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Abstract
Wearable physiological measurement devices for ambulatory research with novel sensing technology are introduced with ever
increasing frequency, requiring fast, standardized, and rigorous validation of the physiological signals measured by these devices
and their derived parameters. At present, there is a lack of consensus on a standardized protocol or framework with which to test the
validity of this new technology, leading to the use of various (often unfit) methods. This study introduces a comprehensive validity
assessment protocol for physiological signals (electrodermal activity and cardiovascular activity) and investigates the validity of the
E4 wearable (an example of such a new device) on the three levels proposed by the protocol: (1) the signal level, with a cross-
correlation; (2) the parameter level, with Bland–Altman plots; and (3) the event level, with the detection of physiological changes
due to external stressor levels via event difference plots. The results of the protocol show that the E4 wearable is valid for heart rate,
RMSSD, and SD at the parameter and event levels, and for the total amplitude of skin conductance responses at the event level when
studying strong sustained stressors. These findings are in line with the prior literature and demonstrate the applicability of the
protocol. The validity assessment protocol proposed in this study provides a comprehensive, standardized, and feasible method for
assessment of the quality of physiological data coming from new wearable (sensor) technology aimed at ambulatory research.
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Electrodermal activity (EDA) and cardiovascular activity (CVA)
have been used as measures of various constructs linked to the
autonomic nervous system (Sawada, Tanaka, & Yamakoshi,
2001), such as stress. Current development of wearable devices
measuring EDA and CVA wirelessly widens the range of
(research) applications (Poh, Swenson, & Picard, 2010;

Torniainen, Cowley, Henelius, Lukander, & Pakarinen, 2015),
especially to ambulatory assessment (Wilhelm, Perrez, &
Pawlik, 2012). Ambulatory assessment is a computer-assisted
method for monitoring participants while they carry out their
daily activities (Trull & Ebner-Priemer, 2013). Due to the novel
nature of the wearables, rigorous validation of the physiological
signalsmeasured by these devices and their derived parameters is
required for the purpose of research. Wearable devices are rela-
tively rapidly replaced by newer alternatives. The market is quite
diverse and various research and commercial devices are avail-
able, of which the quality is uncertain. Therefore, there is an
urgent need for a systematic and comprehensive, yet fast and
easily replicable, validity assessment protocol However, such a
standardized protocol is currently not available, so researchers
carrying out a validity assessment study need to make their
own judgment call or spend a lot of time investigating the meth-
od options (Kottner et al., 2011). Additionally, for the variety of
methods available no clear criteria are defined to evaluate the
validity of a new device. The aim of this article is therefore to
propose a standardized validity assessment protocol with stan-
dardized techniques for analyses and decision criteria to assess
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EDA and CVA wearables. Additionally, the proposed protocol
will be applied to a state of the art research wearable.

Currently, validation assessment of EDA an CVAwearables
often come to inconclusive and incomparable inferences for
three reasons: (1) the use of different (sometimes inappropriate)
statistical methods (Zaki, Bulgiba, Ismail, & Ismail, 2012), (2)
evaluation on different variable levels, and (3) the lack of deci-
sion criteria to determine validity (Giavarina, 2015). The use of
different and sometimes even inappropriate statistical methods
(Watson & Petrie, 2010) applied to different types of variables
with inconclusive results makes comparison between validation
studies difficult and makes choosing proper methodology to do
new validation studies seemingly arbitrary. The effect of these
three issues in prior research are discussed below.

First, researchers often analyze the validity with (different)
statistical methods (Zaki, Bulgiba, Ismail, & Ismail, 2012), some
of which are inappropriate for validation assessment. Sartor et al.
(2018) remarked that for heart rate sensors validation studies are
often inconclusive, due to methodological issues. An example of
such an inappropriate statistical method is intraclass correlation
when comparing parameters, like number of skin conductance
responses.

Second, researchers compare different variables of interest
leading to incomparable studies even if results are conclusive.
Sometimes they assess whether a wearable can detect an under-
lying construct like stress, at other times researchers evaluate
whether the device produces a comparable result to a reference
device (RD) for a parameter (e.g., heart rate [HR]), regardless of
the context.

Third, validity assessment of wearable devices is often per-
formed for either researchers’ own prototypes (e.g., Poh et al.,
2010; Torniainen et al., 2015), commercial devices (Sartor,
Papini, Cox, & Cleland, 2018), or for unconventional electrode
placement (e.g., on the wrist instead of the fingers) often used for
wearables (e.g., Payne, Schell, &Dawson, 2016; van Dooren, de
Vries, & Janssen, 2012). The latter two often arrived at indefinite
conclusions about the use of wearables, since no criteria are
defined a priori to decide whether the device is valid. For exam-
ple, Payne et al. concluded that the wrist was found not to be a
viable replacement of the finger location, which is generally
used. This is because the wrist produces fewer responses than
the fingers and therefore has a low coherence with the fingers.
However, Payne et al. still argued that they do see a role for the
wrist placement in the ambulatory setting (under certain condi-
tions). Whether the wrist is sensible to use in these settings re-
mains inconclusive. It is therefore important that not only a stan-
dardized method of assessment is chosen upfront, but also deci-
sion criteria on when a device is valid or not.

Other researcher have begun to advocate for more struc-
tured and systematic validation protocols. For example,
Kayhan et al. (2018) set out to provide a comprehensive pro-
tocol for the validation of wearable sociometric badges (i.e., a
tool to study interpersonal processes). In this article, we offer a

standardized protocol including decision criteria to assess the
validity of a wearable device by comparing it to a reference
device (RD). We aim to not just propose a set of guidelines for
validation, but a standardized protocol using proper statistical
methods and decision criteria. We aim for a protocol that al-
lows for standardization for a variety of wearables and con-
texts of intended use.

Fromprior researchwe identified three types of variable levels
used: the signal, parameter and event level. We propose a stan-
dardization of which statistical methods to use in order to analyze
these levels with corresponding decision criteria. The first level
proposed, the signal level, is the most direct form of comparison.
It assesses the extent to which new devices are capable of gen-
erating roughly the same raw data as the established hardware.
The parameter level is relevant to determine whether a new
device produces physiological parameters (e.g., HR) for each
individual similar to the RD. The event level is the assessment
of the target of the study; a comparison is made on ability to
significantly detect an event(s) via a group mean, for example a
response to a stressor, with both devices and compare between
them. In the next sections, the levels, standardized methods pro-
posed, and decision criteria chosen will be explained in detail. In
addition, a first complete overview of the protocol with the de-
cision criteria for each level is already provided in Fig. 1.

Signal level

The standard process of assessing the concurrent validity of a
device is by comparing the measurement of the device to the
RD, sometimes also called agreement (Kottner et al., 2011).
Because the RD is accepted as validly measuring a certain
construct, it is assumed that a device that produces similar
signals is also valid. The question on the signal level is wheth-
er the error introduced by using the wearable device lies with-
in acceptable boundaries from the signal retrieved by the RD.

For EDA, the RD is provided by measuring skin conductance
(SC), measured in microsiemens, at the intermediate phalanges of
the ring and index finger (Boucsein, 2012), whereas the wearable
often measures SC with electrodes located at the wrist. There are
some differences between these two locations. Thewrist has fewer
sweat glands than the fingers (Boucsein, 2012), and some argue
that at the wrist emotional sweating is more evident (Wilke,
Martin, Terstegen, & Biel, 2007). Therefore, finding full agree-
ment on signal level (raw data) between the devices is highly
unlikely. However, this level is relevant to be included in the
protocol for two purposes. First, to accommodate researchers
who are interested in using the raw data of the wearable.
Second, when a golden standard for wearable devices becomes
available, agreement on this signal level is likely, andwhen there is
agreement on this level, assessment on other levels is unnecessary.

For CVA the RD signal is often retrieved with electrodes at
the chest with electrocardiography (ECG), whereas wearable
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devices typically are located at the wrist and use
photoplethysmography (PPG). PPG is a light-based technique
used to acquire CVA. The amount of light reflected in the
blood at each time can be used to determine peaks in the blood
flow (Shelley & Shelley, 2001). The number of peaks per
minute are the HR. HR is expected to be similar at the chest
and the wrist. However, due to the different techniques used
the signal produced by the measures is different. Examples of
both the PPG and ECG signals are presented in Fig. 2.

The ECG shows a well-known QRS wave with a small dent
prior to a steep peak, followed again by a dent. The PPG signal
has less steepness in its peaks. A comparison at the signal level
will not be useful, since it would be unclear which part of the
introduced error was from the use of a different technique and
which was introduced by the wearable. Therefore, direct compar-
ison between these two signals at the signal level is not possible.

Standardized statistical method for the validity assessment at
signal level We recommend to use cross-correlation to compare
the wearable to a RD at the signal level. Cross-correlation is an
often used measure to determine the similarity of two time series
as a function of the displacement of one relative to the other
(McCleary, Hay, Meidinger, & McDowall, 1980). Cross-
correlation is a generalization of Pearson’s correlation (as used
by, e.g., Poh et al., 2010, who found a correlation between .93
and .99 for a wearable and RD for EDA) to the displacement in
time, through which systematic time delays between the two sig-
nals can be detected. Watson and Petrie (2010) mention that a

correlation could miss a mean bias between two measures. It is
therefore advised by Giavarina (2015) to test for the mean differ-
ence between the two signals if the cross-correlation is high. If a
mean difference is found, this bias can easily be adjusted by cen-
tering the data around this mean. Additionally, a systematic differ-
ence in the variance can also be corrected. Other methods used at
the signal level are visual inspections to compare the raw signals,
see, for example, Ollander, Godin, Campagne, and Charbonnier
(2016) and Poh et al. (2010). Ollander et al. found no visual
similarity between two EDA signals. However, no clear statistical
inferences can be drawn from visual inspection and we therefore
do not recommend to rely on this particular method in isolation.

Decision criteria for validity at signal level Equal to correlation,
cross-correlation lies between – 1 and 1. Similarly, the cross-
correlations can be interpreted the same as standard correlations,
meaning that .00 < r < .19 is a very weak correlation, .20 < r <
.39 aweak correlation, .40 < r < .59 amoderate correlation, .60 <
r < .79 a strong correlation, and .80 < r < 1.00 a very high
correlation (Evans, 1996). The wearable can be determined to
be valid if the cross-correlations are higher than .80 for each of
the participants, meaning a very high correlation according to
(Evans, 1996). Only a very strong correlation can support valid-
ity on the signal level, because for lower correlations the source
of incomplete overlap between the two signals is hard to detect
and therefore hard to adjust for. This high standard of agreement
is probably never met due to the use of different measurement
techniques or placement of the wearable, as discussed before.

Fig. 1 Overview of the complete protocol and the decisions that can be made from it concerning the validity of a device
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Additional tests should therefore be performed at both the pa-
rameter and event level in order to investigate the consequences
of the lower cross-correlations at this level.

Parameter level

Parameters are aggregated values over a timeframe for a person.
The wearable is expected to be valid when these parameters are
similar within certain boundaries, and as with the signal level,
there will always be some measurement error. Multiple parame-
ters retrieved from both the EDA and CVA signals could be used
to compare the wearable with a RD, as is discussed in Box 1.

Box 1 Commonly used parameters retrieved from EDA
and CVA signals.

Standardized statistical method for the validity assessment at
parameter level We recommend comparing the parameters re-
trieved from the wearable to the RD with Bland–Altman plots.
Using the Bland–Altman plot is at this level better than using for
example a Pearson’s correlation (e.g., Payne et al., 2016; Van
Dooren et al., 2012), because Pearson’s correlation is not sensitive
to a linear movement of all the observations on one of the scales
(Bland &Altman, 1986). Both Payne et al. and Van Dooren et al.
found that the wrist presented lower responses on multiple EDA
parameters than the fingers, which would lead to a mean bias.
Payne et al. additionally determined a concordance measure to
compare the agreement betweenmultiple sites. They found that in
only 30% of the cases when an SCR occurred at the fingers was
there a simultaneous occurrence of an SCR at the wrist. However,
during the stress task this percentage was as high as 72%. Payne
and colleagues also found lower responses for the wrist on mul-
tiple parameters. These results indicate that there might be sub-
stantial differences in (registering) physiological measures be-
tween the wrist and fingers. We do not use the concordance
measure, since this is a very strict measure and only determines
underestimation and cannot determine overestimation of SCRs
by thewearable. TheBland–Altman plot can determine both over
and underestimation of the wearable and boundaries can be cho-
sen that are as strict as needed for the intended context of use.

An additional benefit of the Bland–Altman plot is that it not
only looks at the mean overall difference among participants, but
also takes into account the difference for each participant.
Therefore it can determine multiple other systematic biases apart
from fixedmean differences, which is the only bias an analysis of
variance (ANOVA; as used by Nunan et al., 2008, and Payne
et al., 2016) can detect. Even though the intraclass correlation
(ICC) also tries to overcome problems related to correlation and

For EDA, common parameters (Boucsein, 2012) are:
- skin conductance level (SCL)
- number of skin conductance responses (SCRs)
- amplitude of the skin conductance responses (S-AMPL)
And for CVA two types of parameters (or features) are extracted, namely

from the frequency domain and from the time domain (for more
information, see Berntson, Quigley, & Lozano, 2007).

From the frequency domain:
- (normalized) low frequency
- (normalized) high frequency
- ratio between low and high frequencies
And for the time domain:
- mean RR interval (RR interval is the time between two measured heart

beats) or heart rate (HR)
- standard deviation (SD) of the RR interval
- root mean square of successive differences (RMSSD) of the RR interval.
There are multiple variations on the RMSSD available, such as the

standard deviation of the beat-to-beat or NN interval (SDNN) or the
standard deviation of successive differences (SDSD).
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Fig. 2 Electrocardiograph (ECG)
and photoplethysmograph (PPG)
signals of a participant within the
present study
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ANOVA, Zaki, Bulgiba, Ismail, and Ismail (2012) are quite crit-
ical toward the ICC for multiple reasons: The ICC ignores order-
ing and treats both methods as a random sample from a popula-
tion of methods, not two specific methods. Another issue is that
the ICC depends on the range of the data, meaning that if the
variance between participants is high, the value of ICC will cer-
tainly appear to be high. Although the use of the ICC seems to be
popular, the appropriateness of this method to assess agreement
is questionable. The Bland–Altman does not have these prob-
lems and as such is the most appropriate method to use (Zaki
et al., 2012). A last benefit of the Bland–Altman plot is that
missing data and nonnormality are visible and not hidden as they
can be in data with outcome statistics. Therefore making infer-
ences without checking the assumptions is not possible.

Decision criteria for validity at the parameter level Bland–
Altman plots are often only implemented as a visual representa-
tion of the data instead of testing the agreement. From these
Bland–Altman plots multiple systematic biases can be detected,
among others mean shift and difference in variance (Giavarina,
2015). If a systematic bias is found in the Bland–Altman plot, this
can either be further explored or corrected for. A mean shift bias
shows, for example, that the wearable over- or underestimated all
values. However, when there is no systematic bias, it is still not
certain that the wearable agrees with the RD. Only when a priori
acceptable boundaries are defined related to the maximum differ-
ence between the parameters retrieved from the RD and the wear-
able, can a judgment on the level of agreement be made
(Giavarina, 2015). For the majority of measures such boundaries
are amatter of discussion and context. This context can be formed
by clinical necessity (e.g., precision of measurements needed to
establish a certain medical condition), biological considerations
(e.g., heritage or gender; O’Neal, Chen, Nazarian, & Soliman,
2016), the type of research, the time over which to aggregate
(minutes vs. hours), the parameter of interest (e.g., HR), and pos-
sibly other criteria. A good validity assessment protocol makes
this discussion and context explicit and provides a reasoned and
transparent choice, which other researchers can replicate or adapt.

For some parameters, there are standards for this limit of
acceptable error. The recommendations for heart rate equipment
are a 5-beat-per-minute (BPM) difference or 10%, whichever is
greater, as compared to RDs as defined by the Association for
Advancement of Medical Instrumentation (2003). Since the bio-
logically plausible values for instantaneous HR during a seated
task are between 60 and 110 bpm, the boundaries of the Bland–
Altman are ± 5 bpm, which is this 10%. We therefore recom-
mend extending this 10% difference to the other CVA and EDA
variables as well, even though EDAvariables are different from
CVA in nature. CVA data are for example highly periodic and
EDA parameters like number of SCR’s are more event like.
However, the AAMI proposed a limit that is rather strict since
it is used for medical cardiac devices, therefore extending this
limit to EDA is rather too strict than too tolerant, which is a good

starting point for this newly devised protocol. The plausible
values for the number of SCRs lie between 0 and 20 per minute
(Dawson, Schell, & Filion, 2007)when using a threshold of 0.01.
Therefore, the SCRs retrieved for a person with the wearable
should lie within two SCRs from the number retrieved with the
RD. If the parameter retrieved with the wearable lies within the
limits of agreement, this suggests that the parameter is validly
measured by the wearable.

Note that the Bland–Altman plot aggregates data over a
person, meaning that an overestimation at the baseline could
be compensated by an underestimation during a stress task. We
therefore always recommend assessing the event level, even
when the parameter level indicates agreement on all parameters.

Event level

The raw EDA signal level is not often used in (ambulatory)
research and the raw CVA signal probably never. Sometimes
an aggregated value (parameter) for a person retrieved from
the signal (like heart rate) is of interest, but most often, phys-
iological reactions related to phenomena like stress or aggres-
sion are the real target. Sartor et al. (2018) suggest to test the
device in the context of the intended use. Whether the param-
eter can validly be measured is then dependent on whether the
physiological changes associated to the phenomenon of inter-
est can validly be detected.

Within the present study responses to short-term stressors is
chosen as construct of interest. To assess the wearable on a
spectrum of short stressors, we recommend to apply one longer
(30 s), strong, social stressor, the (slightly adapted) sing-a-song
stress test (Brouwer et al., 2018), and one task with multiple
smaller environmental stressors (a noise task; Bali & Jaggi,
2015). The first task resembles an experience an individual
could have in daily life, the latter is a laboratory oriented task
that should produce a distinct pattern in the EDA signal, name-
ly the habituation effect in the amplitudes of the SCRs. The first
is found to increase both HR and SC. The second task is not
expected to increase HR as measured by the RD and can there-
fore be used to test the event level step of the protocol. If this
effect is indeed not recorded by the RD in the CVA signal, the
protocol should identify this as inconclusive. We propose these
two short stressors, since these have a clear confirmed expected
effect and are relatively easy and quick to use in an experimen-
tal setting. Note that by choosing short stressors the frequency
domain of heart rate data cannot be evaluated, since these need
longer periods to be determined reliably.

Standardized statistical method for the validity assessment at
event level We recommend using a visualization of the wear-
able and the RD, first separately and then combined as differ-
ence scores preceding and during the stressor events. Since
correlations (e.g., Payne et al., 2016; Poh et al., 2010) are argued
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to be improper methods of comparison due to possible unde-
tected scale shifts (Bland & Altman, 1986), we use a visualiza-
tion of the signals caused by the stressor and an assessment of
the agreement of the two signals retrieved by the devices during
this stressor. A review by Jennings and Gianaros (2007) showed
that almost 85% of the articles in psychophysiology used a
(repeated measures) ANOVA. We recommend use two types
of visualizations instead, since the same inferences can be drawn
but they will be easier to interpret for a broader audience than
the repeated measures ANOVA. Obviously, we could use more
sophisticated methods to analyze stress responses. However, we
aim to keep the analysis executable by researchers and clini-
cians. Additionally, at the event level the focus is on robust
effects that should show up in a less sophisticated analysis.

The first visualization is a separate line plot for the RD and
the wearable with the mean and the SE per task (baseline,
stressor etc.) and a line through the zero y-axis, where each
individual is represented in a line (see Fig. 9 in the Results for
clarification). From this plot the existence of the effect of the
stressor (or other event) can be determined. The second pro-
posed visualization is a line plot in which the differences be-
tween the wearable and the RD for each person are represent-
ed with a line, with the mean and the SE per task and a line
through the zero y-axis (see Fig. 10 in the Results for
clarification). From this plot, the lack of effect from the use
of the wearable relative to the RD can be observed. However,
since the lack of effect is not the same as agreement between
the two devices a Bland–Altman like approach will be used.
Instead of plotting the mean per person at the y-axis, the group
mean per task will be used. Boundaries are proposed between
which the mean and corresponding standard error should lie.

To determine the difference between the wearable and RD, a
detectable stressor needs to be present, such that it should elevate
a response that is significantly higher than a predefined baseline.
Payne et al. (2016) did not find a significant stress response for
either the wrist or the finger placement, leading to indefinite
conclusions on placement. Payne and colleagues argued that
the wrist has potential only in an ambulatory setting where a
stronger stressor (than the math and the International Affective
Picture System task they used) is present. Van Dooren et al.
(2012) presented a high stressor and found heightened skin con-
ductance responsiveness (SCL, SCRs, and S-AMPL) with a re-
peated measures ANOVA to emotional film clips by both the
fingers and the wrist. If the stressor is not detected, no further
inferences about the validity of thewearable to detect this stressor
similarly to the RD can be made.

Decision criteria for validity at the event level For the first
visualization, if the error bars of the baseline and stressor tasks
overlap (for the RD), the signal representing the construct of
interest is not large enough to be detected. Only when the RD
can detect the construct of interest, can the validity of the
wearable be further assessed. The same assessment needs to

be made to verify whether the wearable also shows the differ-
ence between baseline and task. If the wearable does not de-
tect the stressor even though the RD does detect it, the wear-
able is not valid to detect the stressor and no further analysis
needs to be made for this level.

However, when both devices detect the effect, a second visu-
alization needs to be made, in which the error bars of the differ-
ence between thewearable andRD should first of all overlapwith
the zero axis. If the error bar for a task does not cross the zero axis,
there is a significant difference between the RD and the wearable.
This means that the wearable is measuring something different
than the RD or detects false positives or negatives. However, as
mentioned before if they do overlap this is no sufficient evidence
of agreement between thewearables. Therefore, a Bland–Altman-
like analysis is proposed. An a priori acceptable range that the
group mean may differ from the RD is chosen. If the difference
mean and corresponding standard error lie between the a priori
defined boundaries, the devices show agreement for the tasks.

It would be optimal to determine a boundary based on the-
oretical tolerance of the wearable, however this will not always
be possible. Therefore, we recommend a boundary based on
the effect detected by the RD. We recommend that the bound-
ary is the “true” effect of the variable of interest, this reference
effect is the difference between the baseline and the task with
the variable of interest measured by the RD. This is a proper
boundary, since this entails that the wearable always finds the
effect from the variable of interest even if the mean found is
biased due to measurement error. A smaller boundary is possi-
ble when this can be theoretically founded, however the refer-
ence effect (by the variable of interest) is large enough to allow
for some difference between the devices. If the wearable ex-
ceeds this boundary, it will not be able to distinguish any dif-
ference between the true baseline and the task, meaning that a
baseline measure is always needed while using the wearable.

Applying the validity assessment protocol: E4
wearable

For research purposes, many wearable devices exist to mea-
sure CVA accurately (Giles, Draper, & Neil, 2016). However,
for measuring EDA, only a small number of wireless devices
are currently available (Majumder, Mondal, & Deen, 2017),
and when needing to collect data from one wearable for both
CVA and EDA simultaneously, the number of devices is even
lower (Pantelopoulos & Bourbakis, 2010). In the present
study, we tested the E4 wristband by Empatica (see Fig. 3),
a wearable biosensor that measures both CVA and EDA sig-
nals.We will use the E4wearable as an application example to
illustrate our validity assessment protocol.

Preliminary studies on the validity of the PPG sensors of
the E4 wearable indicated comparable data quality in 85% of
the data (of seven participants) for the CVA between E4
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wearable and a RD (McCarthy, Pradhan, Redpath, & Adler,
2016). The RD performed better in only 5% of the cases.
Ollander, Godin, Campagne, and Charbonnier (2016) also
performed a small sample study (n = 7) and found, at the
signal level, significant loss in terms of detected heartbeats,
especially when performing a task. However, retrieved param-
eters like the mean and the standard deviation of HRwere well
estimated. At the event level, they found comparable sensitiv-
ity between the E4 wearable and RD for participants
performing the Trier Social Stress Task (on mean and SD of
HR). Ollander et al. also visually compared the EDA signal
level and found no visual resemblance between the EDA sig-
nal for the E4 wearable and the RD. They did not compare at
the parameter level for EDA. At the event level, they found
that the phasic driver showed a higher physiological reaction
to stressors (Trier Social Stress Task) than the RD. However,
whether this higher physiological reaction is significantly dif-
ferent is not possible to determine via the method they used
(ROC curve). The same holds for the finding of comparable
sensitivity for the CVA data. Zheng and Poon (2016) per-
formed a 20-h experiment on one participant and found a
strong correlation between activity and multiple cardiovascu-
lar parameters, showing a confound of physical activity with
psychological activity. For the EDA measures, 78% of the
data was classified as artifact and no further analysis was
performed. Currently, no other validity studies of the E4 wear-
able have been performed. On the basis of the variability in
methods, low sample size, and inconclusive findings, further
validation of the E4 wearable is required. Therefore, this wear-
able biosensor poses a relevant case to test our proposed va-
lidity assessment protocol.

Method

The aim of this article is to propose a validity assessment protocol
and assess this protocol using the E4 wearable, which at the time
this study was conducted was the only wearable wrist-worn de-
vice measuring both EDA and CVA. The experiment used to
assess the validity of the E4 wearable is described below. The
data collected in this study can be requested from the first author.

The code used to analyze this data can be found at https://github.
com/HendrikavanLier/validityassessmentprotocol.git.

Participants

We determined that a sample of 55 persons is sufficient to
establish 90% power on the three levels in this experimental
procedure. Since this protocol uses multiple techniques, the
power analysis was performed on all levels. A detailed over-
view of this power analysis can be found in the Appendix. We
assumed that multiple participants would have unusable data,
therefore more participants were recruited than the 55 sug-
gested. Seventy-seven participants (42 male, 35 female; mean
age: 23.0 years, SD = 4.0) took part in the experiment.
Participants were informed that they would participate in a
validity assessment study for the E4 wearable, not that the
tasks were related to stress. Participants with any health issues
such as heart diseases or epilepsy were excluded from the
study. The participants were students at the University of
Twente or students at the Academy of Pop Music and Media
Music. Students of the University of Twente participated in
exchange for course credits in this study. Additionally, one
randomly selected participant was rewarded with a gift certif-
icate that was used as an incentive to participate. Informed
consent was obtained from all individual participants included
in the study. The Ethics Committee of the University of
Twente approved that the study is in accordance with the
standards listed in the faculties’ Protocol about Ethics and
Research.

Design

Two stress tasks were presented to the participants: first a
slightly adapted version (Brouwer et al., 2018) of the sing-a-
song-stress test (Brouwer & Hogervorst, 2014), followed by a
noise task. The design of the experiment is shown in Fig. 4.

Sing a song stress task (general stress response)

The sing-a-song stress test (SSST) was used as a strong social
stressor. The SSST is a fast social stress test that can be per-
formed with one researcher in less than 10 min yielding a high
stress response (Brouwer et al., 2018), making it a more ac-
cessible alternative to the Trier Social Stress Test
(Kirschbaum, Pirke, & Hellhammer, 1993), which is an effec-
tive but labor-intensive task. Given that the aim of this study
was to propose a quick and feasible validation, the SSST is
preferred over the Trier Social Stress Test. The SSST was
found to be inducing most stress when compared to several
other stressors, both social, environmental and cognitive
(Egilmez et al., 2017). For heart rate, Brouwer and
Hogervorst found an increase of 15.3 bpm, which is approx-
imately 21% (determined from the figure). In addition, for

Fig. 3 E4 wristband—Empatica, reproduced with permission
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EDA, Brouwer and Hogervorst found an increase of 10.9 μS
(approximately 55% increase).

During the SSST, the participants were seated in front of a
screen that presented four consecutive neutral messages in
time intervals of 40 s. Next, the participants were informed
that they had to sing a song later on, and that they should now
start to think about a song they could sing. After the anticipa-
tion period of 30 s, the final message requested the participant
to start singing and not to stop for 30 s. Then, the participants
were again asked to sit quietly and focus on their breathing for
2 min during the recovery period.

Noise task (event-based habituation responses)

The second stressor used was an environmental stressor.
Noise is a pervasive and influential source of stress
(Szalma & Hancock, 2011) and a commonly used form
of an environmental stressor (Bali & Jaggi, 2015). In this
experiment, noise was applied via headphones. The par-
ticipants had to listen to the noise in the form of 1000-Hz
beep sounds, which lasted for 200 ms each and were ap-
proximately 75 dB loud. A physiological response was
expected in the 1–6 s after the beep. This stressor includ-
ed 26 beep sounds in total and lasted 5 min. The sounds
had at least a window of 7 s between each other, with an
average of 11.38 s (SD = 2.87). The presentation time of
beep sounds were randomly generated beforehand in or-
der to prevent the participant from recognizing a pattern
in the sounds, which would make the listening task less
stressful. The same sequence of sounds was used for each
participant to make the experiment and the data compara-
ble. After the 5-min period, the participants were asked to
focus on their breathing for 2 min during the recovery
period.

Materials

The experiment was programmed with Python 2.7 and ran by
Psychopy 1.8 (Peirce, 2009). Timestamps from the Python
program were added to the physiological data (via the serial
port and a voltage isolator) for experimental events. The
Python program also wrote timestamps for these events to
separate text files. The instructions were presented on a
15.4-in. Windows 7 laptop. A Philips SHP2000 headphone
was used for the noise task.

Recording of physiological data The physiological data was
recorded with ProComp Infiniti System with BioGraph
Infiniti Software-T7500M by Thought Technology and proc-
essed with MATLAB. To determine the validity of the skin
conductance of the Empatica E4 wristband, the measurements
were compared to the ones retrieved with the reference labo-
ratory based apparatus on the fingers, which is a validated and
recommended measurement of skin conductance (Dawson
et al., 2007). The signal was retrieved from the intermediate
phalanges (Edelberg, 1967). Some (Boucsein et al., 2012)
recommend using the distal phalanges, however comparison
within the present study showed no differences between the
two phalanges. EDAwas measured with the skin conductance
sensor—SA9309M by Thought Technology (sampled at 256
Hz). Additionally, the ECG signal was recorded with two
electrodes on the left and one electrode on the right wrist.

Characteristics of the wearable biosensor used The biosensor
used in the present study was the “E4 wristband”
(Empatica, model E4, 2015). The wristbands of Empatica
measure several different psychophysiological responses of
the body (Garbarino, Lai, Tognetti, Picard, & Bender,
2015). In particular, the E4 wearable has four sensors:
photoplethysmogram sensor, electrodermal activity sensor,
three-axis accelerometer, and a temperature sensor. In this
experiment only the data from the photoplethysmogram
sensor (sampled at 64 Hz) and the electrodermal activity
sensor (sampled at 4 Hz) were used. For uploading the
data of the E4 wristband, the program Empatica Manager
was used, which is a cloud-based program.

Procedure

At the start of individual sessions, participants were asked to
sit in front of the laptop. They were told that they would be
attached to sensors during the experiment and to move as little
as possible, because movement could contaminate retrieved
data. Also, they were informed that all instructions would
appear on screen and that the experiment would last approx-
imately 45 min. Moreover, they were told that participation is
voluntary, that they could stop the experiment whenever they
wanted and that the data would be processed anonymously.
After these instructions, participants were asked to read and
sign an informed consent.

Next, the researcher attached the electrodes to the participants’
fingers and wrists. The E4 wristband was attached to the

Fig. 4 Experiment design. General Stress Response indicates the sing-a-song-stress test, and Event-Based Habituation Responses shows the noise task.
SQ = stress questionnaire
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participants’ left wrist, the ECG to the right and left wrist, and the
skin conductance sensors on the left ring finger and index finger.
Additionally, the participants had to wear headphones during the
experiment. After all sensors were attached, the researcher started
the required programs needed. The researcher took a seat next to
the participant, in order to heighten the stress received during the
SSST, as this is primarily a social stressor. The instructions of the
SSSTand noise stressor appeared onscreen, respectively. Baseline
and recovery period were given before and after each task.
Furthermore, the participants were instructed to fill out a per-
ceived stress scale (7-point Likert scale) after each task. These
questionnaires were not further studied for the present article.
After completion, the researcher removed the electrodes,
debriefed the participants and thanked them for their participation.

Time synchronization

A Python script created voltage changes in a dedicated chan-
nel of the amplifier at the onset of the various phases of the
experiment and wrote the timestamps of these events to a log
file. These timestamps could be combined with the
timestamped E4 log files. The E4 manager software that was
used to download the E4 log files and time synchronize the E4
wearable itself ran on the same computer that also ran the
Python script. This ensured that the source of the timestamps
for the different log files was identical.

Data analysis

Data quality assessment

EDA As recommended by Boucsein (2012), visual checks
were performed on the skin conductance data to identify failed
measurements (on both the RD and the E4 wearable):
“nonresponding” (indicated by an absence of SCRs in a given
measurement), and incorrect classification of SCRs. Two re-
searchers examined the plot and their interrater reliability of
nonresponders was determined. Of the 77 participants, 17
(22%) were specified as nonresponders and removed from
the dataset. A final 60 participants were included in the re-
search, which is more than the number required according to
the power analysis. When either of the researchers classified
the data as nonresponding, the complete data was removed
(the interrater reliability was .78).

CVA For the PPG signal, another approach was needed
to assess the data quality. The PPG signal is less stable
than the ECG signal, and the stability of the signal can
fluctuate over time, meaning that not only some partic-
ipants’ data should be completely removed, but also
some parts of the signal could be too noisy to be inter-
pretable. However, removing these partially noisy
datasets entirely would lead to removing more data than

necessary. Therefore, the data quality of the PPG signals
was assessed throughout the signal with a signal quality
index (SQI; Karlen, Kobayashi, Ansermino, & Dumont,
2012), on a scale from 0 to 100. On average, the signal
quality per person was 72.9 (SD = 16.8). Experimental
blocks, such as the baseline or stressor, that did not
have consecutive data for at least 50% of the block,
were deemed to have low SQI. For the baselines and
the SSST, a SQI of at least 70 was needed, since these
blocks are quite long (35 s). The data for the noise task
needed to meet a higher quality level due to the short
timeframes of relevant data, 1–6 s after each beep. In
such a short interval (5 s), only four to six heartbeats
would normally be registered—and even half of that
small number for a consecutive signal when 50% of
the data was available. Therefore, it is important that
the heartbeats that are registered are correct, meaning
that the data should have a high quality. This approach
led to the removal of 45% of the data, and the removal
of the complete dataset for seven participants, as their
datasets did not have enough data quality. One partici-
pant was removed, since the HR data were biologically
implausible (i.e., over 200 bpm). In the end, the data of
39 participants were included for further analysis. We
will next discuss how comparisons will be made be-
tween a wearable and the RD at each of the three levels
of our framework.

Signal comparison—Cross-correlation function

With a cross-correlation two signals are correlated with
each other over time, and the autocorrelation with the
prior time points in their own signal is modeled. Cross-
correlation is therefore determined at the same time for
both signals and at a number of intervals for which one
of the signals is moved backward or forward in time.
Each interval—which is called a lag—is proportional to
the frequency of the signal. When a wearable measures,
for example, at 4 Hz, one lag is 0.25 s. This method
provides a measure of the coherence between two sig-
nals for each lag, taking into account the autocorrelation
within the signals and a possible systematic delay be-
tween the signals. If a systematic delay is detected for
all individuals (everyone’s cross-correlation is the
highest at, e.g., lag 2), corrections for this delay could
be executed.

The first two steps described in Box 2 make the two signals
comparable without removing any relevant information.
Boucsein (2012) describes that down sampling EDA data to
more than 10 Hz does not result in significant improvement of
the quality of the data. In the third step skin conductance
response (SCR) is mentioned, which is the phenomenon of
interest in EDA signals.
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Box 2 Steps to determine the cross correlation for EDA
data.

EDAThe cross correlation (see Box 2 for the required steps) is
optimal for determining the similarity of the EDA signals, due
to the autocorrelation displayed in the signal and the possible
arrival delay of the signal. Such a delay might come from the
difference in measurement location, since the E4 wristband
measures at the wrist and the RD measures at the fingers.
Hence, the travel distance between the wrist and the finger
could be observable in the signal. The average length of a
hand is 18 cm (Agnihotri, Purwar, Jeebun, & Agnihotri,
2005), which is more or less the distance between the fingers
and the wrist and the transmission velocity is 1.2–1.4 m/s
(Jänig, Sundlöf, & Wallin, 1983), therefore the max time lag
between wrist and finger is 0.18 s. Which in the case of 16 Hz
is a time lag of 4, or 0.25 s. However to create a safe window
we propose a double window of lag 8, given that the previous
numbers are based on physiological group averages. The pres-
ence of such a systematic delay can be determined and con-
trolled for with a cross-correlation function.

CVA No comparison can be made on the signal level between
ECG and PPG signals, due to differences in the characteristics
of the signals (see Fig. 2).

Parameter comparison—Bland–Altman plot

The Bland–Altman (1986) plot is a visual representation of the
agreement between two devices on a particular parameter, not
only for a person’s average (e.g., ICC), but also over the range
of the parameter. The plot identifies howmuch the newmethod is
likely to differ from the old instead of quantifying the actual
agreement. If the wearable differs from the RD, possible patterns
in the data could be further explored for structural biases. An

overview of multiple biases to be detected in the data is given
by Giavarina (2015). Even when agreement within certain limits
exists between the RD and the wearable, smaller structural biases
could still be present in the data (e.g., a significantly highermean).
Exploration of these biases is therefore always advised. The steps
to arrive at the Bland–Altman plot are presented in Box 3.

Box 3 Steps to determine the Bland–Altman plot for EDA
data.

1. Down and up sample the data to the same frequency.
The EDA signal of the RD data was down sampled to 16 Hz signal, since

sampling higher than 16 Hz does not add to the data quality. The
wearable data was up-sampled from 4Hz to 16 Hz, to make the sam-
pling rate similar to the RD data.

2. Normalize and detrend the data.
Normalization was done to make two signals better comparable without

losing viable information. Additionally, the data was detrended in order
to make the data stationary, which is a prerequisite for a time series
analysis like the cross correlation function.

3. Determine cross correlation at multiple time lags.
Time lag between -8 and +8 were considered, because a SRC can have a

duration of multiple seconds. The sample frequency is 16 Hz meaning
that a time lag of four represents one second and a time lag of 8
represents 0.5 s.

4. Find highest cross correlation with corresponding time-lag and
plot these in a histogram.

To gain an overview of all found optimal cross correlations a histogram is
made. From this is the most optimal cross correlation can be found for
each participant.

Step 1.
Same as for the EDA cross correlation Step 1 (see Box 2).
2. Analyze the data.
Since this study aims to validate the wearable signals against a RD, the

phasic activity coming from classical trough-to-peak analysis (TTP)
was reported (threshold for an SCR amplitude was set at .01 μS)
(Boucsein, 2012). The data were analyzed with Ledalab; therefore, the
default settings for filtering and smoothing from the program were
used (Benedek & Kaernbach, 2010). Note that different choices in
filtering and smoothing can influence the results.

3. Retrieve the parameters from the timeframe determined.
Three parameters from the EDA data are evaluated with a Bland–Altman

plot:
Mean skin conductance level (SCL) The skin conductance level was
based on the whole signal (start baseline – baseline after the noise task).
The mean was calculated by averaging over the complete signal.
Biological plausible values for SCL is between 0 and 16 μS
(Braithwaite, Watson, Jones, & Rowe, 2013), the boundaries of the
Bland–Altman plot are therefore ± 1.6 SC.
Number of SCRs The SCRs in the signal were determined through
trough to peak (TTP). The number of SCRs per minute was then
determined. Biological plausible values for number of SCRs are on
average 1–3 per minute according to (Braithwaite et al., 2013) and
during high arousal 20-25 per minute (Boucsein, 2012), the boundaries
of the Bland–Altman plot are therefore ± 2.5 SCRs.
SCRs total amplitude (S-AMPL) The amplitude of a response was
determined as the difference in conductance between response onset
and response peak. The amplitudes were added in order to determine
the total amplitude. The total amplitude is therefore a function of both
the number of SCRs and the amplitude of all these SCRs. Biologically
plausible values for amplitudes are between 0 and 3 μS and on average
0.30–1.30 μS according to (Braithwaite et al., 2013) and with 20–25
SCRs per minute the range of total amplitudes is between 0 and
0.3*20 = 6 μS when using the most conservative values. The bound-
aries of the Bland–Altman are therefore ± 0.6 μS.

4. Check for normality and missing data.
The assumption of the Bland–Altman is that the differences between the

wearable and the RD are normally distributed. Therefore normality of
the differences needs to be assessed visually. If the data appears not
normal appropriate transformations (e.g. log transformations) can be
used as suggested by Boucsein (2012). Additionally, the quantity of
missing data can be viewed from these plots. If the amount of missing
data is effecting the power, then inferences should be made with more
caution or possibly no inferences can be made.

5. Create a Bland–Altman plot.
Plot the mean of the two measurements as the abscissa (x-axis) value, and

the difference between the two values as the ordinate (y-axis) value.
E4þTT

2 ;E4−TT
� �
Additionally plot the two proposed boundaries and the 95% CI of the

differences in a different color. Calculate the amount of data outside the
CI, as follows:

count μ E4;TTð Þ−1:96σ E4;TTð Þ>E4−TT>μ E4;TTð Þþ1:96σ E4;TTð Þð Þ
n *100
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EDA See Box 3.

CVA See Box 4.
Box 4 Steps to determine the Bland–Altman plot for CVA

data.

Event detection comparison—Event difference plots

The event difference plot is a visualization of the mean effect
and its confidence interval in each task. Tasks are in this case a
social stressor (SSST; Brouwer et al., 2018), and an environ-
mental stimulus (noise task; Bali & Jaggi, 2015). The steps to
arrive at the error plot are given below.

EDAWe expected a significant increase to the baseline for both
the SSST and the noise task. For the SSST we expect that
preparing to sing results in a significant difference to the base-
line for total amplitude.We expected that the first few beeps in
the noise task would lead to a higher total amplitude, but that
this effect would habituate over beeps (see Box 5).

Box 5 Steps to determine event difference plots for EDA
data.

Step 1 and 2.
Same as for the EDA Bland–Altman plot (Box 3, Steps 1 and 2).
3. Retrieve an informative parameter for the variable of interest from

the analyzed data.
Total amplitude was chosen as a stress parameter, since this is a combination

of both the number of SCRs and the amplitude of the SCRs.
Step 4.
Same as for the Bland–Altman plot (see Step 4 in Box 4)
5. Make event difference plots of the data.
In order to visualize the effect and the agreement between the two

devices, multiple plots are made.
1) A line plot with the mean and the SE per task with a line through the
zero y-axis, where each individual is represented in a line.
2) A line plot with the differences between the wearable and the RD for
each person are represented with a line, with the mean and the SE per
task. Additionally plot the a priori defined boundary, which is the
reference effect (difference between the stress task and baseline from
the RD) of the variable of interest.

CVA For the RD we expect that preparing to sing results in a
significant difference to the baseline for heart rate. For heart
rate no assumptions on the habituation effect during the noise
task are made a priori since this type of habituation effect is
typically measured with EDA and not with HR (see Box 6).

Box 6 Steps to determine event difference plots for CVA data.

Steps 1 and 2.
Same as for the Bland–Altman plot CVA (see Box 4, Steps 1 and 2).
3. Retrieve an informative parameter for the variable of interest from

the analyzed data.
Instantaneous HR was chosen as a stress parameter, since this is an often

used measure (Schubert et al., 2009) and is for most people an intuitive
measure related to CVA.

Steps 4 and 5.
Same as for the EDA parameter (see Box 5, Steps 4 and 5).

Results

This section describes the results of the validity assessment
protocol on the E4 wearable for each of the three levels of our
method.

Signal comparison: Cross correlation function

EDA For the majority of participants, the correlation would be
considered low (i.e., below .4); however, for some participants

1. Down- and up-sample the data to the same frequency.
Down-sample the RD data and up sample the wearable data from 64 Hz

to a frequency of 200 Hz.
2. Analyze the filtered data
The raw ECG and PPG recorded was filtered with a combination of

low-pass and high-pass filters between 5 and 15 Hz (Pan & Tompkins,
1985). For each segment of data, the peaks of normal R-waves were
detected using a filter-bank-based algorithm developed by Pan and
Tompkins. The peaks of the P-waves were detected by finding the local
optima. The durations between successive peak locations were calcu-
lated to produce RR/PP intervals. The RR/PP intervals with a length
less than 0.33 s or more than 1.5 s were deleted from time series.

3. Retrieve the parameters from the timeframe determined.
In Fig. 2, an example of an ECG and PPG signal is presented. In the ECG

signal, the R peaks from the QRS complexes are illustrated. The
distance between two successive R peaks is called the RR interval.
From the PPG signal instead of the RR intervals, PP intervals are
retrieved, which represent the time between the top of two peaks in the
blood volume pulse signal. Next to the RR/PP intervals, a quality
measure was determined, the signal quality index (SQI; Orphanidou
et al., 2014). Parameters were only determined when at least 50% of
the data had an SQI of 80%.

Three parameters from the time domain were retrieved from the RR or PP
interval data:

Mean RR/PP interval The mean RR or PP interval is the mean over a
period of time in which RR/PP intervals were retrieved. The mean PP
interval is a surrogate measurement of the mean RR interval, and both
can be converted into instantaneous HR. Biologically plausible values
for instantaneous HR during a seated task are between 60 and
110 beats per minute (bpm), the boundaries of the Bland–Altman plot
are therefore ± 5 bpm.

SD RR/PP Interval The standard deviation over the RR or PP intervals.
Since RR intervals are possible below 1 s the biologically plausible
values for SD RR/PP interval are between 0 and 0.56 (O’Neal et al.,
2016). The boundaries of the Bland–Altman are therefore respectively
± 0.06.

RMSSD The root mean square of the successive differences is a
time-domain measure which is related to HR variability. It can be
calculated via the following formula:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1 ∑
N−1

i−1
R−Rð Þiþ1− R−Rð Þi

� �2� �s

Biologically plausible values for RMSSD are between 0 and max .71 s
(O’Neal et al., 2016), the boundaries of the Bland–Altman are there-
fore ± 0.07 s.

Step 4 and 5.
Same as for EDA (see Steps 4 and 5 in Box 3).
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the correlation was .60–.79 (see Fig. 5). On average, the cross-
correlation was .25. We found no evidence for a systematic
time lag in the data, meaning that not all participants had the
highest correlation at one specific lag, implying that the “op-
timal” lag differed per participant. It even differed between
positive and negative lags.

For illustrative purposes, we provide the raw EDA signals of
two representative participants, illustrating a prototypical high
(see Fig. 6) and a low (see Fig. 7) cross-correlation. In the figure
with the higher cross-correlation (participant 100: .66), one can
see that the signals seem to change simultaneously.

Participant 72 (Fig. 7) had a very low cross-correlation
(.19) in the signals. The E4 wearable showed one big and only
a few smaller peaks in the data, whereas the RD shows two big
peaks, one similar to the peak of the E4 wearable, and the
other similar to a smaller peak in the E4 signal. There is some
similarity between the signals; however, the amplitude and the
timing of the peaks seem to differ.

Parameter comparison: Bland–Altman plot

EDA Bland–Altman plots for the paired measures of the
mean SCL, total amplitude, and number of SCRs of the
EDA signal are shown in Fig. 8. SCL, number of SCRs,
and total amplitude are all transformed with a log trans-
formation in order to achieve normality. The plots show
that all parameters of the EDA lie outside the accept-
able agreement. For the number of SCRs, a mean bias
was found, since the mean difference lies below 0. The
E4 wearable on average underestimated the number of
SCRs. A reassessment with a lower threshold (0.001)
for the E4 wearable did not improve the results.

This bias is not systematic, since a systematic bias would
imply that there is always a two-SCR difference or that the
difference increases linearly for a higher number of SCRs.
However, more than one person has a number of SCRs above
the zero line, meaning that the E4 wearable overestimated the
SCRs for those participants. For total amplitude and SCL, the
bias seems to increase when the amplitude increases. This

implies that there was uncertainty among the complete range
of amplitudes. Additionally, if the two large positive differ-
ences were removed from the SCL data, an underestimation
by the E4 wearable would be found for both total amplitude
and SCL.

CVA Regarding the PPG/ECG analysis, the Bland–Altman
plots of the mean, SD, and the RMSSD of the PP/RR interval
can be found in Fig. 8. The plots show good agreement for all
parameters between the RD and E4 wearable on SD. In all,
94% of the participant data and therefore the limits of agree-
ment are between the ± 5-bpm boundaries for HR, 97% be-
tween the ± 0.06 boundary of the SD and 97% between the ±
0.07 boundary of the RMSSD.

Event level: Event difference plots

To determine the validity of the E4 wearable, the ability to
detect stress change was determined. Two tasks were used to
determine stress reactions, namely a general social stressor,
the SSST, and an event based environmental stressor, the
noise task. For the EDA measurements all the data is com-
plete. However, for the HR data 74% of the data is missing
across the tasks of the SSST and only four persons have data
for all four tasks. For the noise task 40% of the data is missing
and two persons have complete data sets.

EDA Figure 9 is a graphical representation of the baseline,
preparing to sing, general stress response task (singing), and
recovery period. The SSST shows the expected increase in
total amplitude when preparing to sing (1.52 increase to the
baseline) and while singing (0.98 increase to the baseline) for
the RD. Similar effects are found for the E4 wearable; prepar-
ing to sing (1.13 increase to the baseline) and singing (1.39
increase to the baseline) resulted in very strong increases in the
total amplitude of SCRs.

There was no significant difference between the E4 wear-
able and the RD in the baseline, preparing to sing, singing, and
recovery baseline. The E4 wearable seems to have a longer

Fig. 5 Histogram of the optimal cross-correlation found for a participant between – 8 and + 8 lags in time. The cross-correlation for each participant
presented in the figure was determined on the basis of his or her most optimal lag
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recovery time than the RD (Fig. 9). The preparing-to-sing and
singing tasks were both significantly different from the neutral
baseline. This can be observed from the error bar plot, since
the error bar intervals of the neutral task and the stress tasks
did not overlap.

As can be seen in Fig. 10, there was overlap between the
error bars for all tasks related to the difference scores between
the E4 wearable and the RD and the zero axis. Additionally,
none of the error bars exceeded the a priori defined bound-
aries. For preparing to sing and singing, the error bars were
larger than for the baseline.

In Fig. 11 the noise task is displayed, which
consisted of a baseline and 26 loud beeps. For the
event-habituation task, the RD worked as expected for
the EDA signal. For the first few beeps the total ampli-
tude was significantly higher, and after the first few this
effect reduced, showing the expected physiological ha-
bituation effect. For the RD, there is a decrease in SCR
amplitude of 4% with every successive noise stimulus.

In contrast, the E4 wearable shows no significant in-
crease from the baseline or decrease with every succes-
sive noise stimulus.

Even though the E4 wearable showed no significant effect
for the noise task, a difference plot was made for illustrative
purposes. In Fig. 12, the difference between the RD and the E4
wearable is visualized. For the baseline, the difference crossed
the zero line. However, for the first few beeps the error bar lay
outside the boundaries. For later beeps the differences became
smaller, when the RD total amplitude values were closer to
zero again.

CVA In Fig. 13, the event detection for both the RD and the E4
wearable are plotted for the SSST. For the SSST, a clear stress
pattern is found.

Figure 14 shows that when comparing the two devices,
even less reliable data were available. The error bars are there-
fore not informative to determine the validity of the E4 wear-
able for these short, 30-s intervals.

Fig. 6 Cross-correlation plots of a participant with a high cross-correlation (.66)

Fig. 7 Cross-correlation plots of a participant with a low cross-correlation (.19)
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For the SSST, no significant differences from the RD be-
tween the baseline and preparing to sing could be found.

However we did observe a significant effect of singing (19.8
bpm, an increase of 25%). Note that during this third task
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(singing), breathing also might have heightened the HR. For
the E4 wearable, no significant changes in HR could be found
for preparing to sing or singing. Additionally, from the lack of
lines in the plot, it is clear that not enough data of acceptable
quality were present to perform this analysis. Figure 14 was
again made for illustrative purposes, since the lack of data
makes a meaningful comparison impossible.

Figure 15 shows an almost random pattern for the noise task.
It seems that the RD had a higher HR for the first beep than for
subsequent beeps; however, this was not a significant difference,
and could therefore have been random. The beeps of the E4
wearable also did not differ significantly. The task does not im-
pute enough cardiovascular reaction to the environmental stress-
or, and therefore no comparison could bemade for this stress task
between the E4 wearable and the RD. The visualization of the
difference between the RD and the E4 wearable in Fig. 16 is
presented to illustrate (so we can later discuss) the importance
and meaning of the various elements of the presented plots.

Figure 16 shows boundaries very close to the zero line,
since the effect on HR of the stress task was small.
Therefore, almost all error bars lie outside these boundaries.
However, in this plot again the lack of data can be seen, and

therefore no actual inferences—besides the lack of data of
acceptable quality produced by the E4 wearable at these short
timeframes—can be drawn from this plot.

Discussion

This study was a first attempt to standardize the validity as-
sessment of wearable technology measuring physiological
signals. The proposed validity assessment protocol makes it
possible to make clearer inferences, due to the advancement of
explicit decision criteria upfront as recommended by
Giavarina (2015). The clear decision criteria in combination
with standardized methods lead to easier and clearer compar-
ison between validation studies. In earlier studies, a variety of
statistical methods (Zaki et al., 2012) was used to analyze
validity on different unspecified levels and researchers often
made inferences about the validity while having to specify
their own criteria (Kottner et al., 2011), often without specify-
ing them a priori. This led to ambiguous inferences about the
wearable under evaluation. For example, Payne et al. (2016)
and van Dooren et al. (2012) conclude that the RD is always
better, but the wearable might be usable in an ambulatory
situation. With the protocol presented here, we show that the
E4 wearable is valid for heart rate, RMSSD and SD at the
parameter and detection level, and for total amplitude of skin
conductance responses for the detection level when studying
strong sustained stressors. This conclusion is better supported
by empirical evidence, yet also more nuanced than previous
research. Below we will first discuss the method and its
strengths and limitations after which we will discuss the re-
sults regarding the E4 wearable. We will show that the results

�Fig. 8 Bland–Altman plots for electrodermal activity, on the left, and
cardiovascular activity (CVA), on the right. Each dot represents one
participant. The difference between and the average of the two
measures are represented on the y-axis and the x-axis, respectively. The
green lines represent the a priori chosen acceptable boundaries, whereas
the red lines (also marked with upper bound and lower bound) represent
the actually found 95% confidence interval limits. At the bottom of each
figure, the percentage of values within the proposed boundaries is given.
HR, heart rate; RMSSD, root mean square of successive differences; RR/
PP, the durations between successive RR (RD) or PP (E4) peaks; S-
AMPL, amplitude of the skin conductance responses; SCL, skin conduc-
tance level; SCR, skin conductance responses

Fig. 9 Line plot for the sing-a-song-stress task (SSST), measuredwith the
reference device (RD) and the E4 wearable, with total amplitude of SCRs
as the parameter of interest. Each thin line represents a participant, and the
mean and its error bars are plotted in red. The y-scale is given as a square

root, to show the difference in the lower regions and not have too much
emphasis on the higher values. For the SSST, the first experimental task is
a neutral baseline, the second is preparing to sing, the third is singing, and
the last is recovery (another baseline) directly after singing
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regarding the E4 wearable are mainly similar to and exten-
sions of previous findings, but are now provided within a
strong framework to synthesize all the findings and to arrive
at firm conclusions.

Validity assessment protocol

The novelty of the proposed protocol lies in the explicit deter-
mination of the three levels, the choice of proper statistical
analysis and the definition of decision criteria upfront. The
protocol we designed is therefore not a completely novel pro-
tocol, but rather a combination of multiple existing statistical
analyses (Bland & Altman, 1986; Brandt & Williams, 2007),

diminishing the need for thorough validation of the analyses
themselves. Zaki et al. (2012) argued that there are numerous
improper methods to analyze validity. The choice of statistical
analysis is therefore certainly not arbitrary and often turns out
being incorrectly applied (Kottner et al., 2011). Researchers
often determine the use of the statistical analysis without con-
sulting a statistical expert (Zaki et al., 2012). The aim of this
study was to suggest statistical visualizations that minimizes
the chance of being applied incorrectly. For example instead
of a repeated measures ANOVA, in which an F statistic and its
corresponding p value need to be assessed, we proposed an
event difference plot, in which overlapping error bars need to
be assessed. In these visualizations missing data and

Fig. 11 Error bar plots for each participant (thin blue lines) during the
noise task, retrieved with the reference device (RD) and the E4 wearable.
The mean and SE during each task for all participants, with the total
amplitude of SCRs as the parameter of interest, are indicated with red

lines. The y-scale is given as a logarithm, to show the difference in the
lower regions and not have too much emphasis placed on the higher
values. For the noise task, the same baseline is given as for the SSST,
and every number represents a beep

Fig. 10 Error bar plot for the differences for each participant during the
sing-a-song-stress task (SSST) and for the mean and standard error during
each task (red line) for all participants, with total amplitude of SCRs as the
parameter of interest (blue lines). The black line is the zero axis, and the

green lines are the a priori defined boundaries (size of the reference
effect). For the SSST, the first experimental task was a neutral baseline,
the second was preparing to sing, the third was singing, and the last was
the baseline directly after singing
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nonnormality are visible and not hidden. The statistical anal-
yses used in this study are already established, and above all,
proper ways to analyze the validity at each level (Zaki et al.,
2012). Since the statistical analyses are already established,
the validity of the E4 wearable could be assessed to demon-
strate the protocol proposed. The presented study is therefore
an important step in the standardization and therefore espe-
cially the improvement of the statistical quality of validity
studies. Additionally, we recommended to explicitly investi-
gate and report on three levels of analysis, making validity
studies thorough, transparent, and comparable. Researchers
already often analyze validity on one or multiple levels
(Ollander et al., 2016; Payne et al., 2016) of the ones proposed
here, without explicitly specifying the levels of analysis. It
could be argued that the three levels of analysis are interde-
pendent, meaning that if agreement exists on one level, this
will also apply to the other levels. This is only partly true,
though. Excellent validity at signal level will always ensure
validity at both the parameter and event level analyses.
Conversely, lower signal validity does not directly imply in-
validity at the parameter or event level, since the source of the
low signal validity is unclear. For example the ECG and PPG
are different signals that will lead to low signal validity, which
does not immediately mean that HR cannot be correctly

determined by both measures. This is an important no-
tion in the case of wearables, in which a high-signal-
level concordance with RD is only a theoretical possi-
bility. In the future, a gold standard for wearable de-
vices might become available, making high signal con-
cordance realistic. Consequently, not differentiating be-
tween levels of analysis could lead to mistakenly
disqualifying wearables when merely signal-level valida-
tion is assessed, whereas often event-level analyses are
targeted in studies using the wearable. In this study the
E4 wearable is indeed found to have low signal validity,
yet is still usable when targeting certain parameters
(HR, RMSSD, and SD). However, at event level with
typical short time scales these variables show to have a
lot of data loss. We argue that such wearables without
sufficient signal validity could still be of use when thor-
oughly investigating the average person parameters for
longer periods of time.

Some of the decision criteria we propose are well-known. For
the event level, the decision criterion defined is already
established; in an error bar plot it is customary to look at signif-
icance. For the cross-correlation (parameter level), Evans (1996)
provided the categorization of the correlation coefficients. We
argued that the cross-correlation should be very high for all
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Fig. 13 Error bar plot for each participant (blue lines) during the sing-a-
song-stress task, retrieved with the reference device (RD) and the E4
wearable, with heart rate as parameter of interest. The overall means

and SEs are also shown (red lines). The first experimental task was a
neutral baseline; the second, preparing to sing; the third, singing; and
the last, a baseline directly after singing

Fig. 12 Error bar plot for the differences for each participant (blue lines)
during the noise task. The means and SEs are also shown (red line) during
each task for all participants, with the total amplitude of SCRs as the
parameter of interest. The black line is the zero axis, and the green lines

are the a priori defined boundaries (size of reference effect). The noise
task has the same baseline given as for the SSST, and every number
represents a beep
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participants. The main reason is that when a lower cross-
correlation is found, it is often not possible to determine the
systematical biases causing this lower correlation and therefore
it is impossible to adjust for this bias. We assume that two gold-
standard measurements would result in a very high (> .8) cross-
correlation between two signals, were differences would only
results from smallmeasurement error cause by for example small
variations in electrode placement. However, it would be prefer-
able to evaluate this in future research with the present validity
assessment protocol. For the parameter level, the decision criteria
for the Bland–Altman plot are almost always missing
(Giavarina, 2015), making a decision about the validity impos-
sible. Giavarina advises to define such criteria upfront. However,

at present these criteria were not defined before, except for HR
(AAMI, 2003), meaning that the criteria in this study are the first
to judge validity on the basis of a Bland–Altman plot. Again, we
decided on quite stringent criteria, that were the elaboration on
the criteria available for HR (AAMI, 2003). Finally, for the event
difference plots we decided on a boundary resembling the “true”
effect measured by the RD. This is the largest boundary accept-
able in this case and if the device does not fit, then we have to
accept that it is not valid. Obviously, there can be discussion
about these criteria, but we have laid the groundwork to now
enable this discussion. Future research should focus on repeating
and checking the findings on this and multiple other wearables,
in order to test and optimize these criteria.

Fig. 15 Error bar plot for each participant (blue lines) during the noise task, retrieved with the reference device (RD) and the E4 wearable. The overall
means and SEs are also shown (red lines), displaying little variation

Fig. 14 Error bar plot for the differences for each participant (blue lines)
during the SSST. The means and SEs are also shown (red line) during
each task for all participants, with heart rate as the parameter of interest.
The black line is the zero axis, and the green lines are the a priori defined

boundaries (size of the reference effect). For the SSST, the first
experimental task was a neutral baseline; the second, preparing to sing;
the third, singing; and the last, a baseline directly after singing
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This study has the limitation of not being situated in an am-
bulatory setting, for which wearables are often used (Giles et al.,
2016; Majumder, Mondal, & Deen, 2017). The problem with
assessing the validity of the E4 in ambulatory settings is that the
conventional devices are not wireless, making the signal coming
from the ‘gold standard’ unusable due to motion artifacts. There
are, however, alternatives to the “gold standard” (e.g., the VU-
AMS) that have been shown to be valid alternatives (for CVA
measures) and that can be applied in an ambulatory context
(Willemsen, De Geus, Klaver, Van Doornen, & Carroll, 1996).
Additionally, the wearable works best in a seated setting, since
activity leads to more artifacts in the data. We found 45% of the
PPG and 22% of the EDA data to be unusable. Zheng and Poon
(2016) found 78% EDA artifacts in a single case study in an
ambulatory setting. A controlled setting was therefore chosen,
since performing an experiment in an ambulatory setting will
increase the amount of data loss, therefore increasing the number
of participants needed in order to obtain the same statistical pow-
er. The use of the controlled setting is not expected to influence
the validity of the data, since the stressors presented were chosen
similarly to situations experienced in daily life (Brouwer &
Hogervorst, 2014). Given that the protocol is now developed a
new study could be done focusing on applying it for an ambu-
latory setting with longitudinal measurements.

Application to E4 wearable

Signal level—EDA/CVA The E4 wearable should not be used
when wanting to retrieve the exact same signal to the signal
retrieved from the RD. The cross-correlation coefficient for
the EDA signals were lower than .80 for all participants,
whereas a cross-correlation higher than .80 for all participants
was determined as the criterion for validity on the signal level.
These findings are in line with Ollander et al. (2016), who
found no visual resemblances between the two signals. For
CVA, these coefficients could not be determined due to use of
a different measurement technique. As we argued before, in

the case of wearable technology, the signals are not expected
to have high cross correlation due to placement differences
and usage of alternative techniques. This does not necessarily
imply invalidity at both higher aggregate levels, though.
Therefore, additional tests at the parameter and the event level,
to test for validity, were performed.

Parameter level—EDA At the parameter level, the E4
wearable is found not to be usable for EDA parameters.
Both Payne et al. (2016) and van Dooren et al. (2012)
expect that the wrist site is less responsive for EDA,
leading to an underestimation of the E4 on total ampli-
tude, number of SCR’s and mean SC level. This is in
line with the findings for these parameters. If targeted
effects are evaluated that are much stronger than a 10%
increase, a parameter might still be usable as shown for
total amplitude in the event level of this study. For
example if a stressor is expected to increase total am-
plitude by 40%, then a measure being off by 10% at the
parameter level is less problematic than when a stressor
is expected to increase the total amplitude by 5%.

Parameter level—CVAThe CVA parameter results showed
that heart rate can be validly determined within the
boundaries by the E4 wearable as evidenced by the
pilots of Ollander, Godin, Campagne, and Charbonnier
(2016); McCarthy, Pradhan, Redpath, and Adler (2016);
and Zheng and Poon (2016). However, the SDs of the
differences for instantaneous HR are larger than the max
difference SD given the power, meaning that there is
more than a 10% likelihood that this agreement would
not be found again when this study is replicated.
Therefore replication is needed, advisable with a larger sample
(n = 347). The other CVA parameters tested, namely RMSSD
and SDHR can validly be retrieved from the E4 wearable when
compared to the RD with 90% power. This is in line with the
findings of Ollander et al. (2016) who reported that next to

Fig. 16 Error bar plot for the differences for each participant (blue lines)
during the noise task. The means and SEs are also shown (red line) for all
participants, with heart rate as the parameter of interest. The black line is

the zero axis, and the green lines are the a priori defined boundaries (size
of the reference effect, here very close to zero). The noise task has the
same baseline given as for the SSST, and every number represents a beep
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mean heart rate also SDHR could be determined acceptably by
the E4 wearable. Zheng and Poon and McCarthy et al. did not
determine parameters besides HR, and Ollander et al. only had
a small sample as foundation, therefore no strong inferences
about these parameters can be drawn.

Event level—EDA The E4 wearable can be used to re-
trieve stress responses to a short sustained high social
stressor, in this case the SSST (Brouwer et al., 2018).
The E4 wearable detected stress responses in the SC
signals that could be differentiated from the baseline.
In contrast, the E4 did not detect the physiological ha-
bituation effect (which was clearly present for the RD)
to a set of repeated sounds. These findings are in line
with Ollander et al. (2016), Payne et al. (2016), and van
Dooren et al. (2012), who also found or expect that the
wrist is only sensitive to larger stressors. However, dur-
ing singing and the after singing baseline, the wearable
gave a significantly higher estimate than the convention-
al measure indicating invalidity. Multiple causes could
be identified to cause this discrepancy. A plausible ex-
planation could be that singing activates more thermo-
regulation, which is differently tracked by the E4 wear-
able (e.g., the larger surface of the wearable than the
finger causes slower heat dissipation; Boucsein, 2012)
than by the RD. Therefore, if a researcher is interested
in the “cool down” process, the wearable might be in-
valid for this type of process. However, this study was
not designed to investigate “cool down” effects and
therefore no definite conclusions can be drawn.

Event level—CVA For CVA, the results are inconclusive,
since the SSST stressor was not detected by the RD and
there was too much data loss, while measuring with the
E4 wearable. The noise task did show similar results:
the responses measured with the RD could not be dis-
tinguished from each other. This shows that the SSST
and the noise task are not a strong enough stressor to
elevate heart rate, which is in contrast to the findings of
Brouwer and Hogervorst (2014) but in line with the
findings of Alvarsson, Wiens, and Nilsson (2010).
Additionally, there is too much data loss from the E4
wearable. This might be caused by the duration of the
stressors, since the parameters determined over the
whole data set showed less data loss. Therefore, no
inferences can be drawn about small stress responses
measured with heart rate. A different and possibly lon-
ger stressor is needed to elevate heart rate. We recom-
mend to update the protocol and include a combination
of multiple longer lasting stressors as implemented by
for example (Reinhardt, Schmahl, Wüst, & Bohus,
2012) or multiple replications of the present stressors
to improve the data quality.

Further research

The presented validity assessment protocol showed results for
the E4 wearable that are in line with the (limited) findings in
the prior literature. We therefore think we provided a statisti-
cally sound, comprehensive and fast replicable framework for
both researchers and clinicians. Nevertheless, additional re-
search on the E4 wearable to verify the results is needed, since
the validity of the E4 wearable in prior research was only
piloted (e.g., McCarthy et al., 2016; Ollander et al., 2016).
Additionally, the protocol could be further established by ap-
plying it to assess multiple other wearables, different popula-
tions, ambulatory settings with limited motion, other con-
structs of interest and nonlinear classification, since it current-
ly only permits inferences for linear mean detection.

Conclusion

This study has proposed a validity assessment that arose from
the need for a systematic and comprehensive, yet easy repli-
cable, validity assessment protocol, given the many wearable
devices already used in scientific studies and clinical practice.
The strengths of the protocol lie in the use of multiple levels of
analysis, the clear decision framework, and the prerequisites
of fast-to-replicate, statistically sound analyses that leave little
room for incorrect interpretations. This protocol provides a
framework for more comparable validation studies of physio-
logical signals from newwearable technology and allows for a
well-argued choice to use such a wearable, given the nature of
the research. Given the growing presence of these new tech-
nologies in scientific, everyday, and also medical contexts, an
objective and well-substantiated judgment about the quality of
a particular wearable is important.

As for the E4, in ambulatory assessment the wearable
should only be used when trying to explore physiological
effects due to larger stressors and when determining a person’s
average HR, SD, or RMSSD over a longer period of time.
Sudden, short-lived stressors, such as being startled by the
ringing of the phone, or possible habituation effects as a result
of exposure to repeated information cannot be validly detect-
ed.We argue that physiological changes during a workday can
be tracked by the E4 wearable against major, sustained
stressors (e.g., a challenging team meeting) that are marked
during the day.
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Appendix: Detailed power analysis

Signal level—Cross-correlation

As we mentioned before, because only a correlation of .8
would be seen as acceptable, this would lead to an effect size
of 1.8 [.82/(1 – .82)] and a sample size of 6, which is unreal-
istically low for the other analyses. This power analysis was
performed using G*Power, version 3.1.9.2 (Faul, Erdfelder,
Buchner, & Lang, 2009). Bonett (2002) proposed to investi-
gate the confidence interval (CI) of an ICC instead of compar-
ing it to a constant, leading to a sample size of 55 when the
correlation is .8 and the width of the CI is .2. We recommend
extending this calculation to the cross-correlation, since these
measures are comparable when there is no mean shift (which
can be corrected for when present). Furthermore, when there
is a difference in variance between the ICC and the cross-
correlation (McGraw & Wong, 1996), the ICC is more strin-
gent than the cross-correlation.

Parameter level—Bland–Altman plot

The appropriate power for the Bland–Altman analysis is de-
pendent on the expected mean difference, the expected stan-
dard deviation of these differences, and the proposed bound-
aries. Limited prior research has been performed on validity
assessment of the E4 or comparable devices with Bland–
Altman plots; therefore, we cannot base the values on exten-
sive prior research. However, Matsumura and Yamakoshi
(2013) did assess the validity of a comparable PPG sensor
with a Bland–Altman plot and found a mean difference of
0.20 bpm with an SD (of this difference) of 0.63 bpm for
HR. This would result in an appropriate suggested sample size
of six participants for a power of .90. This is probably an
optimistic situation that cannot be transferred to all CVA and
EDA parameters.

Therefore, we assessed the consequences of using a sample
of 55, as was proposed for the cross-correlation. This resulted
in a 1.75 SD of the differences that could be detected with .90
power for a mean difference of 0. We used a mean difference
of 0, since we could correct for themean differences according
to Giavarina (2015), and were therefore only interested in the
SD of these differences. In Table 1 all maximum difference
SDs for the proposed parameters can be found, given the
boundaries determined later in the Method section. In this
power analysis, the mean difference was set to 0 and the pow-
er was 90%. Statistical analyses were performed using
MedCalc for Windows, version 18.11.3 (MedCalc Software,
Ostend, Belgium). Note that when the SDs found for the E4
exceeded this SD, the Type 2 error would increase and there
would be less confidence in the conclusions, so that more
research should be performed.

Event level—Event difference plots

For the event level, two devices and 56 persons at four mea-
surement moments gives .90 power to detect an effect size f of
.25 or larger, which is a moderate effect. This can be trans-
formed to a Cohen’s d of 0.5 (Lenhard & Lenhard, 2014). For
HR, Brouwer and Hogervorst (2014) found an increase of
15.3 bpm (Cohen’s d: 1.63), and for EDA they found an in-
crease of 10.9 μS (Cohen’s d: 0.81). For a noise task,
Alvarsson, Wiens, and Nilsson (2010) found an effect of
t(39) = 15.66 for EDA (Cohen’s d: 5.02). Both the effect sizes
are large enough to detect with the power that is provided by a
sample of 55 persons.
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