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Abstract

Background: The empirical frequencies of DNA k-mers in whole genome sequences provide an
interesting perspective on genomic complexity, and the availability of large segments of genomic
sequence from many organisms means that analysis of k-mers with non-trivial lengths is now
possible.

Results: We have studied the k-mer spectra of more than 100 species from Archea, Bacteria, and
Eukaryota, particularly looking at the modalities of the distributions. As expected, most species
have a unimodal k-mer spectrum. However, a few species, including all mammals, have multimodal
spectra. These species coincide with the tetrapods. Genomic sequences are clearly very complex,
and cannot be fully explained by any simple probabilistic model. Yet we sought such an explanation
for the observed modalities, and discovered that low-order Markov models capture this property
(and some others) fairly well.

Conclusions: Multimodal spectra are characterized by specific ranges of values of C+G content
and of CpG dinucleotide suppression, a range that encompasses all tetrapods analyzed. Other
genomes, like that of the protozoa Entamoeba histolytica, which also exhibits CpG suppression, do
not have multimodal k-mer spectra. Groupings of functional elements of the human genome also
have a clear modality, and exhibit either a unimodal or multimodal behaviour, depending on the
two above mentioned values.

Background

The distribution of DNA k-mers (DNA 'words' of length k) -
namely, the k-mer spectrum - in whole genome sequences
provides an interesting perspective on the complexity of the
corresponding species. A number of theoretical investigations
of genomic k-mer distributions were done prior to the
sequencing of large genomes and these works suggested vari-

ous plausible probabilistic models and parameters for such k-
mer distributions. Despite the relative abundance of
sequenced genomes to date, the number of works investigat-
ing empirical k-mer distributions for values of k exceeding 2
or 3 is not very large. The main emphasis has been on study-
ing words with extreme frequencies, namely, either missing
or rare k-mers, or those with very high frequencies.
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Several models for the distribution of k-mers in sequences
have been proposed. For example, Robin and Schbath [1]
compared several approximate k-mer distributions, and also
analyzed the empirical k-mer distributions of the phage
Lambda (48,500 bp genome). Reinert et al. [2] discussed var-
ious plausible k-mer distributions, showing that the distribu-
tion for the number of occurrences of a particular k-mer in
sequences generated from a hidden Markov model has two
distinct large-sample regimes: a normal distribution for
abundant k-mers, and a Poisson or compound Poisson distri-
bution for extremely rare k-mers.

With the sequencing of more complete genomes, it has
become possible to move from theoretical to empirical studies
and to examine the properties of these DNA words and how
their distributions vary between different species or genome
elements. The most basic empirical question that has been
investigated is that of missing DNA k-mers. Earlier works
have studied non-existent short amino acid k-mers [3,4], and
have attributed them mainly to chemical constraints (such as
hydrophobic and hydrophilic amino acids). DNA does not
have the complex three-dimensional structure and chemical
constraints of proteins, although the nucleotide composition
has been reported by el antri et al. [5] to weakly affect the
structure of double-stranded DNA. Intuitively, if k is not too
large compared to the genome or chromosome length, we
expect that all k-mers will be present. This expectation turns
out to be incorrect. Fofanov et al. [6] studied correlations
between present and absent short DNA k-mers in over 1,500
species, and found short k-mers that are missing. A system-
atic study of missing k-mers, termed 'nullomers', was carried
out by Hampikian and Andersen [7]. They reported the com-
plete lists of missing k-mers (8 < k < 13) in 12 species, includ-
ing human. Several possible uses of these nullomers were
suggested, and it was claimed that 'these absent sequences
define the maximum set of potentially lethal oligomers, ...,
and identify potential targets for therapeutic intervention and
suicide markers.' Herold, Kurtz, and Giegerich [8] developed
an efficient algorithm for finding all missing words. Zhou,
Olman and Xu [9] studied genome barcodes using fragment
size M (1,000 < M < 10,000) and based on k-mers (1 <k <6).
They report that sequences generated by Markov models of
order three are the closest to the barcodes of genomic
sequences in terms of their appearance. Mrazek and Karlin
[10] studied different aspects of large viral genomes. They
showed that the low order Markov models identify the most
frequent k-mers fairly well. In an immunological context, Sta-
cey et al. [11] studied CpG suppression in 8-mers of mamma-
lian genomes (mouse, human) and bacterial genomes
(Escherichia coli). A consequence of their work is that the
mammalian spectra are multimodal, while the bacterial spec-
tra are unimodal. In a recent study, Csiiros, Noé, and Kuch-
erov [12] explored the empirical k-mer genomic spectrum,
and suggested a rethinking of the significance of word fre-
quencies. Their study focuses on overabundant k-mers, show-
ing that their distribution has a heavy sub-exponential tail.
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They argue that the frequencies of genomic k-mers across all
genomes can be described using a double Pareto log-normal
(DPLN) distribution [13]; this distribution therefore repre-
sents a universal genomic feature. In particular, they claim
that DPLN provides a much better fit to the empirical k-mer
distributions than Bernoulli or first-order Markov models,
due to its heavier tail (k-mers with extreme abundance are
more common). In addition, Csiirés et al. suggest a simple
model of evolution by random duplications ('copy and insert')
that they report produced distributions whose tails are simi-
lar, in simulations, to the DPLN.

Results and discussion

Empirical distributions

In this work we study the whole landscape of genomic k-mers
(4 <k <13) across more than 100 species from Archea, Bacte-
ria, and Eukaryota (Additional data file 7). We are interested
not only in the high and low ends of the distribution, but in
the whole curve, and in particular in the modality of the k-mer
distributions: does the histogram have a single maximum
(unimodal) or multiple local maxima (multimodal)? As can
be expected, most species exhibit unimodal k-mer distribu-
tions. However, a few species, including all mammals, have
multimodal k-mer spectra, implying that there are distinct
groups of common and extremely rare k-mers rather than a
continually varying distribution. Figure 1 shows two empiri-
cal k-mer spectra (histograms of k-mer abundance) for
human genome 11-mers (Figure 1a) and zebrafish genome 10-
mers (Figure 1b). The human distribution has three distinct
modes, with the maximum of these attained at x = 16, y =
0.00279 (meaning 0.00279 of all 41t words, that is, 11,718
words, appear exactly 16 times in the human genome), and
the two other local maxima at larger values of x.

Mammalian genomes

The empirical distributions of k-mers in mammalian single
chromosomes and whole genomes that we examined were all
multimodal. Additional data file 1 depicts the multimodal dis-
tributions for human chromosomes 1 (a long chromosome), 6
(medium) and 20 (short), for both 9-mers and 11-mers. Addi-
tional data file 2 depicts these distributions for the complete
human and opossum genomes, again for both 9-mers and 11-
mers. Like the spectrum for 11-mers in the human genome
(Figure 1a), there is typically a high peak close to zero, corre-
sponding to a large number of k-mers that are either missing
or very rare (a low number of appearances), with a second,
shallower local peak approximately around the average
number of occurrences, from where the numbers decrease
monotonically. Often there is a third peak between these two.
The high peak close to zero flattens when the length of the
genome grows larger compared to 4k, the number of possible
k-mers, and conversely gains more mass as k increases. The
decay of the tail (over-abundant k-mers) is slower than expo-
nential, as discussed by Csiiros et al. [12].
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Empirical spectra of human and zebrafish. Empirical word frequency spectra showing the two types of behavior described in this paper. The x-axis is the
abundance of k-mers, and the y-axis describes the frequency of words with that abundance in the relevant genome. (a) Human genome | I-mers (0 < x <
2,000 occurrences), exhibiting multimodal behavior. (b) Zebrafish genome 10-mer distribution (0 < x < 5,500 occurrences), with a unimodal distribution.

Non-mammalian genomes

We analyzed the k-mer distributions for 89 non-mammalian
genomes: 33 from Archea, 36 from Bacteria, and 20 from
non-mammalian Eukaryota, including 8 vertebrates. These
distributions can be divided into two main categories, unimo-
dal and multimodal distributions.

Unimodal distributions

For unimodal distributions, illustrated for zebrafish in Figure
1b, the corresponding k-mer distributions have a single max-
imum, usually at a relatively low number of k-mers. Addi-
tional data file 3 depicts typical unimodal k-mer distributions
for nine species. To account for different genome lengths, we

used values of k that are r0.7 log, £1 or above, where ¢ is the
genome length (see the Materials and methods section).

Multimodal distributions

For multimodal distributions, the corresponding k-mer dis-
tributions have two or more maxima. We found that only a
small and well characterized group of species exhibits this
distribution (Additional data file 4). This group includes
chicken (Gallus gallus), green anole lizard (Anolis caroline-
sis), and tree frog (Xenopus tropicalis), all in the tetrapod
clade. Notice that the five bony fish, which are vertebrates but
not tetrapods, are not part of this group. Usually one (or
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more) high maximum exists at a very low number of k-mers,
and another, shallower one at a larger number.

Human genomic regions

The word distributions in specific functional categories of the
human genome: exons, introns, 3' untranslated regions
(UTRs), 5' UTRs, and gene promoter regions do not all share
the same modality as the human chromosomal averages. The
gene promoter regions were separately analyzed three times,
corresponding to varying lengths of the promoter region
(600, 1,000, and 5,000 nucleotide bases upstream of the 5'
UTR of the gene). The most striking empirical observation is
that the exons, the 5' UTRs, and the shorter lengths (600 and
1,000 bases) of gene promoter regions exhibit unimodal k-
mer distributions, while the introns, 3' UTRs and the gene
promoter regions of length 5,000 bases exhibit multimodal k-
mer distributions (Additional data file 6).

Additional genomes

In addition to the detailed analysis performed on the mam-
malian and non-mammalian genomes mentioned above,
analysis was also performed on 910 bacterial and archeal
genomes (all complete microbial genomes listed at [14] and
available in the EMBL nucleotide database on 10 August
2009). We created a website [15] that contains the accession
number, species name, effective genome length, value
0.7-log,(genome length), C+G content, o, for that genome,
the empirical frequencies of k-mers for various values of k,
parameters for low order Markov models, and spectra plots
for various values of k. In addition, the site contains the k-mer
spectra for additional eukaryotic species, including tetrapods
(mostly mammals), individual human chromosomes, and dif-
ferent human genomic regions.

Low-order Markov models

The unexpected finding of different modalities motivated us
to ask what probabilistic models could describe these
genomic distributions. Perhaps the simplest probabilistic
models to describe strings like genomes and chromosomes
are low-order Markov models [16], such as those commonly
used for a genomic 'background' comparison when searching
for regulatory elements (for example, [17,18]). A zero-order
Markov model simply describes the frequencies of each
nucleotide (when we consider both strands of genomic DNA,
the frequencies of A, T are equal, and so are those of C, G) and
the underlying model is a Bernoulli sequence. A first-order
Markov model describes the frequencies of individual nucle-
otides given the nucleotide immediately preceding it, a sec-
ond-order Markov model describes the frequencies of
individual nucleotides given the pair of nucleotides immedi-
ately preceding it, and so on.

The expected occurrence of each k-mer from a Markov model
can be calculated by noticing that a genomic sequence can be
visualized as a random walk around k-mer space and the low-
order Markov chain is embedded within this larger model.
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Alternatively, a sequence of the same length as the original
genome can be simulated, and its empirical spectrum deter-
mined for comparison with the original genome. Zero-order
Markov models generate strings that are a poor match to the
original genomes, whereas first-order and second-order
models do surprisingly well, qualitatively describing the
modalities observed in the empirical k-mer spectra (Figure
2a-h). To our knowledge it has not been previously appreci-
ated that simple Markov models can generate complex multi-
modal k-mer spectra, probably due to the focus of theoretical
research on the distribution of individual k-mer counts. In
hindsight, this observation is not so surprising since the spec-
trum is the ensemble of many different individual k-mer
counts, each of which is an observation from a different, albeit
related, distribution.

Low-order Markov models have some inherent limitations,
especially when describing the 'heavy tail' of the genomic k-
mer distribution. Simple Markov models are fit globally, and
their parameters reflect average values across whole
genomes, although they can be extended to include composi-
tional heterogeneity by using a hidden Markov model frame-
work [2]. Prominent examples of such heterogeneity are
isochores, which can be millions of base-pairs long, and
whose composition may differ substantially from the global
composition. These often contain highly abundant k-mers
that hardly exist elsewhere in the genome [19]. But, being rel-
atively short (compared to the whole genome), these iso-
chores hardly affect the model parameters; thus, these over-
abundant k-mers will not be predicted by a Markov model.
Csiirés, Noé, and Kucherov [12] suggest that a copy/insert
model can explain the heavy tail of k-mer spectra. Starting
with a Bernoulli sequence, the copy/insert model generates a
new sequence by inserting chunks of DNA, m bases long,
from one position of a sequence into another. This copy and
pasting is repeated many times until the final sequence is of
the length required. For the simulations by Csiirés et al. [12],
chunks of 33 bases were copied in a genome of initial length
5,000 nucleotides (comparable in size to a small viral
genome, like the bacteriophage phi-X). Figure 3a shows that
the effect of increasing the size of chunk copied and inserted
is that tails become more extreme, and that the effect of
increasing the initial genome size is to lighten the tail. These
results suggest that the apparent heavy tail produced by the
copy/insert model may be an artifact of the short initial
genome length used by Csiirds et al. [12] for their simulations.

While the copy/insert process is deliberately designed to be
abstract - a pedagogical tool to show how heavy tails can arise
from biologically inspired processes - it neglects nucleotide
mutation, which is a major cause of genomic change. To
account for mutation, we randomly replaced a fixed percent-
age of nucleotides after each insertion. Figure 3b shows that
the heavy tail of the copy/insert process collapses when even
a small amount of mutation is present, and the resulting spec-

Genome Biology 2009, 10:R108

Chor etal. R1084



http://genomebiology.com/2009/10/10/R 108 Genome Biology 2009,  Volume 10, Issue 10, Article R108 Chor et al.
(a) 3X 10°7° Empirical word frequency spectra: human 11-mer (e)o o1 Fugu, k=10
T T T T T T T .015

@ Q

o o

c c

g g

[ [

g 2 ootf 1
Q Q

© ©

ks ks

> >

o o

=4 c

] ] i
3 =]

o o

o e

w w

400 600 800 1000 1200 1400 1600 1800 500 1000 1500

Number of k-mers

Human markov model simulation
0"order, k=11 simulated genome length=2.7*10
T T T T T

—_
5

b,
25%

Frequency of appearance

| L L I
1500 2000 2500 3000 3500

Number of k-mers

500 1000 4000

Human markov model simulation

o 1" order, k=11 simulated genome length=2.7*10°
: T T

_
(2
-
B3
o
b

Frequency of appearance

2000 2500

Number of k-mers

Fugu markov model simulation
- 0" order, k=10, length=3.3*10°
T T T T

—_
=
=
x
=5

Frequency of appearance

400
Number of k-mer

500

Fugu markov model simulation
15'order, k=10, length=3.3*108
T T T T

—_
«Q
-

x107°

Frequency of appearance

. I L I
1200 1400 1600 1800

0 500 1000 1500 400 600 800 1000 2000
Number of k-mers Number of k-mers
| Human markov model simulation s Fugu markov model simulation
(d) X103 2"order, k=11 simulated genome length=2.7*10 (h) X10° 2 order, k=10, length=3.310¢
4.5 T T T T 3 T T T T T T T T T
§ 4 7 o5k |
g 3.5 b '
2 3 B 8 ob |
o C
T 55 i ©
5 2 st ]
- Q
g ® I
% 1.5 P i
1 4 >
£ § 0.5 |
0.5 7 El
0 o o .
o 500 1000 1500 2000 2500 & o 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of k-mers Number of k-mers
Figure 2

Simulated spectra from Markov models. Markov model simulations of the k-mer spectra of (a-d) human | I-mers and (e-h) Fugu |0-mers. For each
species four graphs are shown: the empirical histograms, zero-order Markov model, first-order Markov model, and second-order Markov model.
Simulation sequence length was equal to that of the original genome for each species.

tra are barely distinguishable from that of a Bernoulli
sequence.

CpG suppression and modality

Having established that Markov models can predict modali-
ties, we can try and understand this phenomenon by looking
at the di- and tri-nucleotide frequencies that are sufficient to
define such models. The most outstanding property for the
human genome is the low frequency of the CpG dimer, with
P(G | C) = 0.048, and P(CpG) = 0.01. This well known phe-

nomena, termed CpG suppression, occurs for all other mam-
mals as well, but not for most other organisms.

If CpG is an uncommon dimer, then k-mers that contain it
should be less frequent than those that do not. For human
and chicken, those k-mers with higher CpG content appear
further to the left of the histogram, as seen in Figure 4a, b. In
these histograms, the k-mers having three or more instances
of CpG are colored red, those with exactly two instances are
colored green, those with exactly one instance are yellow, and
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The copy/insert process does not always produce a heavy tailed spectrum. Effect of (a) increasing length of initial genome and (b) adding mutation to the
copyl/insert process. Graphs show the | I-mer spectrum of simulated genomes with (a) length equal to human chromosome 5, generated using a copy/
insert process varying initial genome length, and (b) length 4 Mb, with a proportion of the bases mutated after each insert from an initial genome of 5,000
bp. As both axes are on a logarithmic scale, a distribution with a heavy 'power-law' tail (for example, no mutation) will tend to be a straight line, whereas
lighter 'exponential' tails will bend downwards (for example, Bernoulli sequence). The sequences were constructed from an initial genome generated from
a Bernoulli sequence with a CG content of 38.5%, matching human chromosome 5, by copying 33 base long chunks.

those with no instances of CpG are blue. Additional data file 5
shows a similar aspect of the empirical word frequency spec-
tra for four species that have multimodal and unimodal k-mer
distributions: human, chicken, nematode and tetraodon
(puffer fish). Words that include the dimer CpG are colored
green, while all others are blue. For the multimodal distribu-
tions, the CpG-containing k-mers wholly occupy the left-most
areas (rare words), but are almost absent from the regions
representing more abundant k-mers. There is no such clear
effect for the species with unimodal distributions.

These findings suggest the hypothesis that CpG suppression
is what determines modality. It turns out this is incorrect, and
CpG suppression by itself does not fully account for multimo-
dal word frequencies. This is because there are several unicel-
lular species that exhibit CpG suppression, yet have unimodal
word frequencies. One such organism is the protozoa Tet-
rahymena thermophila, which has P(CpG) = 0.005 yet has a
unimodal distribution. We note that the difference in modal-
ities is not due to the difference in genome lengths. The
genome of T. thermophila is 97 Mb long, comparable to the
108 Mb of human chromosome 12, yet all human chromo-
somes have multimodal spectra.

To further analyze the relations between CpG suppression
and modality, we looked at the values of both GC-content and
a measure of suppression. The GC-content of a string of DNA
is simply the fraction of the letters that are C plus those that
are G. As a measure of suppression, we use p as defined by

Karlin et al. [20] as the ratio of the empirical frequency of a
dimer to the product of the frequencies of its constituent
monomers (the expected frequency if they combined inde-
pendently to form dimers). For the CpG dimer, the relevant
ratio is:

_ P(CpG)
¢~ p(C)P(G)

If the occurrences of C and G were independent, p; would be
1; genomes exhibiting suppression will have p,; much less
than 1. For human, g = 0.24, for opossum it is 0.13, for liz-
ard 0.3 and for frog 0.34. Low values are also attained for
some protozoa (for example, Entamoeba histolytica, 0.30)
and archea (for example, Methanococcus jannaschii, 0.32;
Methanosphaera stadtmanae, 0.27). Values of p. exceeding
1 are infrequent but do exist; for example, 1.15 for the red
flour beetle Tribolium castaneum, and 1.64 for the honey bee
Apis mellifera.

Figure 5 plots the percentage GC-content against o for a set
of representative species (for lack of space, not all studied
bacteria and archea are included). The species that exhibit
multimodal k-mer histograms cluster closely in this plot. We
can also see that some species, such as the archeon Methano-
sphaera stadtmanae and Methanococcus jannaschi and the
protozoan Entamoeba hystolytica, all have pq¢ < 0.33, values
that are similar to lizard and smaller than frog. (T. ther-
mophila mentioned above has p.; = 0.44 despite having

Genome Biology 2009, 10:R108
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k-mer spectra of human and chicken, partitioned according to number of CpG dinucleotides in k-mers. k-mers with multiple CpGs are dominant among
rare k-mers in the spectra of (a) human, and (b) chicken (k = I'1). The | I-mer spectra are color-coded: blue, | I-mers with no CpG dinucleotides; yellow,
exactly one CpG; green, exactly two CpG instances; red, three CpG instances or more.

P(CpG) = 0.005, due to its low GC-content of 22.3%.) Yet, due
to lower GC-content, they are not part of the multimodal clus-
ter of species. This indicates that what determines multimo-
dality is a combination of GC-content in the range 35% to
45%, and p¢g values smaller than 0.4.

Conclusions

It is of interest to examine the modalities of the word fre-
quency distributions from an evolutionary perspective. All
archeal and bacterial species exhibit unimodal k-mer distri-
butions whereas there is a difference amongst the eukaryota.
All mammals, including human, chimp, mouse, dog, cow,
opossum (a non-placental mammal), and platypus (a

monotreme, egg-laying mammal) exhibit multimodal k-mer
distributions. Non-mammals that exhibit multimodal distri-
butions are chicken, lizard, and frog. All these 'multimodal’
species are tetrapods. The next sister clade in the tree of life
contains the bony fish but none of the five sequenced bony
fish (zebrafish, fugu, tetraodon, stickleback, and Japanese
medaka) have multimodal k-mer spectra, in common with all
other eukaryota except tetrapods. Following this observation,
we predict that the genomes of additional tetrapods currently
being sequenced, such as the alligator (Alligator mississippi-
ensis), will also be multimodal.

We find the fact that low order Markov models are capable of
producing multimodal spectra, and, furthermore, that their
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Distribution of CpG suppression and CG content of genomes studied. Distribution of CpG suppression, measured by p.¢, against the CG content of

many genomes; evolutionarily interesting groups are differentiated by symbols.

Notice that the tetrapods, all of whose genomes have multimodal k-mer

spectra, form a tight grouping in the lower middle part of the graph. The three closest partitions of human genomic sequence, the introns, 3' UTRs and
promoter regions (5,000 bp upstream of the 5' UTR), also have multimodal k-mer spectra. Other nearby genomes, Entamoeba histolytica and Japanese
medaka (Oryzias latipes), as well as other kinds of human genomic sequences (exons, 5' UTRs, and shorter promotor regions) have unimodal spectra.

modalities match those of the actual genomes, to be rather
unexpected. We note that the modalities of the Markov model
distributions were essentially found experimentally (by simu-
lation). It may be possible to find the modalities, and other
global properties of the k-mer spectra, analytically (from just
the model's parameters).

Which distribution better fits the genome sequences - low-
order Markov models, or a DPLN distribution? The DPLN
distribution is the ratio of two Pareto distributions times a
log-normal [13] and has a single mode. Consequently, it can-
not describe multimodal distributions such as the tri-modal
distribution observed for human 11-mers (Figure 1). Csiiros et
al. use a mixture of four separate DPLN distributions, sepa-
rating the k-mers into four groups by CpG content (0, 1, 2 and
3+ occurrences, respectively). Such mixtures can indeed fit a
tri-modal distribution, but this raises the question of whether
a simple generative model cannot capture these phenomena
as well.

We remark that our own simulation of the 'copy/insert' proc-
ess of Cslirds et al. does not necessarily produce a heavy tailed
k-mer spectrum and, in fact, the resulting k-mer spectrum
can have a light 'exponential' tail similar to a Bernoulli
sequence. The reason for the difference may lie in the length

and k-mer content of the initial sequence used to prime the
copy/insert process; too short a sequence and the few k-mers
it does contain become abundant before the new k-mers can
be generated by splicing. The lack of robustness to mutation
of the heavy-tail produced by the copy/insert process sug-
gests that this process does not explain how such tails arise in
nature.

Lastly, we note that while the DPLN fits the spectrum well,
noticeably so at the tails of the distribution, it is not a genera-
tive model: the shape of the distribution fits but it says little
about the probability of observing a particular k-mer. Gener-
ative models like the Markov models predict which k-mers
are likely to be rare or abundant, whereas the DPLN makes no
such prediction.

Materials and methods

Genomic sequences were obtained from the standard
sequence archives for each organism, listed in Additional data
file 7, and masked for repeats. In several cases, the effective
sequence length we report differs substantially from the
accepted length - platypus being a noticeable outlier - due to
the genome being incompletely sequenced or having large
sections masked as highly repetitive. Nucleotides that are
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ambiguous or masked were considered to be breaks in the
sequence and so any k-mer containing them was discarded
and not enumerated. The k-mers for each genome where enu-
merated using simple programs written by the authors, from
which the spectra and associated statistics are calculated.

When we use the same k for shorter genome length ¢, we get
a larger proportion of words at the low end of the curve. To
account for this, smaller values of k are used for shorter
genomes. Since the total number of possible k-mers is 4k, if
we take k = log, € then the mean number of occurrences in an
€ long genome is 1. This indicates that, to normalize for the
differing lengths of each genome, k should be chosen propor-
tional to log, €. Specifically, we looked at values of k = r0.7
log,€1 (the smallest integer greater than 0.7 log, €). Simple
Markov models of the type described can be fitted through
counts of short k-mers. The transition frequencies, the pro-
portion of times we see each nucleotide in the genome given
the previous k nucleotides in the genome, are the maximum
likelihood estimates for the transition probabilities of a k-
order Markov model [21]. To fit a zero-order model, only the
nucleotide frequencies of each genome are needed; dinucle-
otide frequencies alone are needed for first-order models, tri-
nucleotide frequencies for second-order, and so on. These
frequencies were calculated using the programs written to
determine the k-mer spectra of each genome. Again, bases
that are ambiguous or masked were considered as breaks in
the sequence and so not enumerated. Sequences were then
simulated from these models using standard techniques. The
copy/insert process was simulated using the authors' own
programs. Following Csiirés et al. [12], a (composition
biased) Bernoulli sequence was used to generate an initial
genome. Chunks of genome 33 bp long were chosen uni-
formly at random, copied, and inserted into a random place in
the genome; this step was repeated until the genome reached
a specified length. Unless otherwise stated, the initial genome
was 5,000 bp and the final length was about 67 Mb (compa-
rable to repeat masked human chromosome 5) to maintain
consistency with [12]. To investigate the effect of mutation,
we adapted the copy/insert process so that every insertion
was followed by mutation of a fixed proportion of the nucle-
otides, chosen uniformly at random and replaced with ran-
dom nucleotides from a (composition biased) Bernoulli
distribution.

Abbreviations
DPLN: double Pareto log-normal; UTR: untranslated region.
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