the electric current required
to cause a 10% decrease in heart rate.

Experiment Protocol
Part 1: To detect the nodose ganglia (NOG), nucleus of
the solitary tract (NTS), superior salivatory nucleus (SSN)
and pterygopalatine ganglion (PPG) neural circuit, animals
were randomly divided into 2 groups: (1) the sham group:
sham right cervical VNS (n = 4) and (2) the VNS group:
right cervical VNS for 2 h (n = 12, Figure 1A). At the
end of the experiment, the brain, NOG (Calik et al., 2014)
and PPG (Piagkou et al., 2012) tissues were removed, at
0 h after sham VNS and 0, 6, and 72 h after VNS, after
transcranial perfusion with 100 ml of saline followed by
500 ml of 4% paraformaldehyde in 0.1 mol/L phosphate buffer
at pH 7.4.

Part 2: To investigate the effect of VNS on retinal I/R
injury, animals were randomly divided into two groups: (1)
the I/R group with elevated IOP-induced ischemia for 1 h
and then reperfusion for 1 h in the right eye (n = 16) and
(2) the I/R + VNS group with right cervical VNS for 2 h
during the retinal I/R period (n = 16). A sham procedure was
performed on the left eyes of rats in both the I/R and I/R
+ VNS groups to serve as a control: a needle was inserted
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FIGURE 1 | Timeline of the experimental design. (A) Experiments in the first part of the study detected whether VNS can activate the NOG-NTS-SSN-PPG neuron
circuit. Rats were sacrificed at 0 h after sham VNS and at 0, 6, and 72 h after VNS. (B) Experiments in the second part of the study investigated the protective effect
of VNS on retinal I/R injury. All operations were performed on the rat’s right eyes. The right vagal nerve was isolated and the stimulation was applied during the I/R
period. Sham procedures were performed on the left eyes, which served as control. Rats were sacrificed at 6 and 72 h after reperfusion; (n = 4/group) I/R,
ischemia/reperfusion; VNS, vagal nerve stimulation; ERG, electroretinogram.
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into the left anterior chamber without elevating the intraocular
pressure. ERGs were performed before rats were sacrificed
and the eyes and PPGs were harvested at 6 and 72 h after
reperfusion (Figure 1B).

Electroretinogram (ERG) Test
An ERG was performed at 6 and 72 h after retinal I/R injury.
Rats were dark adapted for 4 h before recording and were
anesthetized by xylazine and ketamine (i.p. injection, 10 and
100 mg/kg, respectively) and the pupils were dilated with 1%
tropicamide. Then, 0.5% tetracaine hydrochloride was used to
topically anesthetize the corneas for the duration under dim
red light.

Electroretinograms were recorded using the RETIport 32
system (Roland Consult, Brandenburg, Germany) and gold-
plated wire loop electrodes on the corneal surface as active
electrodes. Stainless steel needle electrodes were inserted into
the skin between the two ears and into the tail, serving as
reference and ground leads, respectively. For scotopic ERG,
responses to white flashes of 0.3, 1.0, and 3.0 cd·s/m2 were
recorded, and the oscillatory potential (OP) was recorded at
3.0 cd·s/m2.

Labeling Retinal Ganglion Cells
Rats were deeply anesthetized with xylazine and ketamine (i.p.
injection, 10 and 100 mg/kg, respectively). Their eyes were
then enucleated and fixed with 4% paraformaldehyde for 2 h.
According to previous studies (Sánchez-Migallón et al., 2016;
Wang S. et al., 2018), the whole mount retina was isolated
and 4 radial incisions were made to create a petal shape
to flatten the retina on glass. Retinas were later blocked in
5% bovine serum albumin (BSA) buffer and 0.2% Triton X-
100 in PBS for 1 h at room temperature. The tissues were
incubated overnight with anti-Brn3a antibody (Millipore Sigma,
Billerica, MA, United States 1:200). Retinas were incubated
with Cy3-conjugated secondary antibodies for 3 h at room
temperature. These stained retinas were mounted in anti-
fade mounting medium, and images were captured using a
fluorescence microscope. The number of RGCs on each slide was
counted by the Image-Pro plus 6.0 system (Media Cybernetics
Inc., Bethesda, MD, United States).

Western Blot Analysis
Retina samples were collected at 6 and 72 h after I/R. The
proteins were extracted using RIPA buffer and separated by

FIGURE 2 | The expression of c-fos was evaluated. (A) NTS located at –13.32 mm from bregma, –4.32 mm from interaural and SSN located at –11.04 mm from
bregma, –2.04 mm from interaural. C-fos positive cells in the NOG, NTS, SSN, and PPG are indicated by black arrows. The scale bar represents 50 µm.
(B) Quantification of c-fos positive cell numbers in the NOG, NTS, SSN, and PPG tissues (p < 0.05); ∗p < 0.05 vs. VNS 0 h, #p < 0.05 vs. VNS 6 h, § p < 0.05 vs.
VNS 72 h; (n = 4/group); NOG, nodose ganglia; NTS, nucleus of solitary tract; SSN, superior salivatory nucleus; PPG, pterygopalatine ganglion.
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FIGURE 3 | Flash electroretinograms were recorded at 6 and 72 h after I/R injury. (A) Representative traces from left and right eyes in the I/R group and I/R+VNS
group at 6 and 72 h after reperfusion and at different luminance intensities. (B,C) Show the hypertensive/control amplitude ratios of a- and b-waves at 6 and 72 h at
luminance intensities of 0.3, 1, and 3 cd·s/m2. (D) Representative oscillatory potential traces from the left and right eyes of the I/R and I/R+VNS groups at 6 and 72 h
after reperfusion and at luminance intensity of 3 cd·s/m2; ∗p < 0.05; (n = 4/group).
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SDS gel. The membranes were incubated with primary antibody
overnight at 4◦C in TNF-α (Beyotime Institute of Biotechnology,
Haimen, China, bs-2081R, 1:500), VIP (Beyotime Institute of
Biotechnology, Haimen, China, bs-0077R, 1:500) and β-actin
(Sigma-Aldrich, Taufkirchen, Germany, 1:5000). Specific protein
levels were normalized to β-actin levels.

Immunohistochemistry
According to a rat brain atlas (Watson, 2004), brains were divided
into three blocks. Blocks containing the SSN and NTS were
also embedded in paraffin. PPG samples were embedded in
paraffin. Each of the paraffin blocks was sectioned in 5 µm-slices.
The SSN and NTS were mounted on poly-lysine coated slides,
deparaffinized and rehydrated sequentially. All tissues were
washed with PBS, then were permeabilized in PBS containing
0.1% Triton X-100 and BSA for 1 h. Subsequently, tissues were
incubated with primary antibody overnight at 4◦C in c-fos
(Servicebio, Wuhan, China, GB11069, 1:200) and VIP (Beyotime
Institute of Biotechnology, Haimen, China, bs-0077R, 1:500).
Tissue sections were mounted on glass slides and studied with
a light microscope.

Statistical Analysis
All data are presented as means ± SD. Statistical analysis
was performed using t-tests for differences in ERG a- and
b-wave ratios; one-way ANOVAs were used for the rest of
the analyses using SPSS 16.0 software (SPSS Inc., Chicago, IL,
United States). Bonferroni’s post hoc test was applied when a
significant difference was found. P < 0.05 was considered to be
statistically significant.

RESULTS

Part 1: Effect of VNS on
NOG-NTS-SSN-PPG Neural Pathway
Activation
VNS Increases C-Fos Expression in
NOG-NTS-SSN-PPG Neurons
C-fos is a classical marker used to indicate the activation
of neurons. Thus, to investigate neural pathway activation,
the expressions of c-fos in the NTS, SSN, NOG, and PPG
sections were analyzed by immunohistochemistry (n = 4/group).
Figure 2A shows the position of c-fos-positive cells in the
NOG, NTS, SSN, and PPG of the sham group and VNS group.
Figure 2B shows that the number of c-fos-positive cells of all
tissues was significantly increased at 0, 6, and 72 h after VNS
treatment compared to that in the sham group (p < 0.05).

Part 2: Protective Effects of VNS on
Retinal I/R Injury
VNS Alleviates Retinal Dysfunction
To assess retinal function, scotopic ERG was recorded, and
the a-wave and b-wave amplitude ratios (the amplitude of the
ischemia (right) eye divided by the amplitude of the normal
(left) eye) and the sum of the OP were analyzed at 6 and 72 h

after reperfusion (n = 4/group). Compared with that in the left
eyes, the a-wave amplitude significantly decreased after I/R injury
(Figures 3A,B). After VNS treatment, the a-wave amplitude
ratio significantly increased at luminance intensities of 0.3, 1,
and 3 cd·s/m2, compared to the I/R group at 72 h following
reperfusion (p < 0.05) (Figure 3B). Nevertheless, there was no
significant difference in the a-wave amplitude ratio between the
I/R group and the VNS group at 6 h following reperfusion at each
luminance intensity.

Similarly, I/R significantly decreased the b-wave amplitude
compared with that in the normal eyes. However, after VNS,
there was a significant increase in the b-wave amplitude ratio
compared to that in the I/R group at 72 h following reperfusion
at each luminance intensity and at 6 h after reperfusion at 0.3 and
3 cd·s/m2 (p < 0.05; Figure 3C).

The sum of the OP amplitude was decreased in the I/R eyes
compared to the normal eyes. However, in the I/R+VNS group,
the sum of the OP amplitudes was increased at 6 and 72 h after
reperfusion (Figure 3D).

Protective Effect of VNS on RCG Numbers in Retina
To assess cell loss in the retina, RGCs were labeled with anti-
Brn3a antibody and automatically counted (Figure 4). In the
peripheral retina, I/R induced a reduction in RGC number at
72 h compared with that in normal eyes (p < 0.01), however,
there were no significant changes in RGC number at 6 h.
VNS significantly preserved the number of Brn3a-positive cells
compared with that in the I/R retinas at 72 h after reperfusion
(p < 0.01). Likewise, in the middle retina, there was a significant
decrease in RGC number in the I/R retinas at both the 6
and 72 h time points, compared to that in the left retinas
(p < 0.01). However, compared to that in the retinas in I/R
group, the number of RGCs was preserved by VNS at 6 and 72 h
(p < 0.01, Figure 4).

VNS Downregulates the Expression of TNF-α in the
Retina
The expression of TNF-α in the total retina was detected.
Relative changes in protein levels in each group were calculated,
normalizing to β-actin levels. Significantly higher levels of TNF-α
were observed at 6 and 72 h following reperfusion than in
the control retina. However, the expression of TNF-α was
significantly decreased by VNS compared to that in retinas of the
I/R group (Figure 5).

VNS Induces VIP Expression in the Retina and PPG
The expression of VIP was evaluated by Western blot in the total
retina (Figure 6A, n = 4/group). Compared with those in I/R
retinas, VIP protein levels were significantly increased by VNS
at 6 h (p = 0.005) and 72 h (p = 0.001) after reperfusion. When
compared with I/R-left retinas, a significant difference was found
in the I/R+VNS-left retina of VIP expression at 72 h (p = 0.044).
However, there was no significant difference in VIP expression
between I/R and control retina A similar trend was noticed
for VIP expression as detected by the immunohistochemistry
results (Figure 6B).
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FIGURE 4 | Retina ganglion cells were stained with Brn3a (red), and the number of Brn3a-positive cells was determined. (A) Representative images of the middle
and peripheral areas of the retina showing Brn3a-positive cells in the left and right retinas of the I/R and I/R +VNS groups, at different time points. The scale bar
represents 100 µm. (B) Quantification of RGC numbers in the middle and peripheral areas of the retina; ∗p < 0.05 vs. I/R-Left and I/R + VNS-Left groups; #p < 0.05
vs. I/R +VNS-Right group; (n = 4/group).
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FIGURE 5 | TNF-α expression in the retina was evaluated. (A) Representative TNF-α and β-actin bands. (B) Quantitative analysis of the protein expression level of
TNF-α; ∗∗p < 0.01 vs. I/R-Left and I/R +VNS-Left groups; #p < 0.05 and ##p < 0.01 vs. I/R +VNS-Right group; (n = 4/group).

DISCUSSION

Major Findings
In the present study, we present novel evidence that VNS can
protect retinal function and preserve RGC numbers after I/R
injury by downregulating the expression of pro-inflammatory
factor. Moreover, we showed that activation of the NOG-NTS-
SSN-PPG neural circuit and the release of neuropeptide VIP in
the PPG and retina may mediate the protective effects of VNS
during retinal I/R injury (Figure 7).

Retinal Dysfunction and RGC Loss
During I/R Injury
It has been well demonstrated that pro-inflammatory cytokines
play a key role in retina I/R injury (Guo et al., 2016; Rivera and
Dabouz, 2017). The level of TNF-α, a pro-inflammatory factor
produced by leukocytes and microglia at the early stage of retinal
I/R injury, was significantly elevated at 6, 12, and 24 h after
reperfusion (Fontaine et al., 2002; Kim et al., 2017). Numerous
studies have suggested that retinal morphology and functional

changes are induced after cytokines are increased. ERG is a
sensitive method for determining retinal function. The a-wave
amplitude is related to photoreceptors in the olfactory nerve layer,
while the b-wave originates from bipolar and Müller cells in the
inner nuclear layer. The OP amplitude is triggered by amacrine
cells (Weymouth and Vingrys, 2008). It has been reported that
the a-wave, b-wave, and OP amplitude are significantly decreased,
and the inflammatory response is simultaneously increased after
I/R injury (Chen Y.J. et al., 2015; Fan, 2016; Yan, 2017). Similarly,
our experiments support these reports as they have shown that
the a-wave, b-wave, and OP amplitudes significantly decreased
after retinal I/R injury, while the TNF-α level was increased.

Possible Mechanisms Underlying the
Protective Effects of VNS on the Retina
Vagal nerve stimulation is widely applied to attenuate I/R injury
in multiple organs, including the myocardium (Zhao et al., 2013),
kidney (Inoue et al., 2016), and cerebrum (Jiang et al., 2014) via
anti-inflammatory responses. In accordance with these findings,
the present study showed that VNS could preserve retinal
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FIGURE 6 | (A) Representative bands and quantitative analysis of VIP expression in the retina. (B) VIP expression in PPG as shown by immunohistochemistry. The
scale bar represents 50 µm; ∗p < 0.05 vs. the I/R +VNS-Right group; #p < 0.05 vs. the I/R +VNS-Left group; (n = 4/group).

morphology and function against I/R injury and downregulate
TNF-α expression. Compared with those in the I/R group,
a-wave, b-wave, and OP amplitudes were significantly increased
by VNS which indicated the reversion of the photoreceptor,
amacrine cell and bipolar cell function. In addition, the RGC
number was preserved by VNS compared to that in the I/R
group. These results further expanded the indications for the
application of VNS.

It has been well demonstrated that NTS receives its
preganglionic input from the NOG, which is the sensory afferent
neuron body of the vagal nerve trunk and sends postganglionic
fibers to the SSN. The SSN projects preganglionic fibers via

the greater petrosal nerve to the PPG, which innervates the
choroid and retina via parasympathetic nerves (Agassandian
et al., 2002; Li et al., 2010; McDougal and Gamlin, 2015).
Some studies have supported the existence of the NTS -
SSN-PPG neural pathway. Spencer et al. (1990) observed
pseudorabies virus-positive neurons in the NTS after direct
injection of the virus in the PPG. Similar results have been
reported by other researchers. Li et al. (2010) reported that
positive cells were noted in the NTS after retrograde tracer
biotinylated dextran amine 3K injection into the SSN; similarly
positive cells were noted in the SSN following injection of
the anterograde tracer biotinylated dextran amine 10K into
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FIGURE 7 | Schematic summary of the protective role of VNS in the ocular
hypertension model. Stimulation of the vagal nerve can activate the
NTS-SSN-PPG neural circuit and increase VIP expression in the PPG and
retina. Increased VIP expression can attenuate the increase in TNF-α
expression induced by retinal I/R injury and contributes to preserving the RGC
number and improving retina function. I/R, ischemia/reperfusion; NOG,
nodose ganglia; NTS, nucleus of solitary tract; PPG, pterygopalatine ganglion;
RGC, retinal ganglion cell; SSN, superior salivatory nucleus; TNF-α, tumor
necrosis factor-α; VIP, vasoactive intestinal polypeptide; VNS, vagal nerve
stimulation.

the NTS. Agassandian et al. (2002) also found positive cells
in the NTS after retrograde tracer wheat germ agglutinin-
horseradish peroxidase injection into the SSN. The results from
the first part of this study showed that the expression of
c-fos, a marker used to indicate the activation of neurons,
was significantly increased in the NTS, SSN and PPG tissues
at 0, 6, and 72 h after VNS, compared to the sham group.
Together with the anatomical evidence, our results validate
the idea that VNS could activate the NOG-NTS-SSN-PPG
neural circuit and contribute to autonomic regulation in
peripheral tissues.

Studies have revealed that nearly 40% of the neurons in
the PPG are VIP-positive neurons (Szczurkowski et al., 2013).
In addition, Li C et al. (Li et al., 2010, 2015, 2016a,b)
reported that NTS stimulation can activate the SSN-PPG neural
pathway and increase VIP expression in the choroid. VIP is a
well-known neuroprotective peptide and its primary function
is in the anti-inflammatory response. It has been reported
that VIP can downregulate pro-inflammatory cytokines and
mediators, and can promote the expression of neurotrophic
factors (such as brain-derived neurotrophic factor) to prevent
inflammation-induced neuronal loss (Delgado, 2003; Fernandez-
Martin et al., 2006). Tuncel et al. (1996) and Szabadfi et al.
(2012) reported that VIP administration can protect the
retina against I/R injury and preserve retinal structure. In
addition, Shi et al. reported that VIP could protect human
retinal microvascular endothelial cells against high glucose-
induced endothelial dysfunction via reducing TNF-α expression

(Shi et al., 2016). More importantly, it has been demonstrated
that VNS could promote the release of endogenous VIP (Havel
et al., 1997; Henning and Sawmiller, 2001). In accordance
with these studies, we found that VIP expression in the PPG
and retina significantly increased after VNS. Meanwhile, the
expression of TNF-α was significantly decreased after VNS.
Together with the results from the first part of the study,
those from the second part of the study demonstrated that
VNS could protect against retinal I/R injury by activating the
NOG-NTS-SSN-PPG neural circuit and promoting the release
of the anti-inflammatory neuropeptide VIP in the PPG and
retina. The released VIP can then contribute to attenuation
of the inflammatory response and, thus, to retinal I/R injury.
Several studies (Zhang and Osborne, 2006; Wang W. et al.,
2018) reported that unilateral stimulation-induced ipsilateral
activation or the release of certain substances are have more
than a contralateral effect. Our results show the consisted
findings that the expression of VIP was increased in the left
retina and PPG of I/R+VNS group but less than in the
right retina.

Clinical Implication
Retinal I/R injury is a well-known pathological process associated
with retinal disease, such as glaucoma and diabetic retinopathy,
which can cause RGCs and vision loss (Goldblum and Mittag,
2002; Osborne et al., 2004). These neuronal damages occur
at the early stage of these diseases, which reveals the newer
perspective of neuroprotective therapy (Nafissi and Foldvari,
2015; Nuzzi and Tridico, 2017). However, there is currently
no effective treatment for neuronal damage. The present
study suggests that VNS could protect against retinal I/R
injury. Recently, transcutaneous electrical stimulation of the
auricular branch of the vagal nerve has been demonstrated
to be as safe and effective as cervical VNS (He et al., 2013;
Yu et al., 2013; Stavrakis et al., 2015). Therefore, based on
our present experiment and further research, transcutaneous
electrical stimulation of the auricular branch of the vagal nerve
may become a novel therapeutic approach for attenuating retinal
I/R injury.

Study Limitations
The present study has several limitations. First, previous studies
have reported that the frequency of cervical VNS used in different
I/R injuries ranges from 2 to 20 Hz (Cao et al., 2017; Stauss,
2017; Mirza et al., 2018). In the present study, we evaluated
the effect of VNS at 5 Hz in the retinal I/R model. Additional
studies are required to explore the best parameters of VNS for
the prevention of retinal I/R injury. Secondly, we only followed
the animals for 72 h after reperfusion, however, a longer follow-
up period could be informative. Thirdly, the classical cholinergic
anti-inflammatory effect of VNS was mainly mediated by the α7
nicotinic acetylcholine receptor. Further experiments are needed
to clarify the role of this receptor relation to the protective
effects of VNS on retinal I/R injury. Fourthly, for the purpose
of decreasing the influence of individual differences and the
consideration of animal welfare, contralateral un-injured eyes of
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I/R rats as a control group was used in the present study as Chi
et al. (2014) previously described.
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