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ABSTRACT

Recent years have witnessed a great gain in knowledge regarding parasite–host cell interactions during Plasmodium liver
stage development. It is now an accepted fact that a large percentage of sporozoites invading hepatocytes fail to form
infectious merozoites. There appears to be a delicate balance between parasite survival and elimination and we now start
to understand why this is so. Plasmodium liver stage parasites replicate within the parasitophorous vacuole (PV), formed
during invasion by invagination of the host cell plasma membrane. The main interface between the parasite and
hepatocyte is the parasitophorous vacuole membrane (PVM) that surrounds the PV. Recently, it was shown that autophagy
marker proteins decorate the PVM of Plasmodium liver stage parasites and eliminate a proportion of them by an
autophagy-like mechanism. Successfully developing Plasmodium berghei parasites are initially also labeled but in the course
of development, they are able to control this host defense mechanism by shedding PVM material into the tubovesicular
network (TVN), an extension of the PVM that releases vesicles into the host cell cytoplasm. Better understanding of the
molecular events at the PVM/TVN during parasite elimination could be the basis of new antimalarial measures.
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INTRODUCTION

Host immune responses put a strong evolutionary pressure
on pathogens including viruses, bacteria and parasites. With
the evolvement of an intracellular lifestyle, many pathogens
avoid direct confrontation with their host’s humoral and cell-
mediated immune responses. However, infected host cells are
well equipped to fight intracellular invaders. Cellular home-

ostasis pathways and different cell death programs are en-
gaged in diverse responses against intracellular pathogens.
Since these responses are very variable and customized to dif-
ferent pathogen species, we combine them here under the
term ‘intracellular immune responses’. Importantly, these de-
fense pathways can proceed independently of specialized im-
mune cells but are linked to the adaptive immune system by
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supporting major histocompatibility complex presentation of
pathogen-derived peptides (Schmid, Pypaert and Münz 2007).

Elimination of intracellular pathogens can generally be dis-
tinguished either by host cell suicide responses where the
pathogen is eliminated together with its host cell or by pro-
survival responses that specifically recognize and lyse the
pathogen without affecting the host cell. The fate of the in-
fected host cell depends greatly on the response to inflam-
matory cytokines. Interferon (IFN)-signaling pathways, which
trigger the activation of the inflammasome, induce a special-
ized programmed cell death, pyroptosis (see review Mitchell
and Isberg 2017). Alternative host cell suicide programs, acti-
vated upon a microbial infection, involve apoptosis and necrop-
tosis (reviewed in Jorgensen, Rayamajhi and Miao 2017). Dur-
ing Plasmodium liver infection, apoptosis (Van De Sand et al.
2005; Leirião et al. 2005; Leirião, Mota and Rodriguez 2005;
Kaushansky et al. 2013a,b) and type I IFN-signaling pathways
(Liehl et al. 2014) represent host cell death-mediated defense
mechanisms and have been discussed to contribute to the devel-
opment of natural resistance to malaria. Sacrificing the infected
host cell restricts dissemination of the pathogen and eventually
sustains the integrity of the cell community. Some IFN-regulated
GTPases, however, bypass the inflammasome signaling and con-
tribute to the host cell survival either by restricting the pathogen
growth or clearance of the pathogen. A central role in prosur-
vival signaling pathways play autophagy-associated responses,
which can also be activated independent of an IFN response. Be-
sides the polymerization of an actin cage around the Plasmodium
parasite (Gomes-Santos et al. 2012), autophagy and autophagy-
related mechanisms have been recently described for Plasmod-
ium infection of hepatocytes as important host defense strategy
and will be the focus of this review.

Since the parasite resides within a parasitophorous vacuole
(PV) during its entire liver stage development, the surrounding
membrane serves as the main interface to the cytoplasm of the
hepatocyte. Interestingly, this so-called parasitophorous vacuo-
lar membrane (PVM) plays a fundamental role in the parasite’s
escape route from the host cell autophagic response. In this re-
view, we will first briefly introduce the concept of autophagy
followed by discussing molecular events during parasite inva-
sion and the biology of the PVM before summarizing the main
findings concerning intracellular host cell responses and then
close with parasite evasion strategies and concluding remarks
emphasizing the future challenges in this emerging field of
research.

FEATURES OF DIFFERENT AUTOPHAGY
PATHWAYS

To understand how intracellular pathogens interact with their
host cells, it is important to distinguish starvation-induced
canonical from pathogen-induced selective autophagy and
other autophagy-related pathways (Fig. 1). All forms of au-
tophagy share a core machinery as well as having pathway-
specific components. In general, autophagy refers to a tightly
regulated catabolic process that delivers cytoplasmic contents
for lysosomal degradation. Both canonical and selective au-
tophagy pathways are based on macroautophagy, which in-
volves the formation of a double-membrane vesicle, the au-
tophagosome. External and internal stimuli can enhance or
mediate specific autophagy processes. Upon stress and nutri-
ent deprivation, activation of canonical autophagy mediates
bulk sequestration and self-digestion of parts of the cytoplasm

and organelles. Two master regulators sense the metabolic
status of the cell. The two antagonists, the activator AMP-
activated protein kinase (AMPK) and the inhibitor mammalian
target of rapamycin complex 1 (mTORC1), act as a molecular
switch to control activity of the initiation complex ULK in a
phosphorylation-dependentmanner (Kim et al. 2011) (Fig. 2). Ac-
tivation of the ULK complex, an assembly of Unc51-like kinase
1 and 2 (ULK1/2), autophagy related protein (ATG) 13, focal ad-
hesion kinase family interacting protein of 200 kD (FIP200) and
ATG101, initiates the autophagy response. The enhanced kinase
activity of ULK phosphorylates the class III phosphatidylinos-
itol 3-kinase (PI3KC3) complex, resulting in local enrichment
of phosphatidylinositol 3-phosphate (PI3P) (Russell et al. 2013).
This signaling lipid defines the pre-autophagosomal membrane
(e.g. endoplasmatic reticulum, ER) and recruits downstream ef-
fector proteins such as WD repeat domain phosphoinositide-
interacting proteins (WIPIs) to the nucleation site (Proikas-
Cezanne et al. 2015). Two ubiquitin-like conjugation systems,
ATG12-ATG5 and the LC3 conjugation system, regulate incor-
poration of phosphatidylethanolamine (PE)-conjugated LC3 and
promote elongation and closure of the autophagosome. Dur-
ing the final recycling step, another signaling phospholipid,
PI(3,5)P2, mediates fusion of autophagosomes with lysosomes
(Ferguson, Lenk and Meisler 2009). Mature autolysosomes ulti-
mately digest the sequestered cargo and release amino acids
and sugars into the cytoplasm of the cell (Berg et al. 1998).

Selective autophagy, however, bypasses the nutrient-sensing
kinases mTORC1 and AMPK and is restricted to specific tar-
gets in the cytoplasm, resulting in a localized autophagy
response. Common substrates for selective autophagy are su-
perfluous or damaged organelles, as well as large protein ag-
gregates and long-lived proteins that are not accessible for the
proteasome (reviewed in Levine, Mizushima and Virgin 2011).
Moreover, there is a critical role for selective autophagy in the
elimination of intracellular pathogens, a process also termed
xenophagy (Fig. 1) (reviewed in Levine et al. 2011). Cargo se-
lectivity is mediated by autophagy receptors that couple spe-
cific substrates with the core autophagy machinery located on
the pre-autophagic membrane. Polyubiquitin chains linked to
the cargo serve as common substrate recognition signals and
interact with the ubiquitin-binding domain of autophagy re-
ceptors. Autophagy receptors frequently possess a so-called
LC3-interacting region (LIR) that mediates the crosstalk of
the receptor with members of the LC3/GABARAP (gamma-
aminobutyric acid receptor-associated protein) protein family
(Birgisdottir, Lamark and Johansen 2013). Furthermore, recep-
tor oligomerization amplifies interaction with downstream ef-
fectors. Although not mutually exclusive, distinct autophagy re-
ceptors are involved in various forms of selective autophagy (Ta-
ble 1) (Xu et al. 2015). Autophagy receptors related to xenophagy
include nucleoporin 62/sequestosome 1 (p62/SQSTM1), neigh-
bor of BRCA1 (NBR1), nuclear dot protein 52 (NDP52), optineurin
(OPTN) and Tax1-binding protein 1 (TAX1BP1) (Thurston et al.
2009; Zheng et al. 2009; Mostowy et al. 2011; Wild et al. 2011;
Tumbarello et al. 2015; Verlhac et al. 2015). Among the best-
characterized receptors is p62/SQSTM1. Besides an established
role in the clearance of intracellular pathogens, p62/SQSTM1
mediates degradation of different autophagy cargos, such as
protein aggregates, mitochondria, peroxisomes and the mid-
body ring (Pankiv et al. 2007; Geisler et al. 2010). Complemen-
tary functions have been identified for the autophagy recep-
tors OPTN and NBR1, which are involved in the clearance
of mitochondria and peroxisomes, respectively (Kirkin et al.
2009; Deosaran et al. 2013). Functional redundancy of receptors
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Figure 1. Overview of different autophagy pathways. Hallmark of canonical and selective autophagy—exemplified by xenophagy—is the formation of a double mem-

brane autophagosome. Both pathways are characterized by a hierarchical sequence: initiation via the ULK complex, nucleation, elongation and closure, recycling
and degradation by lysosomal enzymes. Canonical autophagy is activated by AMP-activated protein kinase (AMPK) and inhibited by mammalian target of rapamycin
complex 1 (mTORC1). A distinctive feature of selective autophagy is the specific recognition of ubiquitinated cargo, which is recognized by autophagy receptors.
The receptors mediate recruitment of the autophagosomal membrane. In LC3-associated phagocytosis (LAP), ATG proteins are directly recruited to a single-membrane

vacuole. PI3P and the production of reactive oxygen species (ROS) define the target membrane for the LC3 lipidationmachinery. The Plasmodium-associated autophagy-
related (PAAR) response in P. berghei shares features of xenophagy and LAP. LC3 is directly incorporated into the parasitophorous vacuolarmembrane (PVM) and recruits
autophagy receptors and ubiquitin in an inverse order. Although Plasmodium has evolved strategies to avoid acidification of the parasitophorous vacuole (PV), parasites

can be eliminated by the PAAR response of the host cell.

extends the spectrum for the specific cargo. Many autophagy
receptors act in concert to promote recognition and elimination
of pathogens, further supporting the concept of an intracellular
immune response.

An alternative pathway to xenophagy is LC3-associated
phagocytosis (LAP), which requires only some components of
the autophagy machinery (Fig. 1). Indeed, LAP has emerged
as an important mechanism in restricting the growth of dif-
ferent vacuole-enclosed microorganisms (Sanjuan et al. 2007).
During LAP, LC3 is incorporated directly into a pre-existing vac-
uole membrane and acts independently of the initiation com-
plex ULK (Martinez et al. 2011; Kim et al. 2013). Since the sub-
strate is already enclosed in a membrane, ubiquitination and
receptor labeling of the cargo become unnecessary. Pivotal, how-
ever, are lipid modifications and the production of reactive oxy-
gen species (ROS) to efficiently recruit the LC3 lipidation ma-
chinery (ATG5-ATG12-ATG16L complex and the LC3-conjugation
system) to the target membrane (Huang et al. 2009; Martinez
et al. 2015). Rubicon, the master regulator of LAP, activates the
UVRAG-containing PI3KC3 complex, which generates PI3P to

promote assembly of the NADPH oxidase (NOX) 2 complex. Ru-
bicon is also engaged in the activation of the NOX2 complex to
enhance the ROS response (Martinez et al. 2015).

In Plasmodium-infected hepatocytes diverse autophagy path-
ways are activated during parasite development. While canon-
ical autophagy serves as an important nutrient source during
Plasmodium liver stage development, mechanisms related to
either selective autophagy or LAP represent an intracel-
lular immune response, which we summarize under the
term Plasmodium-associated autophagy-related (PAAR) response
(Fig. 1). Importantly, the PAAR response varies considerably in
the different Plasmodium species investigated so far.

PARASITE TRANSMISSION AND HEPATOCYTE
INFECTION

Upon transmission by female Anopheles mosquitos, infectious
sporozoites are deposited into the skin of their intermediate
host during the bloodmeal (Frischknecht et al. 2004). Sporozoites
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Figure 2. Comparison of the LC3-conjugation pathway during canonical autophagy and Plasmodium-associated autophagy-related (PAAR) response. Upper panel: Au-
tophagosome formation during canonical autophagy depends on the multiprotein complex ULK and the class III phosphatidylinositol 3-kinase (PI3KC3) complex
defining phagophore membranes with PI3P (orange). The lipid signal recruits the PI3P-dependent effector WIPI and the LC3-conjugation system to drive elongation
of the LC3-positive phagophore (green). Both pathways share the LC3-conjugation system for LC3 lipidation (green box). Lower panel: PAAR response bypasses the

canonical steps involved in the initiation, nucleation and elongation of the autophagosome. The pathway upstream of the LC3-conjugation system, which is important
for the initiation of the response, and the recognition of the parasitophorous vacuolar membrane (PVM) is unknown.

migrate through the host skin and actively enter a blood vessel
(Amino et al. 2006). Entering the host’s blood circulation provides
a fast shuttle to the parasite’s primary destination, the liver. The
immune-privileged status of the liver, its regenerative capacity
as well as its high metabolic activity make it an optimal envi-
ronment for the fast-growing parasite.

During an active invasion process, the sporozoite invagi-
nates the host cell plasma membrane to establish its replicative
niche, the PV (Risco-Castillo et al. 2015). One of the key deter-
minants for recognition and productive invasion of hepatocytes
is the 6-cysteine domain protein P36 on the sporozoite surface
(Manzoni et al. 2017). In analogy to merozoite invasion of red

blood cells, the assembled moving junction is assumed to ex-
clude host transmembrane proteins from entering the PVM
during sporozoite invasion (Spielmann et al. 2012). The par-
asite exports proteins to modify the molecular composition
of the nascent PVM (Nyboer et al. 2018). Protrusions formed
from the PVM into the cytoplasm of the host cell are termed
tubovesicular network (TVN). This architectural modification of
the PVM is a continuous, membranous system. It is not only
composed of dynamic tubular protrusions but also includes
stationary cisternae-like clusters (Grützke et al. 2014; Agop-
Nersesian et al. 2017), substantially expanding the surface area
of the PVM (Fig. 3A). Within this customized and adaptable
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Table 1. Summary of the receptors involved in selective autophagy.

Autophagy receptor Ligands LIR motif References

p62/SQSTM1 (sequestosome 1) LC3/GABARAP family, Ubiquitin, Keap1 YES Pankiv et al. (2007); Komatsu et al. (2010); Lau
et al. (2010)

NBR1 LC3/GABARAP family, Ubiquitin YES Kirkin et al. (2009); Wong et al. (2012);
Deosaran et al. (2013)

NDP52/CALCOCO2 LC3C, Ubiquitin, Galectin-8, Myosin VI YES Thurston et al. (2009); Tumbarello et al. (2012)
TAX1BP1/CALCOCO3 Ubiquitin, Myosin VI NO Tumbarello et al. (2012, 2015)
OPT LC3/GABARAP family, Ubiquitin, Myosin VI, p62 YES Wild et al. (2011); Tumbarello et al. (2012)
NIX/BNIP3L LC3/GABARAP family YES Schweers et al. (2007); Sandoval et al. (2008);

Novak et al. (2010)
FUNDC1 LC3/GABARAP family, PGAM5, CK2 YES Liu et al. (2012); Chen et al. (2014)

niche, the sporozoite differentiates from a trophozoite into a
schizont, the replicative phase of the parasite. Upon completion
of the asexual replication and formation of numerous infectious
merozoites, the function of the vacuole becomes obsolete and
the PVM disintegrates (Graewe et al. 2011). PVM disintegration
and merozoite release in the host cell cytoplasm result in the
collapse of the host cell cytoskeleton and a controlled host cell
death. As a consequence, the infected host cell detaches from
neighboring cells in the liver parenchyma and forms merozoite-
filled vesicles termed merosomes (Sturm et al. 2006; Burda,
Caldelari and Heussler 2017). Merosomes are transported
through endothelia into a blood vessel and eventually detach
from their mother cell to finally release infectious merozoites
in the capillaries of the lungs (Sturm et al. 2006; Baer et al. 2007;
Graewe et al. 2011).

Interestingly, mutant parasites that cannot maintain a func-
tional PVM are still able to infect hepatocytes, but very few of
them develop into infectiousmerozoites. Genetic ablation of the
two 6-Cys sporozoite proteins P52 and P36 resulted in liver stages
that reside freely in the host cell cytoplasm as revealed by elec-
tron microscopy studies (Labaied et al. 2007). Although some
p52/p36-deficient parasites are able to complete liver develop-
ment, their survival rate is dramatically reduced (Ploemen et al.
2012; Annoura et al. 2014). Genetically modified parasites with
a defective PVM, induced by the loss of a single membrane pro-
tein like the upregulated in infective sporozoites (UIS) genes 3 or
4, are also efficiently eliminated in the cytoplasm of their host
cells with very few parasites completing development (Mueller
et al. 2005a,b). Together, this strongly suggests that a functional
PVM is necessary to protect the parasite fromhost cell responses
while still allowing acquisition of nutrients for rapid parasite
growth.

THE PVM IS AN IMPORTANT INTERFACE
BETWEEN THE PARASITE AND ITS HOST CELL

The PVM represents a natural barrier between the parasite
and the hepatocyte’s cytoplasm. Nevertheless, mammalian cells
have developed sophisticated strategies to sense and eliminate
vacuole-enclosed pathogens. While the endolysosomal and au-
tophagy pathways are important recycling mechanisms that
regulate cell homeostasis, host cells exploit this digestive ca-
pacity to control and eliminate intracellular pathogens. Inter-
estingly, this bipolar function strongly influences Plasmodium
development in the liver.

With the isolation from the host cytoplasm by the PVM, nu-
trient acquisition represents a challenge for the parasite. De-
spite its own metabolic capacity, the rapidly growing and repli-

cating parasite additionally scavenges a variety of nutrients and
metabolites from the host cell. Plasmodium liver stage parasites
exhibit a strong dependency on exogenous lipid sources for suc-
cessful development. During growth and replication, the para-
site requires phospholipids to build its ER and plasma mem-
brane as well as the extraparasitic TVN system (Grützke et al.
2014; Kaiser et al. 2016; Burda et al. 2017). At the end of parasite
development, when thousands of merozoites are formed in a
very short time, there is again a strong demand of phospholipids
to generate sufficient plasma membrane. Major sources might
be the host cell and parasite ER. Interestingly, the PVM forms
membrane contact sites with the parasite ER, which would en-
able direct translocation of lipids into the PVM (Kaiser et al.
2016). On the other hand, the close association of host cell
ER with the PVM (Bano et al. 2007) could represent additional
means of phospholipid scavenging for Plasmodium berghei, but
the contribution of these phospholipid sources to the plasma
membrane of the newly forming merozoites requires further
investigations.

Plasmodium seems to utilize multiple alternative scavenging
pathways to compensate for the absence of certain lipid syn-
thesis pathways. Indeed, many exported PVM-resident proteins
interact directly with the lipid components of the host hepato-
cytes (Mikolajczak et al. 2007; Petersen et al. 2017; Sá e Cunha
et al. 2017). Exported protein 1 (EXP-1) was amongst the first
parasite-derived proteins identified in the PVM (Simmons et al.
1987; Kara et al. 1990; Günther et al. 1991). Only recently, how-
ever, we start to understand its molecular function. EXP-1 is
expressed at different stages of the malaria life cycle. During
the erythrocytic stage of the human malaria parasite P. falci-
parum, EXP-1 exhibits a glutathione S-transferase activity and
is responsible for the detoxification of hematin (Lisewski et al.
2014). In the hepatic stage, where the parasite does not rely on
hemoglobin catabolism, the region of EXP-1 exposed to the host
cytoplasm has been shown to directly interact with apolipopro-
tein H (ApoH). Moreover, internalization of ApoH may mediate
the uptake of cholesterol (Sá e Cunha et al. 2017). Like for choles-
terol, rodent malaria parasites lack a de novo synthesis pathway
for phosphatidylcholine (PC) (Déchamps et al. 2010). Recently a
member of the Fam-a protein family has been suggested to me-
diate transfer of PC from the host cell to the parasite (Fougère
et al. 2016). So far, in malaria research, multigene family mem-
bers have been studied primarily in the context of antigen vari-
ation during the P. falciparum blood stage, where they are in-
volved in the modification of the cell surface of the infected red
blood cell (Spielmann and Gilberger 2015). The rodent model P.
berghei encodes three distinct multigene families: Fam-a, Fam-b
and PIR. While the function of Fam-b and PIR family proteins is
unknown, Fam-a proteins appear to be involved in scavenging
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Figure 3.The parasitophorous vacuolarmembrane (PVM) and its role during the shedding of host protein. (A) 3D architecture of the PVMand its connected tubovesicular
network (TVN). Young P. berghei liver schizont (36 hpi) stained for the PVM protein exported protein 1 (EXP-1) was imaged by confocal laser scanning microscopy (3D-
CLSM) with z-increments of 0.22 μm. Morphological features of the TVN represent highly branched tubular structures, large node-like clusters and vesicles. Scale
bar, 10 μm. (B) Model of shedding mechanism involved in the removal of host autophagy (LC3) and lysosomal proteins from the PVM of P. berghei during liver stage

development. PVM-associated host factors assemble in membrane patches at the PVM, accumulate and become trapped in the TVN, and are finally shed as vesicles
into the host cytoplasm. Magnification of the TVN cluster highlights the potential link between the PAAR response and the nourishing capacity of themacroautophagy
pathway. Adapted from Agop-Nersesian et al. (2017). (C) Long-term live microscopy of the shedding process. PMV-associated LC3 (green) is progressively removed from
the developing P. berghei liver schizonts (24 hpi, red) into the cytoplasm of a HepG2 cell. Time stamp, h:min:s. Scale bar, 10 μm. Adapted from Prado et al. (2015).

host phospholipids (Fougère et al. 2016). Some PbFam-a proteins
contain a characteristic steroidogenic acute regulatory-related
lipid transfer (START) domain that is responsible for translocat-
ing lipids, such as fatty acids, ceramids or phospholipids, be-
tween membranes (Fougère et al. 2016). The uptake and accu-
mulation of host-derived PC is indeed essential for maintaining

the membrane integrity as well as the protein composition of
the PVM (Itoe et al. 2014).

Among the best-characterized PVM-proteins are UIS 3 and
4, two members of the early transcribed membrane proteins
(ETRAMPs). Both proteins are expressed already in sporozoites
and are essential for early liver stage development (Mueller et al.
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2005a,b). UIS3 directly interacts with the liver fatty acid binding
protein (L-FABP), a lipid chaperone coordinating the lipid sup-
ply in hepatocytes and other tissue cells. Knockdown of L-FABP
in HUH7 hepatoma cells impairs growth of P. berghei, suggest-
ing that the parasite supplements its inherent fatty acid syn-
thesis pathway in the apicoplast using this exogenous source
(Mikolajczak et al. 2007). The physiological function(s) of the
UIS3-L-FABP interaction, however, remains to be elucidated. It is
noteworthy that fatty acids are not restricted to cell metabolism.
Many lipids can serve as secondary messengers to regulate dif-
ferent intracellular signaling pathways, such as modulation of
inflammatory responses (Furuhashi and Hotamisligil 2008). It
is therefore possible that lipid scavenging and modulation by
the parasite might represent a strategy to manipulate the host’s
signaling cascades.

Although Plasmodium liver stages are known to interact with
several host cell organelles (Bano et al. 2007; Deschermeier
et al. 2012; Lopes da Silva et al. 2012), the PVM-resident pro-
tein UIS4 represents the first identified parasite-derived molec-
ular determinant responsible for host organelle interaction.
In cells infected with UIS4-deficient parasites, recruitment of
endolysosomal vesicles is strongly impaired and cholesterol
accumulation in the PVM is affected (Petersen et al. 2017).
Besides UIS4-dependent recruitment of late endosomes (LE)
and lysosomes, the PVM was found transiently modified with
phosphatidylinositol-3-phosphate (PI3P) (Thieleke-Matos et al.
2014). Differentially phosphorylated phosphatidylinositol (PI)
species provide a unique membrane signature and orchestrate
vesicular trafficking. By mimicking an early endosome ‘PI-code’,
the PVMmight regulate the fusion with host LE (Thieleke-Matos
et al. 2014). Moreover, pharmacological or genetic manipulation
of the endolysosomal pathway results in developmental retar-
dation of the parasite in the liver. The detection of endosomal
content in the PV lumen endorses the fusogenic potential of the
PVM. Therefore, infected hepatocytes retain an active endoso-
mal and lysosomal machinery. In addition to cholesterol, en-
dosomes could provide other secondary catabolic intermediates
such as various glycoconjugates and amino acids (Lopes da Silva
et al. 2012; Thieleke-Matos et al. 2014; Petersen et al. 2017).

INTERFERING WITH AUTOPHAGY MACHINERY
HAS PHYSIOLOGICAL CONSEQUENCES
FOR THE PARASITE

Canonical autophagy of the host cell represents an additional
nutrient source for Plasmodium liver stage. Genetic manipula-
tion of the host cell macroautophagy pathway revealed a gen-
eral reduction in parasite growth (Prado et al. 2015; Thieleke-
Matos et al. 2016; Wacker et al. 2017). Since ATG5 is part of the
LC3-lipidation pathway, ATG5-deficient cells are defective in ini-
tiating macroautophagy as well as alternative autophagy path-
ways such as selective autophagy or LAP. Infection of ATG5flox/flox

mice with P. berghei confirmed the physiological relevance of
host cell autophagy for the parasite liver stage (Thieleke-Matos
et al. 2016). Although parasites in ATG5-deficient cells are subject
to nutrient deprivation and thus develop slower, the overall sur-
vival rate of the parasite is significantly enhanced because the
PAAR response also depend on ATG5 (Prado et al. 2015; Wacker
et al. 2017) (Fig. 2). Supplementation of infectedATG5–/– cellswith
amino acids, indeed, compensates for the parasite growth defect
(Prado et al. 2015).

In contrast, host cells deficient for ULK-associated protein
FIP200 lack only the canonical autophagy pathway. As a conse-

quence of the reduced nutrient supply, parasite growth is signif-
icantly impaired. Because PAAR responses are still functional in
FIP200-deficient cells, parasite survival rates did not differ from
those in wild-type cells (Wacker et al. 2017). FIP200 and poten-
tially othermembers of the ULK complex are dispensable for LC3
incorporation into the PVM. ATG5, however, which is essential
for lipidation and thusmembrane association of LC3, is required
for LC3 recruitment to the PVM (Wacker et al. 2017). Together,
P. berghei liver stage parasites appear to benefit from nutrients
supplied by canonical autophagy but are restricted by PAAR re-
sponses.

In vivo starvation experiments strongly support the antago-
nistic function of the different branches of host cell autophagy
on the Plasmodium liver development. Mice starved during Plas-
modium liver infection showed a more than 20-fold increase in
parasite load compared to normal-fed infected mice. Part of
the increased parasite burden was due to significantly larger
parasites, probably supported by additional nutrients supplied
by activated canonical autophagy. The major effect, however,
was a drastically increased parasite survival rate upon host
starvation (Prado et al. 2015). An interesting hypothesis is that
host cells might have limited supplies of molecules accessi-
ble for executing autophagy. If a starved cell becomes addition-
ally infected, canonical and non-canonical autophagy pathways
compete for common autophagy components. To survive star-
vation, the infected cell seems to prioritize canonical autophagy.
According to this hypothesis, parasites could establish an infec-
tion more easily in starved cells, where they benefit from nutri-
ents provided by canonical autophagy and they are not targeted
by the PAAR response. The idea that each cell has a restricted
number of autophagy proteins also has implications during co-
infections of host cells, for example with viruses. In a recent
study, co-infection of mice with adenovirus and P. berghei sporo-
zoites drastically increased parasite liver load (Sá e Cunha et al.
2017). Since adenoviruses are known to stimulate and exploit
the host cell canonical autophagy machinery for their propa-
gation (Hösel et al. 2017), limited resources might again be the
reason for the increased parasite load, similar to the effect ob-
served upon starvation. It will now be interesting to decipher
the molecular details of this complex interplay between distinct
autophagy pathways during starvation and virus infection that
lead to the increase in parasite survival.

SENSING THE INTRACELLULAR INTRUDER
FOR AUTOPHAGIC ELIMINATION

Intracellular pathogens eliminated by xenophagy are initially
ubiquitinated and then recognized by autophagy receptors be-
fore they are labeled with the autophagy marker protein LC3
(Fig. 1). Although LC3 recruitment during P. berghei infection was
observed, it does not follow a xenophagy response (Prado et al.
2015; Schmuckli-Maurer et al. 2017). In contrast to xenophagy,
the receptor complex is recruited by LC3 to the PVM and thus
follows an inverse order (Fig. 2). In LC3B-deficient host cells,
both the autophagy receptors and ubiquitin aremainly lost from
the PVM surface. Complementation of the LC3B-depleted host
cells with a GFP-LC3 fusion protein rescues their PVM localiza-
tion, confirming their LC3-dependent recruitment. While PVM
localization of p62 is completely abolished in LC3 lipidation-
deficient ATG5–/– cells, the effect on NBR1 recruitment is rela-
tivelymoderate. Further experiments are required to resolve the
function of ubiquitin and whether accumulation of autophagy
components at the PVM contributes to the anti-microbial
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response or is linked to nutrient scavenging induced by Plasmod-
ium (Schmuckli-Maurer et al. 2017). Since LC3 is not recruited via
ubiquitination and subsequent receptor binding, what could be
an alternative? Recently it has been shown that in P. berghei-
infected hepatocytes, the parasite-exported PVM protein UIS3
can efficiently bind LC3 (Real et al. 2018) possibly facilitating its
incorporation into the PVM. How the parasite benefits from this
recruitment is discussed in the next section about parasite eva-
sion strategies from intracellular immune responses.

Different Plasmodium species deal differently with intracellu-
lar host cell immune responses. Whereas the PVM of invading
P. berghei sporozoites is immediately labeled with LC3 (Grützke
et al. 2014; Prado et al. 2015; Thieleke-Matos et al. 2016), P. vivax-
infected cells require additional IFN-γ stimulation to recognize
and eliminate the parasite, using a mechanism closely related
to LAP (Boonhok et al. 2016). The fact that LC3 is directly in-
corporated into the PVM (Prado et al. 2015; Boonhok et al. 2016)
supported this assumption. IFN-γ -mediated LAP response de-
pends on Beclin 1, a member of the PI3KC3 core complex, and
the ubiquitin-like conjugation system to promote LC3-PE incor-
poration and recruitment of acid vesicles to the PVM. Whether
PI3P production requires other LAP-associated components of
the PI3KC3 complex (UVRAG and Rubicon) and promotes NOX2-
dependent ROS production remains an open question (Boonhok
et al. 2016).

Together,mechanismsmediating LC3 labeling of the PVMap-
pear to vary betweenhumanand rodent Plasmodium species. The
fact that host cells can react very individually on invasion by
even closely related parasite species supports the concept of a
flexible and diverse intracellular immune response.

EVASION OF HOST AUTOPHAGY RESPONSES
BY PLASMODIUM

As pointed out earlier, the parasite’s ability to take advantage
of the catabolic activity of the hepatocyte’s autophagy machin-
ery comes at a price. By retaining an active host autophagic and
endosomal machinery, the parasite preserves the cytoprotective
function of the hepatocyte. To successfully develop, the parasite
needs to escape this response. Different Plasmodium species ap-
pear to have evolved alternative ways to deal with the digestive
consequences of host cell autophagy.

In P. berghei, the PVM-resident protein UIS3 was recently
shown to be a critical antagonist of the PAAR response. UIS3-
deficient parasites arrest during liver-stage development and
seem more susceptible to autophagy-mediated elimination
(Mueller et al. 2005b; Real et al. 2018). Interestingly, when
UIS3(-) parasites were allowed to develop in autophagy-deficient
host cells, the mutants resumed blood stage infection compara-
ble to wild-type parasites. In vitro experiments further revealed a
direct interaction of LC3with UIS3 through its non-canonical LIR
motif. By shielding the LIR-binding site of LC3, UIS3 competes
with other LIR motif-containing proteins such as p62 or Rab7 ef-
fector proteins (Real et al. 2018). Since autophagy receptors are
recruited to the PVM in an LC3-dependent manner (Schmuckli-
Maurer et al. 2017), UIS3 does not entirely abolish the interac-
tion of LC3 with p62 and other autophagy receptors. The LIR-
shielding function of UIS3 does also not explain why autophagy
proteins are ultimately lost in late-stage schizonts from the PVM
surface. Besides the UIS3-dependent sequestration of LC3, Plas-
modium parasites use complementary evasion pathways.

A permanent association of LC3 with the PVM increases
the likelihood for parasites to be eliminated (Prado et al. 2015;

Agop-Nersesian et al. 2017). In order to remove PVM-associated
autophagy proteins, the parasite induces membrane shedding
from the PVM towards the TVN (Agop-Nersesian et al. 2017).
Expansion and plasticity of the TVN is especially pronounced
during the proliferative phase of the liver stage parasite (Fig. 3)
(Grützke et al. 2014). To maintain membrane biogenesis, the
PVM depends on a continuous lipid supply (Mikolajczak et al.
2007; Itoe et al. 2014) and a functional secretory system for con-
stant export of proteins into the PVM. Based on the spatiotem-
poral redistribution of LC3 and ubiquitin, PVM-incorporated
host cell proteins follow the TVN dynamics and accumulate in
the cisternae-like clusters of the TVN. Different photobleaching
and photoconversion approaches revealed that GFP-LC3 mobil-
ity was significantly reduced in the TVN compared to the PVM.
The autophagy complex remains trapped in the TVN cluster,
which serves as a primary disposal area. Although themolecular
mechanism behind such a trap has not been resolved, it would
be interesting to see if export of UIS3 might mediate the active
transport of LC3 into the TVN. It is also conceivable that the con-
voluted architecture of the TVN could promote oligomerization
of autophagy receptors, which remained in complex with PVM-
associated LC3 (Fig. 3B). Aggregation of the TVN-bound receptor
could additionally act as a decoy and exhaust the reservoir of
autophagy proteins in the host cell cytoplasm (Agop-Nersesian
et al. 2017; Schmuckli-Maurer et al. 2017). The controlled disposal
of host cell proteins via the TVN has the advantage that poten-
tially detrimental factors are contained in distance to the para-
site’s vulnerable replicative center. Moreover, vesicle-mediated
shedding from the TVN guarantees spatial separation of au-
tophagy proteins from the PVM (Fig. 3).

Since proliferating liver schizonts also depend on functional
host cell endocytic pathways for nutrient uptake, Plasmodium
does not interfere with endolysosomal biogenesis (Lopes da
Silva et al. 2012; Thieleke-Matos et al. 2014; Petersen et al. 2017).
The antimicrobial action of autophagy on the other hand relies
on fusion with the endolysosomal compartment. During Plas-
modium infection, lysosome recruitment to the PVM can be a
consequence of the PAAR response (Boonhok et al. 2016; Zhao
et al. 2016) but occurs similarly in an autophagy-independent
manner (Petersen et al. 2017; Wacker et al. 2017). How Plasmod-
ium ultimately deals with the digestive capacity of the endolyso-
somal compartment is not fully understood. UIS4, however,
could play a major role in the recruitment of LE and lysosomes
(Petersen et al. 2017). Several other mechanisms have been pro-
posed, which could function synergistically with UIS4. In or-
der to reduce the potential of becoming exposed to hydrolytic
enzymes, liver stage parasites might either restrict the over-
all number of fusion events or mediate selective fusion with
less acidic LE (Lopes da Silva et al. 2012). Additionally, Plasmod-
ium liver stages regulate the permeability of their PVM. Indeed,
molecules of up to 855 Da diffuse freely through the PV sug-
gesting the presence of channels in the PVM (Bano et al. 2007).
Although the composition of such channels and their local-
ization in the PVM are yet to be determined, the unselective
passage of small molecules could counteract an acidification
of the PV lumen. As a complementary mechanism, parasites
might utilize protons for their own ATP synthesis or exploit
them to import nutrients via cotransporters as it is known for
bacteria and plants. For blood stage P. falciparum parasites, it
has indeed been observed that ATPases localize to the plasma
membrane of the parasite (Hayashi et al. 2000). Notably, accumu-
lation of autophagy-associated proteins and lysosomes around
the PVM is especially pronounced during early phases of liver
stage development (Lopes da Silva et al. 2012; Prado et al. 2015;
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Thieleke-Matos et al. 2016; Zhao et al. 2016; Agop-Nersesian et al.
2017; Petersen et al. 2017). It will now be important to investi-
gate whether antiporter or proton-driven ATPases localize to the
plasma membrane of early liver stage parasites.

In many ways, PVM shedding might assist in controlling
the overall load of host lysosomes at the PVM surface. During
liver stage development of P. berghei, PVM-associated lysosomal
markers display the same spatial and temporal dynamics as
LC3 (Prado et al. 2015). Analogous to the LC3-receptor complex,
lysosomes might first become trapped in the TVN and then be
subsequently shuffled back into the hepatocyte cytoplasm via
vesicular shedding. The finding that, despite constant interac-
tion of LE/lysosomes with the PVM, only a limited concentration
of lysosomal markers are found associated with the PVM and
TVN (Lopes da Silva et al. 2012; Petersen et al. 2017) supports such
a scenario. In addition, macroautophagy may recycle the TVN-
shed vesicles and thus contribute to the nourishment of the par-
asite (Fig. 3B). A shedding-dependent evasion strategy, coupled
to recycling of vesicle contents, would support the notion of the
multifaceted impact of host autophagy on the parasite develop-
ment (Agop-Nersesian et al. 2017).

For the rodent malaria parasite P. yoelii, it has been suggested
that the parasite survives in LC3-positive autophagosome-like
vacuoles. Although escapemechanisms like PVM shedding have
not been studied, it was discussed that P. yoelii prevents themat-
uration into an autolysosome (Zhao et al. 2016).

In contrast to the evasion strategy observed in P. berghei,
P. vivax liver stage parasites escape the host’s autophagy ma-
chinery by avoiding selective recognition of the parasite. LC3 la-
beling of the PVM of P. vivax is induced by the effector cytokine
IFN-γ (Boonhok et al. 2016). Parasites targeted for elimination by
IFN-γ−mediated LAP generally fail to evade the intracellular im-
mune response. A unique feature of P. vivax is its ability to form
dormant stages in the liver, the hypnozoites. It is reasonable to
speculate that P. vivax prevents initiation of an autophagic re-
sponse by interfering with the IFN-γ signaling pathway, in order
to facilitate hypnozoite differentiation and persistence.

The direct comparison of different evasion mechanisms of
diverged human and rodent Plasmodium species remains diffi-
cult, in particular since the duration of liver stage development
is considerably longer in human Plasmodium species compared
to rodent species. Nevertheless, it is important to understand
the evolutionary pressure driving microbial defense mecha-
nisms. Since the hypnozoites of P. vivax are metabolically not
very active, shedding-mediated removal of host autophagy pro-
teins may be a less efficient measure to restrict lysosome tar-
geting the parasite. Future research will hopefully reveal how
hypnozoites deal with the host cell autophagy response.

CONCLUSIONS

The PVM is the major interface for the parasite in sensing and
manipulating its host cell environment. Besides offering phys-
ical protection for the replicating parasite, the PVM simultane-
ously remains permeable for large numbers of metabolites. The
multifunctional role of the PVM is reflected by its complex archi-
tecture and compartmentalization that results in the generation
of an extensive TVN. In many aspects, the PVM/TVN play cen-
tral roles in counteracting the intracellular immune response of
the hepatocyte. One of the most interesting tasks will be to dis-
sect the molecular divergence between the different Plasmodium
species that induce distinct hepatocyte responses. Especially in
the context of P. vivax, whose dormant stages present a major

challenge for the development of effective antimalarials, our un-
derstanding of the parasite’s evasion mechanisms is still rudi-
mental. Future challenges will be to decipher more molecular
details of the parasite’s evasion strategies and use them as a
basis for new therapeutics.

ACKNOWLEDGEMENTS

We are grateful to Rebecca Limenitakis and Sebastian Knüsel for
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