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Exocytosis plays an important role in plant–microbe interactions, in both pathogenesis
and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric
complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant
Exo70s are known to be targeted by pathogen effectors, the underpinning molecular
mechanisms and the impact of this interaction on infection are poorly understood.
Here, we show the molecular basis of the association between the effector AVR-Pii of
the blast fungusMaganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3,
which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain.
The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector
binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding
interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii
residues at the Exo70 binding interface to sustain protein association and disease resistance
in rice when challenged with fungal strains expressing effector mutants. Furthermore, the
structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX
(Magnaporthe Avrs and ToxB-like) fold previously described for a majority of charac-
terized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a
conserved Exo70 interface to manipulate plant exocytosis and that these effectors are
also baited by plant immune receptors, pointing to new opportunities for engineering
disease resistance.

effector j plant immunity j NLR j Exocyst

Exocytosis is a cellular pathway in which membrane-bound vesicles are delivered from
intracellular compartments to the plasma membrane for the release of their contents
into the extracellular space (1). This pathway is essential for cell growth and division,
as well as many other specialized processes that involve polarized secretion (1).
During exocytosis, a protein complex called the exocyst mediates the tethering of

vesicles to the plasma membrane (2). The exocyst is an octamer formed by the proteins
Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 (3), which assemble in a holo-
complex (4–7) to control the spatiotemporal regulation of exocytosis, orchestrate cargo
delivery, and mediate vesicle secretion (8–11). The exocyst complex is conserved in all
eukaryotes. In yeast and mammals, the exocyst component Exo70 is encoded by a sin-
gle gene (12). However, plant Exo70s have expanded dramatically, resulting in high
diversity in protein sequence and multiple gene copies (12, 13). This suggests that
Exo70 proteins may have functionally diversified and adopted specialized functions in
plants (10). Indeed, different Exo70s are involved in diverse plant processes, including
root development (14, 15), cell wall deposition (16, 17), symbiosis with arbuscular
mycorrhiza (18), and cell trafficking pathways distinct from exocytosis, such as autoph-
agy (19–21).
Specific plant Exo70 proteins have been associated with disease resistance to patho-

gens and pests (13, 22–25). Like other components of cellular pathways involved in
homeostasis and/or signaling, the exocyst complex is targeted by plant pathogens to
promote disease and, in some cases, is actively monitored by the immune system. For
example, Exo70 proteins can be guarded by plant receptors of the NLR (nucleotide-
binding, leucine-rich repeat) superfamily (26–28) and have been shown to interact
with RIN4, a well-known regulator of plant immunity (29, 30) that is also targeted by
effectors from diverse pathogens (31, 32). Both Exo70 and RIN4 domains are also
found as integrated domains in plant NLRs (13, 33–36), suggesting the importance of
these two proteins in disease and plant defense.
The blast fungus pathogen Magnaporthe oryzae delivers effectors into the host to

alter cellular processes, aiding successful colonization (37, 38). Genome sequencing has
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uncovered hundreds of putative effectors harbored by this patho-
gen (39). However, only a small subset of these proteins have
been functionally characterized to date. One such effector, AVR-
Pii, interacts with two rice Exo70 subunits, OsExo70F2 and
OsExo70F3, suggesting that the pathogen may target exocyst-
mediated trafficking as a virulence-associated mechanism (28).
AVR-Pii was cloned alongside blast effectors AVR-Pik and

AVR-Pia by association genetics (40). AVR1-CO39, AVR-Pik,
and AVR-Pia are founding members of the MAX (Magna-
porthe Avrs and ToxB-like) effector family (41), and studies on
these effectors have been instrumental in defining the role of
unconventional integrated domains in plant NLRs (42–49).
Additional studies focused on these effectors and their cognate
immune receptors have enabled engineering of bespoke
immune responses to pathogen effectors (50–54). Despite the
knowledge provided by structure/function studies of AVR-Pik
and AVR-Pia, AVR-Pii has remained somewhat understudied.
Comprising only 70 residues, AVR-Pii is substantially smaller

than AVR-Pik or AVR-Pia (40) and was not predicted to be a
member of the MAX effector family (41). AVR-Pii has been
reported to associate with only two alleles of the 47 members of
the rice Exo70 family (12), OsExo70F2 and OsExo70F3 (28).
These alleles share 72% sequence identity, while it is more com-
mon for Exo70 alleles to share only 30% sequence identity. This
specificity suggests that AVR-Pii may target particular processes
carried out by exocyst complexes harboring these Exo70 alleles.
Despite the low overall sequence identity, Exo70 proteins from
phylogenetically distinct organisms share a common fold (55–57).
Therefore, AVR-Pii may exploit subtle structural differences to
achieve this high interaction specificity. However, the molecular
details of such stringent effector specificity are unknown. AVR-Pii
is recognized by a rice disease-resistance gene pair named Pii,
which is composed of the genetically linked genes Pii-2 and Pii-1
(58). This recognition requires at least OsExo70F3 (28), and the
association of AVR-Pii with OsExo70F3 is monitored by Pii
through an unconventional RIN4/NOI domain integrated in the
sensor NLR Pii-2 (59). However, the precise mechanism of recog-
nition remains obscure.
We focused on elucidating the molecular basis of M. oryzae

AVR-Pii interaction with rice Exo70 proteins. By determining
the crystal structure of the effector in complex with
OsExo70F2, we defined a previously uncharacterised effector/
target binding interface. We revealed that AVR-Pii adopts a
zinc-finger fold (ZiF) that has not been reported previously for
plant pathogen effectors (60) and is distinct from the MAX
fold found in the M. oryzae effectors whose structure is known
to date (41). We then used structure-informed and random
mutagenesis to dissect how the Exo70/AVR-Pii interface under-
pins effector binding, exploring the basis of effector specificity.
Finally, we correlated Exo70/AVR-Pii binding with Pii-mediated
resistance in rice, further strengthening the link between host
virulence–associated targets and immune regulation. The exocyst
complex is a target of diverse plant pathogen effectors and is
linked to resistance against pathogens and pests, suggesting a role
as a hub in pathogenesis and plant defense. Our study expands
our understanding of the molecular mechanisms used by plant
pathogen effectors to target host proteins and may enable new
approaches to the engineering of disease resistance.

Results

AVR-Pii Binds OsExo70F2 and OsExo70F3 with High Affinity
and Specificity. To explore a detailed understanding of the
interaction between AVR-Pii and rice Exo70s, we performed a

Yeast-2-Hybrid assay (Y2H) coexpressing the effector with the
rice Exo70 alleles OsExo70B1, OsExo70F2, and OsExo70F3.
Consistent with previous work (28), we observed yeast growth
and the development of blue coloration with X-α-gal, both read-
outs of protein-protein interactions, for AVR-Pii coexpressed with
OsExo70F2 or OsExo70F3, but not with OsExo70B1 (Fig. 1A).
This confirms that AVR-Pii specifically interacts with these Exo70
alleles. Growth of yeast was also clearly observed at elevated con-
centrations of aureobasidin A (Fig. 1A), suggesting that the associ-
ation of AVR-Pii with OsExo70F2 and OsExo70F3 is robust.

To test for effector/target interactions in vitro, we optimized
a pipeline to produce and purify rice Exo70 subunits OsExo70B1,
OsExo70F2, and OsExo70F3 by heterologous expression in
Escherichia coli (SI Appendix, Fig. S1; details in SI Appendix, SI
Materials and Methods). Analytical gel filtration analysis of puri-
fied rice Exo70 alleles showed that proteins with truncated
N-terminal domains elute as monodisperse peaks, suggesting
they are suitable for further biophysical experiments (SI Appendix,
Fig. S2). Likewise, we purified the effector domain of AVR-Pii
(residues 20 to 70), adapting a protocol previously used for the
purification of the blast effector AVR-Pik (SI Appendix, Fig. S3;
details in SI Appendix, SI Materials and Methods). The molecular
mass of the effector was confirmed by intact mass spectrometry
(SI Appendix, Fig. S4).

To investigate the strength of binding between AVR-Pii and
Exo70 alleles, we used isothermal titration calorimetry (ITC).
We measured heat differences (indicative of protein-protein
interactions) after titration of the AVR-Pii effector into a solu-
tion containing purified rice Exo70 proteins and used this
information to calculate Kd values for the interaction. These
experiments showed AVR-Pii binds to both OsExo70F2 and
OsExo70F3 with nanomolar affinity (Fig. 1B and SI Appendix,
Fig. S5 and Table S1). No interaction was detected between
AVR-Pii and OsExo70B1 (Fig. 1B and SI Appendix, Fig. S5
and Table S1), confirming the high specificity of the binding
observed in Y2H.

In summary, we confirmed that AVR-Pii is a selective effec-
tor that binds to a specific subset of allelic rice Exo70s with
high affinity.

Crystal Structure of AVR-Pii in Complex with OsExo70F2. After
confirming that AVR-Pii binds to OsExo70F2 and OsExo70F3
in vitro, we showed that an OsExo70/AVR-Pii complex can be
reconstituted and purified to homogeneity (SI Appendix, Fig. S6).
A reconstituted OsExo70F2/AVR-Pii complex was stable and
could reach high concentrations. Using this sample, we obtained
protein crystals that diffracted X-rays to 2.7 Å resolution at the
Diamond Light Source (Oxford, United Kingdom). Details of
the X-ray data collection, structure solution, and structure com-
pletion are given in SI Appendix, SI Materials and Methods, and
Table S2.

In the crystal structure, AVR-Pii and OsExo70F2 form a 1:1
complex (Fig. 2A). OsExo70F2 adopts an elongated rod-like
shape formed by the stacking of four domains (domains A to D),
with 16 α-helices in total (annotated α1 to α16) arranged in
four-helix bundles (SI Appendix, Fig. S7A). Despite significant
differences in sequence, the OsExo70F2 structure closely resem-
bles the fold of the Arabidopsis AtExo70A1 protein (Protein Data
Bank [PDB] ID 4L5R) (57) and the mouse MmExo70 protein
(PDB ID 2PFT) (56), which can be aligned to the OsExo70F2
structure with an rmsd of 1.13 and 1.00 Å across 188 and 177
pruned atom pairs, respectively, as calculated with ChimeraX (61)
(SI Appendix, Fig. S7B).
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Consistent with existing Exo70 structures, the N terminus of
OsExo70F2 was disordered, and the first residue modeled in
the electron density was Ser85. Furthermore, several additional
loop regions were disordered, including those connecting the
helices α2 and α3 (residues 130 to 156), α3 and α4 (231 to
256), α6 and α7 (330 and 331), α10 and α11 (461 to 482),
α13 and α14 (572 to 598), and α15 and α16 (648 to 659).
Following placement of OsExo70F2, we identified an elec-

tron density consistent with the sequence of AVR-Pii and were
able to build residues 44 to 70 of the effector (residues 20 to
43 were not observed in the electron density). This C-terminal
region of AVR-Pii revealed a fold for an M. oryzae effector
based on a zinc-finger motif (Fig. 2 and SI Appendix, Fig. S8).
This fold is sustained by AVR-Pii residues Cys51, Cys54,
His67, and Cys69, which coordinate a Zn2+ atom (Fig. 2B and
SI Appendix, Fig. S8). A structural similarity search performed
with PDBeFold (62) revealed the AVR-Pii structure is most
similar to LIM domain zinc fingers with a motif of C-X2-C-
X12-H-X-C; however, it lacks a second zinc binding motif com-
monly found in this class of domains. We refer to the AVR-Pii

fold as ZiF and note that this three-dimensional structure has
not been previously reported to our knowledge for other plant
pathogen effectors (60) and is distinct from the MAX fold found
for other M. oryzae effectors whose structures are known (41).

AVR-Pii Interacts with OsExo70F2 via a Hydrophobic Pocket.
The binding interface between OsExo70F2 and AVR-Pii is
well resolved in the electron density. AVR-Pii locates to an
amphipathic surface formed at the junction of OsExo70F2
domains B and C (Fig. 2 and SI Appendix, Fig. S8), with resi-
dues from helices α8, α9, and α10 contributing to the effector
binding interface (Fig. 2B and SI Appendix, Fig. S8). Analysis
of the complex using QtPISA (63) reveals both hydrophobic
and hydrogen bond interactions in the complex, with a remark-
able 20 of the 27 AVR-Pii residues (74%) observed for the
effector in the crystal structure involved in contacts with
OsExo70F2 (SI Appendix, Figs. S9 and S10). Furthermore,
molecular lipophilicity potential and Coulombic electrostatic
potential (calculated with ChimeraX (61)) reveal distinct
hydrophobic and charged regions on the surface of OsExo70F2
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Fig. 1. AVR-Pii binds specifically to rice Exo70F2 and Exo70F3 in yeast and in vitro. (A) Y2H assay of AVR-Pii with rice OsExo70B1, OsExo70F2, and
OsExo70F3. Left, control plate for yeast growth. Right, quadruple-dropout media supplemented with X-α-gal and increasing concentrations of aureobasidine
A (Au A). Growth and development of blue coloration in the selection plate are both indicative of protein-protein interactions. OsExo70 proteins were fused
to the GAL4 DNA binding domain and AVR-Pii to the GAL4 activator domain. Each experiment was repeated a minimum of three times, with similar results.
(B) Binding of AVR-Pii to OsExo70 proteins determined by ITC. Upper, heat differences upon injection of AVR-Pii into the cell containing the respective
OsExo70 allele. Middle, integrated heats of injection (dots) and best fit (solid line) to a single-site binding model calculated using AFFINImeter ITC analysis
software (78). Bottom, difference between the fit to a single-site binding model and the experimental data; closer to zero indicates stronger agreement
between the data and the fit. The experiments shown are representative of three replicates. Other replicates for each experiment are shown in SI Appendix,
Fig. S5. The thermodynamic parameters obtained in each experiment are presented in SI Appendix, Table S1.
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surrounding the AVR-Pii binding interface (Fig. 2 C and D).
The most striking feature of the OsExo70F2/AVR-Pii interface is
a hydrophobic pocket formed by OsExo70F2 residues Phe416,
Leu420, Met437, Tyr440, and Val441, which accommodates
AVR-Pii Phe65 and, to a lesser extent, Tyr64 (Fig. 2 B–D).

Amino Acid Variation in the OsExo70 Hydrophobic Pocket
Underpins AVR-Pii Binding Specificity. To better understand
how AVR-Pii achieves a high binding specificity toward differ-
ent Exo70 alleles, we analyzed conservation of residues at
the OsExo70/AVR-Pii binding interface using Consurf (64).
Unexpectedly, this analysis showed significant conservation in the
residues at the AVR-Pii interface, with the residues surrounding
the hydrophobic pocket showing limited variability (SI Appendix,
Fig. S11). We then modeled rice OsExo70B1 using AlphaFold2
(65), as implemented in ColabFold (66) (SI Appendix, Fig. S12),
to observe whether structural homology could help us understand
specificity. While the N-terminal region of OsExo70B1 could not

be accurately resolved, AlphaFold2 produced a high confidence
model for the domains present in the OsExo70F2/AVR-Pii com-
plex, including the effector binding interface. Side-by-side com-
parison of the sequence and structure of OsExo70F2 with the
model of OsExo70B1 showed small differences in the residues
forming the hydrophobic pocket, with OsExo70F2 Phe416,
Val419, Leu420, and Met437 replaced by Leu405, Leu408,
Ile-409, and Ile426 at equivalent positions in OsExo70B1 (SI
Appendix, Fig. S13A). While these polymorphisms do not appear
to alter the overall hydrophobicity or electrostatic potential at the
effector binding interface (SI Appendix, Fig. S13), the hydropho-
bic pocket of OsExo70F2 is not observed in the OsExo70B1
model (SI Appendix, Figs. S13 and S14). Modeling of Exo70F2
and Exo70F3 using AlphaFold2 showed that this software can
predict the hydrophobic pocket identified in our crystal structure,
suggesting that the lack of a pocket in the Exo70B1 model is
likely correct (SI Appendix, Fig. S14). This suggests that AVR-Pii
residues Tyr64 and Phe65 could not be accommodated, resulting

OsExo70F2/AVR-Pii

Tyr64

Phe65

Hydrophobic

Hydrophilic

Negative 
potential

Positive 
potential

A B

C

D

Asp45Tyr48

Asn66

His49

Cys54

Cys69His67

Cys51

Fig. 2. The crystal structure of OsExo70F2 in complex with AVR-Pii reveals hydrophobic residues dominate the interaction interface. (A) Schematic represen-
tation of OsExo70F2 in complex with AVR-Pii. Both molecules are represented as cartoon ribbons, with the molecular surface also shown and colored as
labeled in green and yellow for OsExo70F2 and AVR-Pii, respectively. (B) Close-up view of the interaction interface between OsExo70F2 and AVR-Pii.
OsExo70F2 is presented as a solid surface, with the effector as cartoon ribbons and side chains displayed as a cylinder for AVR-Pii–interacting residues
(Asp45, Tyr48, His49, Tyr64, Phe65, and Asn66) in addition to the residues coordinating the Zn2+ atom (Cys51, Cys54, His67, and Cys69). (C) OsExo70F2
surface hydrophobicity representation at the AVR-Pii interaction interface; residues are colored depending on their hydrophobicity from light blue (low) to
yellow (high). (D) Representation of OsExo70F2 surface electrostatic potential at the AVR-Pii interaction interface; residues are colored depending on their
electrostatic potential from dark blue (positive) to red (negative). AVR-Pii residues 20 to 43 were not observed in the electron density used to derive the
structure.
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in the lack of binding to OsExo70B1 (SI Appendix, Figs. S13 and
S14). Sequence alignment of rice Exo70 proteins showed that all
alleles present differences at the equivalent residues forming the
hydrophobic pocket in OsExo70F2 (SI Appendix, Fig. S15).
Therefore, we conclude that AVR-Pii specificity is underpinned
by small changes in the Exo70 binding interface that dramatically
alter binding affinity.

Mutations at the Exo70/AVR-Pii Interface Prevent Binding.
Prior to obtaining the structure of the OsExo70F2/AVR-Pii
complex, we used random mutagenesis coupled with Y2H to
identify AVR-Pii residues involved in binding to OsExo70 pro-
teins (SI Appendix, Fig. S16). Using this approach, we obtained
five independent AVR-Pii mutants within the effector domain,
named M1 to M5 (SI Appendix, Fig. S16A). These mutants
showed reduced (M2) or abrogated (M4 and M5) binding to
OsExo70F3 (SI Appendix, Fig. S16B). Western blot analysis
showed that M2 and M5 displayed a lower protein accumula-
tion in yeast (SI Appendix, Fig. S16C). Because M2 and M5
carry mutations in Zn2+ binding residues (Cys54Arg in M2
and Cys51Arg in M5), it is likely these affect protein folding
and protein stability. AVR-Pii M4 was the only mutant dis-
playing lack of binding without compromised effector accumu-
lation. This mutant harbors two residue changes, Arg43Ser and
Tyr64Asp. We therefore generated single mutants Arg43Ser,
Arg43Ala, Tyr64Asp, and Tyr64Ala to investigate the contribu-
tion of these residues to the binding to OsExo70F3. Y2H
assays show that only Tyr64Asp prevented AVR-Pii binding to
OsExo70F3 (SI Appendix, Fig. S16D), and none of these muta-
tions affected protein accumulation (SI Appendix, Fig. S16E).
Then, based on the crystal structure, we designed point

mutants in AVR-Pii residues Tyr64 (Tyr64Arg) and Phe65
(Phe65Glu) because these were the dominant residues revealed at
the interface. Y2H assays showed that AVR-Pii Tyr64Arg and
Phe65Glu mutations severely affected binding to OsExo70F2 and
prevented binding to OsExo70F3 (Fig. 3A). These mutations did
not affect protein accumulation of the effector in yeast cells (SI
Appendix, Fig. S17). To extend the Y2H analysis, we expressed
and purified AVR-Pii Tyr64Arg and Phe65Glu mutants and
tested their ability to bind OsExo70F2 and OsExo70F3 by ITC.
Consistent with the Y2H assays, Tyr64Arg and Phe65Glu muta-
tions affected binding of AVR-Pii to OsExo70F2 and
OsExo70F3, with essentially no binding observed using this tech-
nique (Fig. 3B and SI Appendix, Figs. S18 and S19 and Table
S3). Together, these experiments confirmed the AVR-Pii residues
that locate to the OsExo70F2 hydrophobic pocket are essential
for target binding and effector specificity.

Mutations at the Exo70/AVR-Pii Interface Abrogate Pii-
Mediated Resistance to Rice Blast. Having identified residues
that prevent Exo70/AVR-Pii binding by Y2H and in vitro, we
transformed the M. oryzae Sasa2 strain (which lacks AVR-Pii)
with wild-type AVR-Pii and the Tyr64Arg and Phe65Glu
mutants to observe the impact on resistance mediated by the
Pii NLR pair. For this assay, different independent Sasa2 trans-
formants were recovered and their virulence tested in the sus-
ceptible rice cultivar Moukoto. We discarded noninfective
transformants and performed RT-PCR to test for expression of
the effector in the remaining strains (SI Appendix, Fig. S20).
Infective strains expressing AVR-Pii wild type, Tyr64Arg, or

Phe65Glu were then spot inoculated on rice cultivars Moukoto
(lacking Pii resistance) and Hitomebore (harboring Pii resis-
tance). The length of lesions was measured 10 d postinfection
to assay the extent of disease progression (Fig. 4). As expected,

all strains were virulent on the susceptible rice cultivar Mou-
koto, but the strains expressing wild-type AVR-Pii did not
form expanded lesions on Hitomebore. However, we observed
that AVR-Pii mutants that abrogate binding to OsExo70F2
and OsExo70F3 in Y2H and in vitro assays are not recognized
in Hitomebore, with large disease lesions forming equivalent in
size to those observed for untransformed Sasa2 (Fig. 4 and SI
Appendix, Figs. S21–S23). These data corroborate the direct
link between OsExo70/AVR-Pii binding and recognition by
the rice NLR pair Pii.

Discussion

Exocytosis has recently emerged as a conserved eukaryotic traf-
ficking pathway with roles in plant immunity and symbiosis
(18, 21–24). The exocyst complex is targeted by effectors from
diverse pathogens (28, 67), and Exo70 domains have been inte-
grated into plant NLRs (33, 34), likely to act as effector baits
for the detection of pathogens by the immune system. There-
fore, understanding the molecular and structural bases of
manipulation of plant exocytosis by pathogen effectors has the
potential to uncover new mechanisms of pathogen virulence
and, ultimately, may pave new ways for engineering the out-
come of plant–pathogen interactions (50, 52, 54, 68). In this
study, we uncovered the molecular details of how the blast
pathogen effector AVR-Pii binds to rice exocyst subunit Exo70,
and we dissected the structural determinants of this interaction.

Although hundreds of putative effectors are encoded in path-
ogen genomes, only limited examples of plant pathogen
effector-host target interactions have been dissected in molecu-
lar detail to date (69). Intriguingly, some pathogen effectors
have evolved to target specific members of large host protein
families, potentially to avoid compromising host cell viability.
AVR-Pii is an example of an effector with a striking target spe-
cificity, because it was reported to associate with only two of 47
members of the rice Exo70 protein family (28). By obtaining
the structure of the OsExo70F2/AVR-Pii complex, we revealed
the molecular basis of such a high specificity. Surprisingly, the
effector binds to a moderately conserved region of the Exo70
domain, but one that contains subtle differences between alleles
(SI Appendix, Figs. S11 and S15). Therefore, AVR-Pii appears
to have evolved high specificity by exploiting small differences
at the Exo70 binding interface, specifically within a hydropho-
bic pocket that allows for the docking of the effector.

Although a precise function of the exocyst complex in plant
immunity remains to be described, some Exo70 alleles have
been shown to associate with RIN4, a well-known target of
multiple pathogen effectors that is guarded by the plant
immune system (29, 30). An increasing number of effectors
have been reported to alter the Exo70-RIN4/NOI immune
node (30), and much like RIN4, some Exo70s activate the
plant immune system upon perturbation of their function (26).

The structure of AVR-Pii reported here reveals a protein fold
for fungal effectors, based on a zinc-finger domain, that differs
from the MAX fold shared by all the M. oryzae effectors whose
structure is known to date (41, 43, 70, 71). Zinc-finger
domains are abundant in nature and can be regularly found as
single domains in larger multidomain proteins that are impli-
cated in a variety of processes, from DNA interaction to signal-
ing hubs and protein-protein scaffolds that regulate cellular
functions, such as autophagy or G protein–coupled receptor
signaling (72, 73). While the AvrP effector from Flax rust, Mel-
ampsora lini, also has been reported to have a ZiF (74), these
two proteins share no structural similarity.
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AVR-Pii targets OsExo70F2 and OsExo70F3, suggesting the
effector may interfere with a function related to a unique role of
these Exo70 alleles. However, any specific function of OsExo70F2
or OsExo70F3, compared with other rice Exo70 alleles, remains
to be determined. Structural modeling based on the Cryo-EM
model of the yeast exocyst (4) suggests that AVR-Pii would sit on

the outer side of the complex, where it would not be expected
to disrupt the association of the subunits forming subcomplex I
(Sec3, Sec5, Sec6, and Sec8) or subcomplex II (Sec10, Sec15,
Exo70, and Exo84) (SI Appendix, Fig. S24A). However, AVR-Pii
is found close to the interface between Sec5 and Exo70, which
may interfere with the necessary assembly of both exocyst
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Fig. 3. Mutations at the AVR-Pii binding interface perturb
interactions with rice Exo70 proteins. (A) Y2H assay of AVR-Pii
mutants Tyr64Arg and Phe65Glu with rice OsExo70F2 and
OsExo70F3. Left, control plate for yeast growth. Right, quadruple-
dropout media supplemented with X-α-gal and increasing con-
centrations of aureobasidine A (Au A). Growth and development
of blue coloration in the selection plate are both indicative of
protein-protein interactions. Wild-type AVR-Pii is included as posi-
tive control. Exo70 proteins were fused to the GAL4 DNA binding
domain and AVR-Pii to the GAL4 activator domain. Each experi-
ment was repeated a minimum of three times, with similar
results. (B) Binding of AVR-Pii mutants Tyr64Arg and Phe65Glu to
rice OsExo70F2 and OsExo70F3 determined by ITC. Wild-type
AVR-Pii was included as positive control. Upper, heat differences
upon injection of AVR-Pii mutants into the cell containing the
respective OsExo70 allele. Middle, integrated heats of injection
(dots) and best fit (solid line) to a single-site binding model cal-
culated using AFFINImeter ITC analysis software (78). Bottom,
difference between the fit to a single-site binding model and
the experimental data; closer to zero indicates stronger agree-
ment between the data and the fit. Panels are representative of
three replicates. Other replicates for each experiment are
shown in SI Appendix, Figs. S18 and S19. The thermodynamic
parameters obtained in each experiment are presented in SI
Appendix, Table S3.
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subcomplexes into the holocomplex for the late stages of exocyto-
sis (11) (SI Appendix, Fig. S24B). This suggests a function by
which AVR-Pii may target assembly of exocyst complexes
equipped with Exo70 subunits OsExo70F2 and OsExo70F3, but
additional experiments are required to investigate this.
Plant immune receptors have been the focus of engineering

to improve disease resistance to some of the most destructive
pathogens of crops (75), with limited success. Recent studies of
M. oryzae MAX effectors, particularly AVR-Pik and AVR-Pia,
which target HMA domain–containing proteins (69, 76, 77)
and are bound by integrated HMA domains in NLR receptors
(44, 46, 47), have demonstrated proof of concept for engineer-
ing NLRs to generate expanded recognition profiles (50–54).
Like HMA domains, Exo70s are found as integrated domains
in some plant NLRs (33, 34). In addition to defining an effec-
tor fold and determining the structural basis of an effector/
target interface, our results will help uncover new approaches
for NLR engineering, for example, by repurposing integrated
Exo70 domains to perceive different effectors.

Materials and Methods

Gene Cloning. Detailed information for gene cloning is provided in SI Appendix,
SI Materials and Methods.

Protein Expression and Purification. A full protocol for the heterologous
expression and purification of rice Exo70 proteins and M. oryzae AVR-Pii effector
is provided in SI Appendix, SI Materials and Methods.

Crystallization, Data Collection, and Structure Solution. Details for X-ray
data collection, structure solution, and structure completion are given in SI
Appendix, SI Materials and Methods.

Protein–Protein Interaction.
Yeast-Two-Hybrid. To detect protein-protein interactions between rice Exo70
proteins and AVR-Pii effectors in a Y2H system, we used the Matchmaker Gold
System (Takara Bio USA) following a protocol adapted from De la Concepcion
et al. (46), detailed in SI Appendix, SI Materials and Methods.
Isothermal Titration Calorimetry. ITC experiments were performed using a
MicroCal PEAQ-ITC (Malvern, United Kingdom). In each case, 300 μL OsExo70 at

10 μM was placed in the calorimetric cell and titrated with 100 μM AVR-Pii wild
type or mutant in the syringe. Each run included a single injection of 0.5 μL fol-
lowed by 18 injections of 2 μL each at intervals of 120 s with a stirring speed of
750 rpm. Data were processed with AFFINImeter ITC analysis software (78). ITC
runs for wild type and mutants were done in triplicate at 25 °C in 20 mM Hepes
(pH 7.5), 150 mM NaCl, and 5% (vol/vol) glycerol buffer supplemented with 1
mM TCEP.

Rice Blast Infection Assay. Conidial suspension (2 to 5 × 105 conidia/mL)
was prepared from the transgenic M. oryzae and used for leaf blade spot inocula-
tion using rice cultivar Hitomebore (Pii+) and Moukoto (Pii�) as described previ-
ously (79). Disease lesions were photographed 10 d after inoculation, and vertical
length was measured.

RT-PCR. For RT-PCR analysis, total RNA was extracted from the disease
lesion–containing Moukoto leaves, and complementary DNA was synthesized
using oligo dT primer. RT-PCR was performed using a specific primer set for
AVR-Pii and for M. oryzae actin as control.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. Protein structure of the OsExo70F2/
AVR-Pii complex, and the data used to derive it, has been deposited at the Pro-
tein Data Bank (PDB) with accession code 7PP2 (80).
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Fig. 4. Mutations at the binding interface of AVR-Pii with OsExo70 abrogate recognition by Pii resistance in rice. (A) Rice leaf blade spot inoculation of trans-
genic M. oryzae Sasa2 isolates expressing AVR-Pii, AVR-Pii Tyr64Arg, or AVR-Pii Phe65Glu in rice cultivars Moukoto (Pii�) and Hitomebore (Pii+). For each
experiment, representative images from replicates with independent M. oryzae transformants are shown. Wild-type (WT) M. oryzae isolate Sasa2 is included
as control. Images for each replicate of AVR-Pii, AVR-Pii Tyr64Arg, and AVR-Pii Phe65Glu are presented in SI Appendix, Figs. S21–S23. (B) Measurement of ver-
tical length of the disease lesion caused by M. oryzae Sasa2 as well as transgenic M. oryzae Sasa2 isolates harboring AVR-Pii, AVR-Pii Tyr64Arg, or AVR-Pii
Phe65Glu in rice cultivars Moukoto (Pii�) and Hitomebore (Pii+). Lesions in rice cultivars Moukoto (Pii�) and Hitomebore (Pii+) are represented by blue and
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