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One of the challenges in the area of diagnostics of human thyroid cancer is a
preoperative diagnosis of thyroid nodules with indeterminate cytology. Herein, we report
an untargeted metabolomics analysis to identify circulating thyroid nodule metabolic
signatures, to find new novel metabolic biomarkers. Untargeted gas chromatography-
quadrupole-mass spectrometry was used to ascertain the specific plasma metabolic
changes of thyroid nodule patients, which consisted of papillary thyroid carcinoma
(PTC; n = 19), and multinodular goiter (MNG; n = 16), as compared to healthy
subjects (n = 20). Diagnostic models were constructed using multivariate analyses
such as principal component analysis, orthogonal partial least squares-discriminant
analysis, and univariate analysis including One-way ANOVA and volcano plot by
MetaboAnalyst and SIMCA software. Because of the multiple-testing issue, false
discovery rate p-values were also computed for these functions. A total of 60
structurally annotated metabolites were subjected to statistical analysis. A combination
of univariate and multivariate statistical analyses revealed a panel of metabolites
responsible for the discrimination between thyroid nodules and healthy subjects, with
variable importance in the projection (VIP) value greater than 0.8 and p-value less
than 0.05. Significantly altered metabolites between thyroid nodules versus healthy
persons are those associated with amino acids metabolism, the tricarboxylic acid
cycle, fatty acids, and purine and pyrimidine metabolism, including cysteine, cystine,
glutamic acid, α-ketoglutarate, 3-hydroxybutyric acid, adenosine-5-monophosphate,
and uracil, respectively. Further, sucrose metabolism differed profoundly between thyroid
nodule patients and healthy subjects. Moreover, according to the receiver operating
characteristic (ROC) curve analysis, sucrose could discriminate PTC from MNG (area
under ROC curve value = 0.92). This study enhanced our understanding of the distinct
metabolic pathways associated with thyroid nodules, which enabled us to distinguish
between patients and healthy subjects. In addition, our study showed extensive
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sucrose metabolism in the plasma of thyroid nodule patients, which provides a new
metabolic signature of the thyroid nodule’s tumorigenesis. Accordingly, it suggests that
sucrose can be considered as a circulating biomarker for differential diagnosis between
malignancy and benignity in indeterminate thyroid nodules.

Keywords: thyroid nodules, papillary thyroid cancer, multinodular goiter, metabolomics, GC-MS

INTRODUCTION

Papillary thyroid cancer (PTC), which pathologically originates
from thyroid follicular epithelial cells, has been globally
documented as the most prevalent type of thyroid malignancy,
particularly among women (LiVolsi, 2011; Razavi et al., 2019).
Ultrasound-guided fine-needle aspiration biopsy (FNAB) is the
current preoperative method used for cytological evaluation
of PTC and other thyroid nodules (Baloch et al., 2008).
Despite its long-standing clinical success, FNAB possesses a
major disadvantage: approximately 15–30% of thyroid FNABs
cannot cytologically differentiate malignancy from benignity,
thus the report would remain as “indeterminate thyroid lesions”
(Bongiovanni et al., 2012). On account of this, according to the
Bethesda system and a few more reports, the thyroid FNAB
must be repeated in these cases to avoid false-positive or false-
negative results. However, in some cases and circumstances,
the only available option for diagnosis is lobectomy or
thyroidectomy (Bongiovanni et al., 2012; Ho et al., 2014). As
such, the finding of novel noninvasive diagnostic biomarkers
that enable practitioners to distinguish between benign and
malignant nodules is a prerequisite to avoid FNAB repetition and
unnecessary surgical procedures.

From this point of view, metabolomics-based techniques, in
combination with chemometric analysis, are the newest emerging
approach, in particular in the cancer areas, which provides
an impetus for novel biomarker discovery and to elucidate
the molecular mechanism underlying cancer development
and progression (Claudino et al., 2012). Experimental studies
performed on thyroid cancer reveal the importance of untargeted
metabolomics for diagnosis, as well as interpretation of the
relationship between clinicopathological features of thyroid
cancers with a top-down profile of metabolites in different
matrices (Abooshahab et al., 2019). The main focus of previous
studies has been on the identification of the metabolites extracted
from thyroid cancer tissues or cell lines specimens using nuclear
magnetic resonance (NMR) and mass spectrometry (MS),
coupled with separation techniques, e.g., gas chromatography
(GC) and liquid chromatography (LC) (Yao et al., 2011;
Torregrossa et al., 2012; Deja et al., 2013; Wojakowska
et al., 2015; Ryoo et al., 2016; Wojtowicz et al., 2017).
Some identified metabolites are related to the Warburg effect
and glutaminolysis, processes which exclusively occur during

Abbreviations: FA, Fatty acid; FDR, False discovery rate; FNAB, Fine needle
aspiration biopsy; GC-MS, Gas chromatography-mass spectrometry; MCFA,
Median-chain fatty acid; MNG, Multinodular goiter; OPLS-DA, Orthogonal partial
least squares-discriminant analysis; PCA, Principle component analysis; PTC,
Papillary thyroid cancer; TCA, Tricarboxylic acid; VIP, Variable importance in the
projection.

tumorigenesis, and which are considered a unique feature of
thyroid carcinogenesis (Abooshahab et al., 2019). While previous
studies are informative, they are rather limited in introducing
the metabolic profile of cancerous cell lines or tissues, thus
presentation of a comprehensive metabolic panel of patients with
different thyroid lesions remains to be performed.

Obtaining the comprehensive metabolic panel of patients
with thyroid nodules could improve the understanding of
molecular pathogenesis of thyroid nodules and lead to solving
the indeterminate sample problem, through the discovery of
new metabolic biomarkers. Blood samples may have more
potential in providing a comprehensive picture of metabolic
differences between people with malignancy or benignity,
compared to tissue samples, as blood is the most frequently
used biofluid and contains a high diversity of metabolites with
different chemical properties, which provides a snapshot of
metabolism in the body. On the other hand, taking blood
specimens is a more convenient and less-invasive procedure
than biopsy specimens. To date, there have been very few
reports with respect to investigating metabolites perturbation
in plasma samples of patients with thyroid nodules using
the GC-MS technique. Accordingly, this research project
aimed to employ GC-MS based untargeted metabolomics in
order to characterize the plasma metabolite signatures of
patients with PTC, or multinodular goiter (MNG) compared
to healthy subjects. As the next step, we explored the probable
diagnostic potency of metabolites presented at significantly
different levels.

MATERIALS AND METHODS

Study Design and Population
The study was conducted in accordance with the 1964
Declaration of Helsinki and was approved by the Institutional
Review Board and Ethics Committee of Research Institute for
Endocrine Sciences. Written informed consent was obtained
from all participants of this study, including patients and healthy
subjects, for the use of their blood samples.

This case-control study was carried out by taking a plasma
sample of patients who referred to Shariati Hospital, (PTC
and MNG patients) for near-total or total thyroidectomy
from November 2015 to August 2016. According to the final
surgical pathology of the thyroid reports, only patients with
histopathological diagnosis of PTC (but no micro-PTC) and
MNG were initially entered into the study. Individuals who had
any other types of cancer or metabolic disorders (metabolic
syndrome, diabetes, and insulin resistance) were excluded. In
total, 19 cases of PTC patients (12 female and 7 male) with a mean
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age 35.37 ± 10.80 and 16 cases of MNG patients (12 female and 4
male) with a mean age 52.06 ± 10.96 enrolled in this study. The
7th edition of the American Joint Committee on Cancer (AJCC)
Tumor-Node-Metastasis (TNM) staging system was performed
to determine PTCs staging (Edge and Compton, 2010).

Furthermore, 20 healthy subjects (8 female and 12 male)
with a mean age 43.4 ± 14.33 were included in the study
as volunteers who referred to the Saeed Pathobiology and
Genetics Laboratory for routine checkup tests with the normal
range of thyroid-stimulating hormone (TSH) from 0.4 to
4.0 mIU/l. They displayed no thyroid-related disorders, namely
hypo/hyperthyroidism, goiter, autoimmune thyroiditis, and
thyroid nodules.

About 5 ml of blood was drawn from the pre-operative of
each patient (patients were in the primary diagnosis step and
received no drug or iodine-therapy before blood collection),
as well as healthy subjects in the morning before breakfast,
using a plasma-collecting tube containing anticoagulant
ethylenediaminetetraacetic acid (EDTA). Subsequently, plasma
was separated immediately by centrifugation at 3,000 rpm for
10 min at 4◦C. In this way, plasma samples were aliquoted
into 1.5 ml Eppendorf microtubes and stored at −80◦C until
further processing.

Metabolite Extraction and Derivatization
From the Plasma Samples
Plasma metabolites were extracted by adding 1 ml of protein
precipitant (methanol/water/isopropanol, 5:2:2, v/v/v) to 50 µl
of plasma in 2 ml Eppendorf tubes. The tubes were vortexed,
and chilled at −20◦C for 20 min, followed by centrifugation
at 14,000 rpm for 15 min at 4◦C to remove the precipitated
protein. Finally, the collected supernatant of each sample was
concentrated to dryness using Eppendorf vacuum centrifuge for
3 h at 45◦C.

All dried samples were then methoximated and
trimethylsilylated with the following protocol. First, 30 µl
of a 20mg/ml methoxyamine hydrochloride in pyridine was
added to the dried samples, vortexed and placed on a thermo-
shaker at 900 rpm for 1 h at 60◦C to protect aldehyde and ketone
functional groups. This was followed by trimethylsilylation
with 60 µl of N-Methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) as a silylating agent, vortexed and incubated at 45◦C
with shaking at 900 rpm for 20 min.

Untargeted GC-MS Based Metabolomics
Analysis
One microliter of aliquot of each derivatized solution was injected
at a split ratio of 1:4 into a GC-qMS (Agilent 5975C MSD/Agilent
7890A GC) system equipped with a HP-5ms capillary column
(Agilent J&W, 30 m × 0.25 µm × 0.25 mm), at a constant helium
flow of 1 ml/min. The inlet, the transfer line, and ion source
temperature were set at 280, 150, and 230◦C, respectively. All
samples were run in a randomized order to avoid systematic
bias. The chromatographic method was as follows: 0–1 min at
60◦C, 1–22 min ramping to 280◦C at 10◦C/min rate, 22–32 min
at 280◦C. Mass spectra were acquired under electron impact

(EI) ionization conditions using 70 eV in the mass range of
m/z 50–600. The GC-qMS data were recorded after a solvent
delay of 5.4 min.

Raw GC-MS Data Processing
The acquired data from the GC-MS analysis were pre-processed
using Agilent MassHunter qualitative data analysis software for
peak picking and mass spectral deconvolution. Subsequently, raw
data were exported in CDF format (NetCDF) and then converted
to “abf” format to be further processed by MS-Dial software
for metabolite annotations (v4.0) (Lai et al., 2018). Automated
annotation of metabolites was achieved using MS-Dial’s in-
built MS/MS reference libraries. The peak list information of
each sample, including average retention time (RT), m/z values,
MS/MS spectra information, and peak intensity (height) were
exported by MS-Dial before proceeding to further statistical
analysis. Thereafter, the NIST Mass Spectral Search Program
(version 2.0) was employed to confirm all metabolite spectra,
which was already annotated in MS-Dial against the reference
spectrum from the replib, mainlib, and Fiehn libraries with
a ≥70% similarity threshold. Lastly, the post-processing was
performed on the data, which was previously processed by MS-
Dial as follows: all contaminant ions, which were derived from the
derivatization reagents, were excluded from the original dataset.
In addition, the peak intensity of the duplicate features, which
were generated from the same molecule (due to incomplete
derivatization), was summed. Subsequently, the metabolite peaks
were normalized when performing mTIC method, based on
dividing the intensity of each metabolite to the sum of all
identified metabolites multiple to the total average mTIC
(Fiehn, 2016).

Statistical Analysis
Significant differences between plasma sample metabolic profiles
from PTC, MNG, and healthy subjects were assessed using
multivariate and univariate statistical analysis. The variables
were normalized by employing cubic root transformation, as
well as being scaled by the Pareto scaling method to give
equal weight to the variable prior to the data analysis. SIMCA-
P 15.0 software (Umetrics, Umeå, Sweden) was employed to
construct the multivariate statistic plots such as the principal
component analysis (PCA) for data overview and outlier
detection, and orthogonal partial least squares-discriminant
analysis (OPLS-DA) to determine the metabolic differences
between experimental groups. The quality of the models was
assessed by the cumulative modeled variation in the X and
Y matrix (R2 X and R2 Y) and the cross-validated predictive
ability Q2 (cum) values. Cross-validated predictive residuals, CV-
ANOVA, were used for testing the reliability of the models
(Eriksson et al., 2008). Variable importance in the projection
(VIP) score values above 0.8 were considered important in this
variable for discrimination. A One-way ANOVA and volcano plot
were then used to distinguish which metabolites annotated in the
GC-qMS dataset were significantly affected by the factor tested
in the experiment using MetaboAnalyst, (v4.0).1 The p-values

1http://www.metaboanalyst.ca
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were adjusted for multiple-testing issues using false discovery
rate (FDR) calculations as well. A One-way between subjects
ANCOVA was performed to determine the changes in mean
intensity of each metabolite in three groups for the effect of age
and gender. Heatmap and Box-and-whisker plots were plotted
using MetaboAnalyst (v4.0, see footnote 1). Receiver operating
characteristic (ROC curve) analysis was applied using IMB SPSS
statistics version 26.0 (Chicago, IL, United States) to evaluate
area under the curve (AUC) for comparing predictive ability
of significant metabolites between tested groups. Graphs for a
descriptive analysis were depicted using GraphPad Prism 8.0 (La
Jolla, CA, United States) statistical software.

Metabolic Pathway Analysis
Metabolic pathway analysis was performed using the MetPA
tool of MetaboAnalyst (v4.0, see footnote 1), in order to
interpret the biological relevance of our findings from both
PTC vs healthy groups, and MNG vs healthy groups, which
integrates two pathway analyses approaches – enrichment and
topology pathway analysis. Likewise, the genes related to the
differentially expressed metabolites were identified using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
and Human Metabolome Database (HMDB). This analysis
generates a pathway impact score and the associated p-value.

RESULTS

Clinical Characteristics of the Subjects
The clinical and pathological characteristics of individuals are
summarized in Table 1. This analysis included a total of 55
subjects divided into three groups: PTC (n = 19), MNG (n = 16),
and healthy volunteers (n = 20). As commonly reported in
the literature (Aschebrook-Kilfoy et al., 2013), patients who
presented with thyroid nodules were mostly women (PTC and
MNG; n = 12) than men (PTC; n = 7, MNG; n = 4). As presented
in Table 1 the mean ages of PTC and MNG patients and the
standard deviation (SD) were 35.37 ± 10.80 and 52.06 ± 10.96
years, respectively which was significantly different (p = 0.000).

Untargeted Metabolomics Profiles of
Plasma Samples Among Three Groups
Data processing by MS-Dial resulted in the detection of 776
GC-MS peaks out of which 60 metabolites were structurally
annotated and had appearance reliability in all three groups,
including the healthy, MNG, and PTC groups. The visualization
of the total ion chromatogram (TIC) of the plasma from a
healthy human is shown in the Supplementary Figure S1. We
initially applied multivariate statistical tools to our data set.
First, the PCA showed that the plasma samples from different
experimental classes were not grouped separately (Data shown
in Supplementary Figure S2). Thus, we performed a supervised
OPLS-DA model to determine the metabolites contributing to
the discrimination between the PTC, MNG, and healthy groups.
The OPLS-DA score plot showed a perfect clustering among
the three groups, with acceptable values of predicted variance

TABLE 1 | Demographic, clinical and pathological characteristic of the study
participants.

Parameter PTC MNG Healthy

Patient number 19 16 20

Gender

Male 7 4 12

Female 12 12 8

Age (Mean ± SD; years) 35.37 ± 10.80 52.06 ± 10.96 43.4 ± 14.33

Clinical biochemistry
tests (Mean ± SD)

– –

TSH (µIU/ml) 1.86 ± 0.97

T4 (nmol/l) 119.038 ± 15.66

T3 (nmol/l) 2 ± 0.33

FBS (mg/dl) 85.47 ± 8.54

Tumor size (Mean ± SD;
cm)

2.53 ± 1.18 – –

Histopathology –

Multinodular goiter 19 16

Classic PTC

Extracapsular Invasion – –

Negative 12

Positive 7

Extrathyroidal Extension – –

Negative 19

Positive 0

Invasiona – –

Negative 15

Positive 4

Lymph node metastasisb – –

Negative 10

Positive 9

TNM stagec – –

I 14

II 2

III 2

IVA 1

PTC; papillary thyroid carcinoma, MNG; multinodular goiter. a Includes blood
vascular or lymphovascular or perineurial invasion. b Includes N1a and/or
N1b. cAmerican Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis
(TNM) staging system.

(R2Y score = 0.87) and predictive ability (Q2 score = 0.61),
indicating that the metabolites were significantly altered in
plasma samples of thyroid nodules in comparison with healthy
subjects (Figure 1A). The CV-ANOVA test revealed that the
model was significant (p-value < 0.05) (The models’ parameters
are shown in Supplementary Table S1). The goodness of the
model was cross-validated by a permutation test (n = 100)
which showed that the R2 and Q2 values of the original model
were better than the permutated model’s and indicates of good
prediction ability (Supplementary Figure S3).

In addition, One-way ANOVA analysis (p-values < 0.05)
with Tukey’s HSD test in combination with multivariate analysis,
with a VIP score cut off above 0.8 (Data were shown in
Supplementary Tables S2, S3), were performed to determine
the metabolites which were significantly altered between three
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groups’ classification (PTC, MNG, and healthy). Our results
showed that 28 metabolites out of 60 differed significantly within
the compared groups, which persisted for all 28 metabolites
(ANCOVA, p < 0.05) after adjusting for age and gender
(ANCOVA, p > 0.05) as a covariate (data not shown). From
these data, tricarboxylic acid (TCA) cycle intermediates, amino
acids, fatty acids (FAs), and their derivatized, nucleotides etc.,
were the most significant metabolites distinguished as potential
variables which could discriminate healthy subjects from thyroid
nodule cases. In plasma samples, 11 amino acids reduced in
patients with thyroid nodules compared with those of healthy
persons; however, except for the dramatically incremented level
of glutamic acid, the reduction pattern of these 11 amino acids
was different in PTC than in MNG. Conversely, the metabolites in
lipid metabolism, including both long- and medium-chain fatty
acids, were elevated in thyroid nodules compared to the healthy
subjects. In addition, monomyristine and 2-monosteain (glycerol
lipids) and sucrose (carbohydrate) increased significantly in the
MNG cases compared to the PTC and healthy subjects. Moreover,
the levels of several metabolites including α-ketoglutarate (a keto
acid and one of the components of the Krebs cycle), adenosine-5-
monophosphate (purine nucleotide), and 3-hydroxybutyric acid
(Beta-hydroxy acid) were considerably increased in both the PTC
and MNG patients, relative to the control patients. Heatmap
representation of the metabolomics dataset with hierarchical
clustering analysis (HCA) was performed for a graphical
depiction of the metabolites that were altered significantly across
the different groups (Figure 1B). In general, these data indicate
specific patterns of differences in the metabolites between thyroid
nodules and healthy subjects. Box plots comparing the mean
intensities for the most significant altered metabolites among
three groups is illustrated in Figure 1C.

Identification of Significantly Altered
Metabolites of Plasma Samples Between
Two Groups, Separately
The first set of analyses constructed the OPLS-DA models in
order to achieve maximum separation between two groups
individually, including MNG against healthy groups, PTC against
healthy groups, and the PTC against the MNG group. As shown
in Figures 2A–C, a clear separation was achieved in the score
plots for all three models, with acceptable values of R2Y and Q2.
The CV-ANOVA test revealed that the models were significant
(p-value < 0.05) (parameters of all the models are shown in
Supplementary Table S4). The goodness of these models was
cross-validated by permutation tests (n = 100) which showed that
the R2 and Q2 values of the original models were better than
the permutated models, and indicated good prediction ability
(Supplementary Figure S4). The pair-wise comparisons (MNG
vs Healthy, PTC vs Healthy and PTC vs MNG) indicated PTC
or MNG-specific and common metabolite signatures (Data are
shown in Supplementary Figure S5).

In addition, to distinguish the most significant metabolites
between two groups separately (PTC vs. healthy; MNG vs.
healthy and PTC vs. MNG) univariate volcano plots were
performed with fold change (FC) threshold (x) 2 and p-value

of <0.05 (FDR adjusted p-values) which were both log-
transformed. The volcano plot from the MNG vs. healthy group
(Figure 2D) showed that there were 7 metabolites out of 60
with the most significant changes in cysteine, cystine, glycine,
α-ketoglutarate, adenosine-5-monophosphate, 3-hydroxybutyric
acid, and sucrose. In the case of the PTC vs. healthy group
(Figure 2E), the volcano plot revealed that 8 metabolites out
of 60 were significantly changed between two groups, including
cysteine, cystine, α-ketoglutarate, adenosine-5-monophosphate,
3-hydroxybutyric acid, glutamic acid, capric acid, and uracil.
Furthermore, the volcano plot result comparing the PTC
vs. MNG group demonstrated that (Figure 2F), sucrose was
remarkably altered in the PTC plasma compared to the MNG.
We can see the alterations in the peak intensities of each
metabolite between two groups separately using box plots
(Figures 3A–C).

Finally, the ROC curve analysis was used to evaluate the
diagnostic ability of discriminated metabolites of each volcano
plot, as screening biomarkers of thyroid nodules. 1-specificity and
sensitivity are located at the x-axis and y-axis, respectively. The
results showed that the AUC of seven metabolites in the PTC
vs healthy group (Figure 3D), was larger than 0.81, except for
capric acid (AUC = 0.67), AUC of seven metabolites in the MNG
vs healthy group was larger than 0.80 (Figure 3E), and AUC for
sucrose, a significant metabolite between the PTC vs MNG group,
was 0.92 (Figure 3F).

Differences in Metabolites According to
the Clinicopathological Characteristic of
PTC Patients
A simple descriptive statistical analysis was used to provide the
metabolite intensity differences according to the tumor size,
stage, and lymph node metastasis (LNM) of PTC patients. As
can be seen from Figure 4A, 2-hydroxybutanoic acid, capric
acid, and 3-hydroxybutyric acid were increased in patients with
a tumor size greater than 4 cm, while serine, glycine, cystine,
and sucrose were more decreased in those patients. The capric
acid level was more increased in stage IV of PTC patients.
Further, glutamic acid and adenosine-5-monophosphate levels
were higher in stage III (Figure 4B). In Figure 4C there is a
clear trend of decreasing cysteine and cystine, and increasing
2-hydroxybutanoic acid which shows dysregulation of GSH
synthesis in PTC patients who have LNM.

Pathway Analysis
The overview of the pathway impact of attributed metabolites
(PTC against healthy and MNG against healthy) was obtained
utilizing MetaboAnalyst (v4.0, see footnote 1) (Figure 5).
Pathway analysis of altered metabolites shows perturbations
in linoleic acid, phenylalanine, arachidonic acid, glycine, D-
Glutamine and D-glutamate, and GSH with common influences
in both PTC and MNG tumorigenesis (Figures 5A,B). The most
influenced metabolic pathway was set as a pathway influence cut
off value >0.1 to filter for less important pathways. A detailed
pathway analysis table, including all the identified pathways, is
presented in Supplementary Tables S5, S6.
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FIGURE 1 | (A) OPLS-DA analysis score scatter plots for metabolic profiles of the MNG (green dots), PTC (blue dots), and healthy (red dots) groups showing clear
discrimination between the three groups. (B) Heatmap visualization of metabolomics data with hierarchical clustering analysis (HCA). Average (mean) intensity was
used to indicate the level of difference for single metabolites among three groups. (C) Boxplots of the eight most significant metabolites (P < 0.05) in the analysis of
variance results comparing the three groups (PTC; blue boxes, MNG; green boxes and healthy; red boxes). The x-axis shows the specific metabolite and the y-axis
is the normalized peak intensity. OPLS-DA; orthogonal partial least squares-discriminant analysis, PTC; papillary thyroid carcinoma, MNG; multinodular goiter.

DISCUSSION

For preoperative discriminating of malignancy from benignity
in thyroid nodules, FNAB and cytologic evaluation offer a
gold standard as a diagnostic tool (Baloch et al., 2008).
Unfortunately, up to 30% of evaluated FNABs have been
classified as cytologically indeterminate, thus the only way to
make a definitive tumor diagnosis is surgery (Bongiovanni
et al., 2012). During the past two decades, researchers have
been seeking to find a global biomarker capable of improving

FNAB diagnostic information using different biological methods
such as immunohistochemistry and genetic tests. Several
remarkable biomarkers have been reported, including miR-
151-5p, miR-222, galectin-3, thyroid transcription factor 1
(TTF-1), thyroglobulin, calcitonin, carcinoembryonic antigen
(CEA), p27, thyroid peroxidase, and BRAF and RAS mutations
(Fischer and Asa, 2008; Yu et al., 2012; Ward and Kloos,
2013; Eszlinger et al., 2014; Su et al., 2016; Razavi et al.,
2017). However, due to the low sensitivity or specificity rate
and the poor positive predictive values of the aforementioned
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FIGURE 2 | (A–C) Supervised (OPLS-DA) analysis score scatter plots illustrating that the metabolic profiles of PTC is distinct from healthy, MNG is distinct from
healthy and MNG is distinct from PTC. (D–F) Volcano plots of the most significant metabolite changes comparing healthy vs. MNG (D), healthy vs. PTC (E), and PTC
vs. MNG (F). The most significant differences in metabolites presence; pink dots and the gray dots represent metabolites with no significant differences. The pink
dots on the left represent metabolites above the thresholds and their intensities were increased while the pink dots on the right were the opposite. x-axis
corresponds to log2 (Fold Change) and y-axis to −log10 (p-value). OPLS-DA; orthogonal partial least squares-discriminant analysis, PTC; papillary thyroid
carcinoma, MNG; multinodular goiter.

biomarkers, the requirement for employing a non-invasive
diagnostic method, as well as finding sensitive and specific
biomarkers for early definitive diagnosis of thyroid malignancy
is still urgently felt.

Seeking to find diagnostic biomarkers in the -omics era
is a promising strategy for solving the indeterminate samples
problem. Metabolomics may provide a holistic approach
in identifying pivotal metabolites with authentic diagnostic
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FIGURE 3 | (A–C) Box plots visualize each significantly altered metabolite between two groups separately, which were all predicted with the volcano plots. The
x-axis shows the specific metabolite and the y-axis is the normalized peak intensity. ROC curve analyses of the ability of seven metabolites to predict MNG vs
healthy (D), eight metabolites to predict PTC vs healthy (E), and one metabolite included sucrose to predict MNG vs PTC (F) which were all identified with the
volcano plots. ROC; Receiver operating characteristic, PTC; papillary thyroid carcinoma, MNG; multinodular goiter.
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FIGURE 4 | Graphs showing normalized intensity of the 28 significant metabolites according to (A) tumor size, (B) stages, and (C) lymph node metastasis (LNM) of
PTC patients. Tumor staging was according to the American Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging system. PTC; papillary
thyroid carcinoma.

FIGURE 5 | Metabolome view of pathway impact analysis obtained from differential metabolites in PTC (A) and differential metabolites in MNG (B). The color and
size of each circle is based on p-values (yellow: higher p-values and red: lower p-values) and pathway impact values (the larger the circle the higher the impact score)
calculated from the topological analysis, respectively. Pathways were considered significantly enriched if p < 0.05, impact 0.1 and number of metabolite hits in the
pathway >1. PTC; papillary thyroid carcinoma, MNG; multinodular goiter.

significance (Claudino et al., 2012), however, so far, there have
only been five reports of blood metabolomics changes associated
with thyroid nodules (Russell et al., 1994; Yao et al., 2011;
Shen et al., 2017; Wojtowicz et al., 2017; Huang et al., 2019).
Among these previous five studies, only Shen et al. used GC-
TOF-MS to identify the serum metabolic signature of distant
metastatic PTC (Shen et al., 2017). Therefore, to our knowledge,

this is the first report of plasma metabolic profiles of patients
with thyroid nodules compared with healthy subjects to identify
metabolomics features of thyroid nodules using the GC-MS
method. Our data revealed significant alterations in metabolites
levels which were mainly associated with sucrose and amino
acid metabolism, TCA cycle, FAs metabolism, and purine and
pyrimidine metabolism.
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The present study showed that the metabolism of about
11 amino acids, including (1) metabolites related to GSH
biosynthesis, (2) methionine, (3) glycine, serine, and threonine,
and (4) phenylalanine, had been changed in plasma of patients
with thyroid nodules compared to healthy subjects. The findings
with depleted amino acids in the plasma of patients with thyroid
nodules may exhibit excessive consumption of the amino acids
by the tumor cells to sustain cell proliferation. The present
findings seem to be consistent with other research that found
the up-regulation of most amino acids in thyroid carcinoma
tissue compared to normal tissue (Wojakowska et al., 2015;
Xu et al., 2015). However, the most significant alterations in
amino acids, which could discriminate between healthy subjects
and thyroid nodule patients, were related to cysteine, cystine,
and glycine. Nonetheless, glycine was more decreased in MNG
patients. Cysteine and cystine were reduced more significantly
in patients with thyroid nodules. The semi-essential amino acid
cysteine is a sulfur-containing amino acid which, along with the
disulfide bond of cystine, could adopt a variety of oxidation states
due to its thiol group (Townsend et al., 2004). Cysteine is a
precursor for GSH biosynthesis, which plays a crucial role in
sustaining intracellular redox homeostasis by quenching reactive
oxygen species (ROS) from mitochondrial respiration. Cancer
cells require exogenous cysteine for GSH synthesis to protect
themselves from ROS, which is essential for the maintenance
of cell proliferation and resistance to cell death (Combs and
DeNicola, 2019). A comparison of tissue metabolome profiles
between PTC and benign thyroid adenoma (BTA) was performed
by Xu et al. (2015) applying GCTOF-MS and LC-Q-TOF
methods which showed increased levels of cysteine in both types
of tumor tissues. Therefore, decreased plasma levels of cysteine
and cystine in patients with thyroid nodules may be explained by
the higher consumption of cysteine in the cancer cells. Moreover,
we observed elevation in the levels of 2-Hydroxybutanoic acid
(2-HBA) which is a metabolite involved in GSH biosynthesis. 2-
HBA is a byproduct of the cystathionine cleavage to cysteine in
GSH anabolism. The increased levels of 2-HBA along with the
decreased levels of cysteine further corroborated the idea of more
consumption of cysteine for GSH biosynthesis in patients with
thyroid nodules compared to healthy subjects. Since PTC patients
with a tumor size greater than 4 cm showed abundant alterations
of 2-HBA, it can be assumed that as the tumor size is gradually
increased, more glutathione is needed. In addition, PTC patients
who had LNM showed the decreasing and increasing pattern of
cysteine, cystine, and 2-HBA, respectively. Therefore, it could
conceivably be hypothesized that a strong link exists between the
perturbation in GSH metabolism and PTC progression.

Another important finding was that there were significant
changes in metabolites related to the TCA cycle, particularly
glutamic acid and α-ketoglutarate, in patients with thyroid
nodules compared to healthy subjects. α-ketoglutarate is one of
the important intermediates in the TCA cycle interconvertible
with glutamic acid by transamination reaction; therefore,
glutamic acid can enter into mitochondria and directly impact
energy metabolism via the TCA cycle (Mullen et al., 2012).
Cancer metabolism documentation noted that glutaminolysis is
one of the metabolic properties of cancer cells that promote the

conversion of glutamine to glutamic acid in order to maintain the
TCA cycle and anabolic process (Mullen et al., 2012; Abooshahab
et al., 2019). It can, therefore, be assumed that the increased
plasma levels of glutamic acid and α-ketoglutarate observed in
patients with thyroid nodules are most presumably due to the
glutaminolysis process and the increase in Krebs cycle activity.

In the current results, we noticed major alternations of long-
and medium-chain fatty acid metabolism in patients with thyroid
nodules. The altered median-chain fatty acid (MCFA) is capric
acid (10:0) and the altered long-chain fatty acids (LCFAs) are
as follows: palmitic acid (16:0), palmitoleic acid (16:1), oleic
acid (18:1), linoleic acid (18:2), and arachidonic acid (20:4).
Increased FA β-oxidation is thought to have occurred in patients
with thyroid nodules because 3-hydroxybutyric acid, which is
an intermediate product of FA β-oxidation, was significantly
elevated. All of these findings suggest that increased lipogenesis
could be a disrupted metabolic pathway in the molecular
pathogenesis of thyroid nodules. One unanticipated finding
among the annotated FAs was capric acid (decanoic acid) which
was more elevated in patients with thyroid nodules. The PTC
patients who were at stage IV or patients with a tumor size greater
than 4 cm also showed abundant alterations of this MCFA. It is
therefore likely that there is an association between capric acid
and thyroid tumor progression. To the best of our knowledge,
the capric acid plasma changes in PTC thyroid nodules has not
yet been reported in the literature but it is in agreement with
Crotti et al.’s (2016) findings which showed an increase in the
plasma level of capric acid in patients with colorectal cancer
(CRC; Crotti et al., 2016).

The higher plasma levels of metabolites involved in the
purine and pyrimidine metabolic pathways such as adenosine-
5monophpsphate and uracil were observed in both the PTC and
MNG groups. Since purine and pyrimidine nucleotides play an
essential role in a large number of cellular processes involving
DNA and RNA synthesis, nucleotide cofactors biosynthesis,
energy supply, and regulatory mechanisms (Lane and Fan, 2015),
it is suggested that the bioenergetics status may be increased in
thyroid nodules.

A further novel and interesting finding was that the most
changes in the level of sucrose, which is a disaccharide composed
of the monosaccharide’s glucose and fructose, were observed in
patients with thyroid nodules compared with healthy subjects.
It is worth noting that it was the most significantly altered
metabolites between PTC and MNG. The previous results, with
respect to the various in vivo and in vitro cancer studies,
revealed that the high risk of tumorigenesis was based on high
consumption of sugar sweeteners (Wang et al., 2014; Jiang
et al., 2016). Since sucrose contains glucose and fructose, a
high sucrose sugar diet could promote tumorigenesis via some
metabolic pathways (Das, 2015). Indeed, in healthy cells, sucrose
is broken down into glucose and fructose through a process
called hydrolysis. Glucose enters into the aerobic glycolysis
pathway which is converted into two molecules of pyruvate. In
cancer cells, according to the “Warburg effect,” glucose uptake
and aerobic glycolysis metabolism are increased due to the
unbridled cell proliferation (Ngo et al., 2015). Consequently,
sucrose could amplify the mentioned process by providing one

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 June 2020 | Volume 8 | Article 385

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00385 June 14, 2020 Time: 20:37 # 11

Abooshahab et al. Metabolic Profile of Thyroid Nodules Patients

FIGURE 6 | Schematic illustration of the metabolic reprogramming in thyroid nodules. Various aspects of metabolic reprogramming during thyroid tumorigenesis are
shown, including sucrose metabolism, fatty acid oxidation, fatty acids biosynthesis, glutaminolysis, glutathione biosynthesis, the TCA cycle, and nucleotide
synthesis. α-KG, α-ketoglutarate; TCA, tricarboxylic acid; OAA, oxaloacetate; DHAP, Dihydroxyacetone phosphate; GA3P, Glyceraldehyde 3-phosphate, SAM,
S-Adenosyl methionine; 2-HB, 2-Hydroxybutanoic acid; GSH, Glutathione.

of the most important fuel sources of cancer cells. To date, no
one has addressed the impact of sugar-rich diets on thyroid
tumorigenesis. As the diet was not controlled in our study, the
more we investigate the more we know how thyroid nodules
tumorigenesis could be related to sucrose-rich diet intakes.

An overview of altered metabolites and linked pathways in
thyroid nodules obtained from the above mentioned analyses are
illustrated in Figure 6. From the results, it is clear that metabolic
reprogramming of thyroid nodules, mostly characterized by
metabolites, are related to sucrose and glutathione (GSH)
metabolism, TCA cycle, FA synthesis, FA beta-oxidation, and
nucleotide synthesis.

Although the etiology of the metabolites alterations in
thyroid nodularity is quite challenging, there are no sufficient
and comprehensive metabolomics studies with respect to the
fluctuation of metabolites into the blood stream. Accordingly, it
could constitute the subject of future studies that fruitfully

explore this issue. Considering that, the decreased or
increased plasma level of metabolites could be due to the
higher consumption or up/down regulation of them. The
comprehensive comparison between the metabolomics profile
in the bloodstream and nodular thyroid tissue can provide
more detailed insight into the association between the systemic
metabolic abnormalities and thyroid tumorigenesis.

CONCLUSION

In summary, we performed an untargeted metabolomics
investigation to improve our understanding of thyroid nodule
metabolism, which could lead to finding novel early diagnostic
biomarkers. Metabolism of patients with thyroid nodules, as
expected, differs substantially compared to healthy subjects.
Metabolic reprogramming in thyroid nodule patients, mainly
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characterized by the perturbation in GSH metabolism, the
metabolism dysfunction of the TCA cycle, and disturbed
metabolism of FAs, was represented by different levels of related
3-hydroxybutyric acid. Abnormal FAs metabolism is found to
be related to PTC development and progression. Through this
work, we confirmed that untargeted GC-MS-based metabolomics
techniques could be employed to distinguish patients with
thyroid nodules from healthy subjects, and more importantly
it could probably discriminate malignancy from benignity. In
consideration of the small sample size, this research could serve as
a pilot study for future metabolomics studies that intend to solve
the indeterminate samples problem.
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