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Neurons lack the ability to regenerate after injury. A new Preregistered
Article in PLOS Biology finds that pharmacologically boosting regen-
erative capacity long after injury in mice, together with an enriched
animal environment, promotes axonal and synaptic plasticity.

The estimated annual incidence of traumatic spinal cord injury (SCI) is approximately 54

cases per 1 million people in the United States, which equals about 18,000 new cases of SCI

each year [1]. According to the National Spinal Cord Injury Statistical Center, approximately

300,000 people are living with SCI in the United States alone [1,2]. In general, neurons in the

central nervous system have limited ability to rearrange their axons (i.e., nerve fibers) and syn-

apses after an injury. This feature restricts the reformation of lost connections, leading to lim-

ited recovery of body functions after SCI. Over the years, life expectancy in patients with SCI,

as well as in the general population, has increased substantially. This increased life expectancy

has been attributed not only to improved survival from initial damages, but also to improved

capacity to treat secondary complications such as infections and pneumonia [2]. As people

with SCI are living longer, safe regenerative strategies that can promote neuronal plasticity and

ameliorate the debilitating conditions are highly sought after. In this regard, it is worth noting

that compared with the acute phase of injury, neurons likely face more barriers to remodeling

after prolonged SCI. For example, axons likely have undergone significant degeneration over

the years, creating large distances for regrowing axons to travel. It is also likely that growth-

inhibiting scars will have become consolidated around the chronic lesion site, making it more

difficult for axons to grow through. Aged neurons may have further lost their natural ability to

grow [3]. In fact, while significant advances have been made in promoting axon regeneration,

very few studies have utilized models of chronic SCI even though the patient population with

chronic SCI is most likely to benefit from axon regeneration strategies.

In a new pre-registered report, Müller and colleagues asked whether combining epigenetic-

driven stimulation of regenerative gene expression in mice with an enriched environment

(EE) could improve regeneration long after SCI had occurred [4] (Fig 1). In the past decade,

numerous studies have identified genes and gene products that contribute to the limited

regenerative capacity of neurons [5]. Researchers have also begun to unravel epigenetic mecha-

nisms (changes in gene activity that do not involve changes in DNA sequence) that control the

expression of these genes [6]. For example, studies have revealed that genetic or pharmacologi-

cal activation of epigenetic modulators (e.g., P300 and CBP) allows DNA strands to be more
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Fig 1. The effects of EE and delayed TTK21 treatment on neuronal plasticity and functional recovery after spinal

cord injury. A drug capable of modulating DNA accessibility (i.e., TTK21) given months after injury is able to

promote expression of RAGs and axonal regrowth in DRG cells and motor neurons with limited functional recovery.

Created with BioRender.com. DRG, dorsal root ganglion; EE, enriched environment; RAG, regeneration associated

gene.
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“accessible,” increases expression of distinct sets of genes, and enhances axon regeneration

[7,8]. This is truly remarkable, considering that epigenetic modulators can alter the expression

of hundreds of genes, only some of which are bona fide regeneration-promoting genes. Impor-

tantly, knowledge gained from these studies has led to the discovery of drugs that can promote

axonal rearrangement and regeneration in animal models of SCI [8]. These findings have

raised hopes of one day being able to treat patients with SCI. However, the approaches used to

date have faced significant challenges, and they generally have not resulted in robust improve-

ment of behavioral functions such as forelimb use and locomotion.

In their study, Müller and colleagues [4] provided EE housing for the injured animals, in

which the animals’ cages contained toys, tunnels, running wheels, and enriched bedding. This

housing condition is quite different to the conventional animal housing provided in most SCI

research laboratories, which often includes only the enriched bedding and, in some cases, tun-

nels. Considering that humans are usually encouraged to engage in physical activities following

an SCI, EE perhaps better reflects the “physiological” conditions experienced by humans with

the condition. Notably, an increase in neuronal activity, either associated with EE or direct

electrical stimulation soon after SCI, can increase axon growth and new neuronal connections,

leading to improvement in functional recovery [9]. Intriguingly, neuronal activity not only

promotes the expression of regeneration-promoting genes but also many other cellular pro-

cesses beneficial for neuronal regeneration, such as enhancement of mitochondrial function

and axonal transport among others [9]. These observations raise an obvious question of

whether concomitant provision of EE and the drugs known to increase the expression of

regeneration-promoting genes provides a synergistic benefit.

In combination with EE, Müller and colleagues evaluated whether a drug called TTK21 can

enhance axonal plasticity and behavioral recovery when it is administered months after SCI.

TTK21 is a drug known to activate P300 and CBP (i.e., promoters of DNA accessibility) and to

allow expression of many genes beneficial to regeneration [8]. They found that TTK21 pro-

motes induction of beneficial genes for regeneration in the CNS neurons and considerable

regrowth of axons around the lesion area. However, these treatments failed to promote regen-

eration of injured axons throughout the lesion site, indicating that the lesion environment is a

formidable barrier for these axons at the chronic stage. Importantly, the authors have found

that despite the signs of neuronal plasticity, the behavioral functions (e.g., stepping on grid

walk) were not improved in these animals. They conclude that in chronic SCI, it is feasible to

use epigenetic modulators and enhance axon regrowth, at least to some extent. These results

further support previous studies that have shown that deleting certain genes in neurons long

after SCI can promote axon regeneration [10]. However, to attain meaningful functional

recovery, it has become clear that additional strategies are needed including those that can

make the injury site less inhibitory to axon growth.

Much progress has been made in identifying strategies to augment the ability of neurons to

regrow axons. The new study in PLOS Biology underscores the power of epigenetic modifica-

tion and the feasibility of “awakening” dormant neurons, even for animals that have been

injured for a long time [4]. Considering that there are hundreds and thousands of patients liv-

ing with chronic SCI, a key question remains as to whether drugs such as TTK21 will induce

recovery when it is given in combination with stem cell or biomaterial grafts known to neutral-

ize the growth inhibitory injury site [11,12].
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