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Abstract

Background: Gene expression profiles and protein dynamics in single cells have a large cell-to-cell variability due
to intracellular noise. Intracellular fluctuations originate from two sources: intrinsic noise due to the probabilistic
nature of biochemical reactions and extrinsic noise due to randomized interactions of the cell with other cellular
systems or its environment. Presently, there is no systematic parameterization and modeling scheme to simulate
cellular response at the single cell level in the presence of extrinsic noise.

Results: In this paper, we propose a novel statistical ensemble method to simulate the distribution of
heterogeneous cellular responses in single cells. We capture the effects of extrinsic noise by randomizing values of
the model parameters. In this context, a statistical ensemble is a large number of system replicates, each with
randomly sampled model parameters from biologically feasible intervals. We apply this statistical ensemble
approach to the well-studied NF-κB signaling system. We predict several characteristic dynamic features of NF-κB
response distributions; one of them is the dosage-dependent distribution of the first translocation time of NF-κB.
Conclusion: The distributions of heterogeneous cellular responses that our statistical ensemble formulation
generates reveal the effect of different cellular conditions, e.g., effects due to wild type versus mutant cells or
between different dosages of external stimulants. Distributions generated in the presence of extrinsic noise yield
valuable insight into underlying regulatory mechanisms, which are sometimes otherwise hidden.
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Background
Single cell imaging generated a surge of interest in the
intracellular dynamics of biochemical species, uncovering
significant cell-to-cell variations in gene expression [1-8]
and protein dynamics [9,10]. This variability originates from
intrinsic [1-8] and extrinsic noise [3,6,10] and critically
affects cellular decision-making processes [9-13]. Moreover,
cellular response averaged over a population of cells is
oftentimes noticeably different from the responses of single
cells. The variability in the latter contains rich information
regarding the regulatory mechanisms in operation. Here,
we present a novel computational method to predict the
distribution of extrinsic noise-driven heterogeneous cellular
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responses and to unravel discrepancies between single-cell
versus population-averaged responses.
Both intrinsic and extrinsic noise are the source of the

large cell-to-cell variability in cellular responses [14].
Intrinsic noise refers to the pure probabilistic nature of
individual biochemical reactions occurring within a cell.
When the number of intracellular constituents is large,
the cell’s behavior is well approximated by its expectation
value according to the law of large numbers. But at the
single-cell level, the number of molecules of certain spe-
cies critical to a particular biochemical pathway can be
small, and the range of statistical variation in the system
needs to be considered [1-8]. Extrinsic noise refers to
random interactions of the cell with other cells or its en-
vironment. Extrinsic fluctuations can originate from cells
undergoing different stages of their cell cycle [15], fluctu-
ations in the number of transcriptional regulators up-
stream of the signaling pathway of interest [3,6,9,10],
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and cell-to-cell variability in the copy number of proteins
inherited from parent cells during cell division [10]. Ex-
trinsic noise can affect the dynamics of cellular constitu-
ents locally in a specific signaling pathway or globally
over the entire cell. In Figure 1, we summarize the effects
of intrinsic and extrinsic fluctuations in the NF-κB sig-
naling networks. The full effect of extrinsic noise should
include “all” external stochastic effects that influence the
cell, particularly the temporal fluctuations in the cellular
kinetic conditions. However, in Ref. [10], Spencer et al.
identified the most important source of extrinsic noise
as the protein copy number inherited from the parent
cell during cell division. Large cell-to-cell variations in
the copy number of enzyme and regulatory protein
could randomize the likelihood and the speed of any
intracellular biochemical reaction. This means we can
effectively “lump” all the effects of protein copy num-
ber variations into variations in kinetic rate constants.
This is an attractive approach, because rate constants
are an input into a variety of biochemical pathway
modeling techniques.
A pathway modeling framework that uses deterministic

or stochastic differential equation models requires a priori
knowledge of the structure of the biochemical reaction net-
work, mathematical functional forms for the biochemical
reactions, and associated reaction rate constants. Since li-
mited or incomplete information is often all that is available
to modelers, a computational model is often parameterized
by using a nonlinear fitting algorithm. A conventional
parameterization scheme identifies a single set of kinetic
parameter values by minimizing the χ2 distance between
experimental data and a prediction made by the model.
Sloppy Cell and other similar parameterization algorithms
include experimental errors in the parameterization by fit-
ting to a rather large experimental error bar [16]. But both
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Figure 1 Intrinsic and extrinsic noise as the source of the cell-to-cell v
Intrinsic noise refers to the pure probabilistic nature of individual biochemi
interactions of the signaling networks with the external stochastic systems an
regulators upstream of the signaling networks, (ii) fluctuating number of prot
conventional and Sloppy Cell parameterization schemes
assume a deterministic and homogeneous biological re-
sponse to a stimulus and aren’t designed to handle the
heterogeneous, stochastic behavior of single cells and its
dependence on extrinsic noise.
In order to capture extrinsic noise and its effect on intra-

cellular response, we propose a novel parameterization
method, the “statistical ensemble” (SE) scheme, named after
a key concept in statistical physics [17]. A cell is regarded as
a complex system comprising a large number of compo-
nents and elementary interactions among them. A popula-
tion of cells consists of a large number of replicates,
each with different microscopic intracellular states. The
statistical ensemble average, or macroscopic observable, is
equated with the cellular response averaged over the popu-
lation of cells. The ensemble is generated by assigning ran-
domly sampled values of kinetic rate constants and copy
numbers of regulatory proteins to each cell in the ensemble.
All other external noisy systems that interact with the cell,
but which are not modeled explicitly, are treated as extrin-
sic noise. The effect of the noise is included in the sampling
that produces the randomized microscopic state of each
cell in the ensemble.
A key point is that the resulting dynamic response of the

ensemble of cells is no longer a single output but is a dis-
tribution of heterogeneous responses. Each response can be
computed independently, which allows for parallelism in
the computation. An equal weight is assigned to the re-
sponse from each replicate, to calculate the ensemble
averaged cellular response. The SE scheme thus enables
modeling of the irregular, dissimilar, and diverse individual
cellular behaviors while reproducing the macroscopically
observable population-level response.
In the most general sense, the success of the SE scheme

depends on identifying and characterizing the biologically
External noisy systems 
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ariability in cellular responses in the NF-кB signaling networks.
cal reactions in the signaling networks. Extrinsic noise refers to random
d originates from three sources: (i) fluctuating number of transcriptional
eins inherited from parent cells, and (iii) different stages of their cell cycle.
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Figure 2 Biochemical network model for the IKK-IкB-NF-кB-A20
signaling module. Top panel: A schematic description of our
comprehensive model for NF-кB signaling. The arrows indicate
activation and the perpendicular lines denote inhibition. Bottom
panel: the model consists of IKK (IкB kinase), IкB isoforms (IкBi, i= α, β, ε),
and A20. NF-кBn and IкBin denote their nuclear components. Squares
are for proteins; hexagons are for mRNA. Black arrows indicate either
association or dissociation or degradation of proteins; red (blue) arrows
denote mRNA (protein) synthesis.
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correct distribution of extrinsic noise for the system of
interest, so that its effects can be encoded in the random
sampling of cellular microstates. In this work, we use ex-
perimental population-level data to parameterize the range
of feasible kinetic rate constants and copy numbers of spe-
cific molecules, and then sample uniformly around the
mid-point of the range to generate cellular microstates.
We illustrate the power of even this simplified SE ap-
proach for modeling the NF-кB signaling system.
NF-кB is a pleiotropic regulator of gene control and

plays significant roles in various cellular functions such as
differentiation of immune cells, development of lymphoid
organs, and immune activation [18-20]. NF-кB shuttling
between the nucleus and cytoplasm is auto-regulated
by the NF-кB signaling module, which consists of IкB
(inhibitor кB), IKK (IкB kinase), and NF-кB. In the ab-
sence of stimulus, IкB forms a hetero-dimeric complex
with NF-кB, preventing NF-кB from entering into the
nucleus. Upon stimulation, phosphorylated IKK catalyses
the degradation of IкB from the IкB-NF-кB complex and
frees up NF-кB whose nuclear localization initiates tran-
scription of NF-кB target genes such as inflammatory cyto-
kines (TNFα, IL-1, IL-6), chemotactic cytokines (MIP-1a),
Th1 and Th2 response activation (IFN and IL-10), and
lastly, but most importantly, negative regulators (IкBα,
IкBβ, IкBε, and A20) which terminate the NF-кB signaling.
Based on current knowledge of NF-кB signaling, Hoffmann
et al. constructed a complex biochemical reaction network
for the NF-кB signaling pathway consisting of IKK, NF-кB,
and three IкB isoforms and transformed it into a set of or-
dinary differential equations with dozens of unknown ki-
netic parameter values [21]. After identifying a single set of
parameter values yielding the best fit of the model to popu-
lation level experimental data, they used their model to elu-
cidate the role of each of three IкB isoforms: IкBα induces
oscillatory shuttling of NF-кB while IкBβ and IкBε damp
the oscillations [21]. Lipniacki et al. extended the model,
showing that an additional negative regulator A20 has a de-
finitive role as a NF-кB signal terminator, by deactivating
IKK phosphorylation [22-24]. Using fluorescence micros-
copy, Nelson et al. and several other groups showed a re-
markably heterogeneous intracellular response for this
signaling network at the single-cell level; some cells
exhibited sustained oscillatory shuttling of NF-кB while
others exhibited non-oscillatory behavior [25-33].
In this paper, we model extrinsic noise via randomization

of the kinetic parameters of the IKK-NF-кB-IкB-A20 sig-
naling system and predict several distributions of dynamical
NF-кB responses. The signaling network we model is
shown in Figure 2 and consists of IKK, cytoplasmic and nu-
clear NF-кB, and two groups of negative regulators (three
isoforms of IкB and A20). Using the statistical ensemble
(SE) scheme, we demonstrate that extrinsic noise, modeled
as fluctuations in kinetic parameter values, can generate the
observed experimental population-level response as the SE
average, as well as a heterogeneous distribution of indivi-
dual cellular responses. In section Results.A we show that
the SE average of key biochemical species concentrations in
the NF-кB signaling network can be accurately fit to experi-
mental population-level data for wild type and various mu-
tant cases. In section Results.B, we predict the distributions
of various dynamic characteristics of NF-кB cellular re-
sponses. In section Results.C, we make a prediction about
dosage-dependent NF-кB responses in single cells, i.e., the
dosage-dependent distribution of various NF-кB dynamic
characteristics in individual cells. Lastly, in section
Results.D, we predict that both dose-response curves from
individual cells and their SE average are sigmoidally shaped.

Results
Statistical ensemble average of key biochemical species
concentrations in the NF-кB signaling network is fit to
experimental population-level data
The wild type case
For this reaction pathway, the statistical ensemble (SE)
scheme generates significant cell-to-cell variability in
protein dynamics. Yet the SE averages agree well with
population-level experimental data (Electro Mobility
Shift Assay (EMSA) or western blot) for key biochemical
species concentrations as shown in Figure 3. For the nu-
clear NF-кB profiles in Figure 3(A), the first translocation
times (timing of the first peak) of the individual NF-кB
profiles (in blue) are almost identical, while the first ma-
xima (amplitude of the first peak) vary significantly with



Figure 3 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentration for an ensemble
of 1000 replicates of the wild type NF-кB signaling system. Computational results are compared side-by-side with population-level
experimental data from Ref. [20]. Panel (A): nuclear concentration of NF-кB. Panels (B), (C), (D) are respectively cytoplasmic concentrations of
IкBα, IкBβ, and IкBε proteins.
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a variance up to 100% of the SE average (in red). How-
ever, both the timings and amplitudes of subsequent peaks
exhibit significant cell-to-cell variability. Consequently the
SE average is a strongly damped oscillatory pattern with
rapid decay of subsequent peak amplitudes. Thus, the effect
of extrinsic noise on this observable is a “masking effect
of averaging over a population of asynchronous curves”,
just as for intrinsic noise [34]. The large variation in the
first-peak amplitude of nuclear NF-кB concentration in
Figure 3(A) originates from the IKK profile in Figure 4(C),
where the IKK concentration time courses from individual
cells also exhibit significant differences in their first max-
imum. This induces large variation in the first minimum of
IкB isoforms as shown in Figures 3(B)-(D). Thus, the cell-
to-cell variation in kinetic rate constants regulating the
levels of both pre-activated IKK (IKKn) and activated IKK
(IKKa) is the source of similar variation in the first maximum
of nuclear NF-кB concentration [35]. Likewise, the asyn-
chronous behavior of the individual nuclear NF-кB profiles
after two hours, as shown in Figure 3(A), originates from
the cell-to-cell variability in the second-peak amplitude of
the IкB isoforms in Figures 3(B)-(D).

The mutant case - double knocked-out IкB isoforms and
knocked-out A20
To simulate the dynamics of mutants, we set the mRNA
synthesis rates for two of the three IкB isoforms and A20
to zero. For the IкBβ and IкBε knocked-out mutant shown
in Figure 5(A), the peaks of the SE average correspond
closely to the peaks of population-level experimental data
(EMSA) at 15 min, 2.5 hours, 4 hours, and 5.5 hours. The
individual profiles of nuclear NF-кB concentration are



Figure 4 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations are obtained for
an ensemble of 1000 replicates of a wild type (A, C) and an A20 knocked-out mutant (B, D). Computational results are compared with
population-level experimental data from Ref. [36]. Top panels: nuclear concentration of NF-кB. Bottom panel: IKK concentration.
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much more oscillatory (about half the curves exhibit
sustained oscillations as shown in Figure 6) than for the
wild type data (only 10% are sustained oscillations in
Figure 6). But, the SE average of this mutant is a damped
oscillatory pattern, with a bit more dynamic variation than
that of the wild type. This is again mainly due to “the
masking effect of averaging over a population of asynchron-
ous curves”. For the IкBα and IкBε knocked-out and the
IкBα and IкBβ knocked-out mutants shown in Figure 5(B)
and 5(C), the SE averages of nuclear NF-кB show a “single-
peaked” pattern similar to the population-level EMSA data,
though the timings of the peaks differ by 1 hour. The
single-peak amplitudes vary significantly with a variance as
large as 100% of the SE average. For the A20 knocked-out mu-
tant in Figure 4(B) and 4(D), both the SE averages of nuclear
NF-кB and IKK profiles exhibit single-peaked patterns in good
agreement with the population-level experimental data. Again,
the individual nuclear NF-кB profiles differ significantly. For all
the mutants, though their SE averages for nuclear NF-кB
profiles exhibit simple dynamic patterns, the cell-to-cell vari-
ability is large due when extrinsic noise is included in the
model.

Dependence of SE average on heterogeneity
In Figure 7 we show how to use population-level experi-
mental data as a constraint when choosing a heteroge-
neity factor χ, defined as the interval size of the uniform
distribution from which kinetic rate constants are sampled,
as inputs to the pathway model. Centering the kinetic rate
constants at their reference values, we vary χ and observe
how heterogeneous the individual cell profiles of nuclear
NF-кB become. Note that the SE average of nuclear NF-кB
becomes less oscillatory for higher values of χ in Figure 7.
For a small χ = 10% in Figure 7(A), all individual curves re-
main in phase with each other, making the SE average also
highly oscillatory. For higher values of χ = 50% and χ = 70%
in Figures 7(C) (χ = 50%) and 7(d) (χ = 70%), a large fraction
of individual curves are sustained oscillations, but quickly



Figure 5 Individual time-series curves (blue lines) and the ensemble average (red line) of key protein concentrations for an ensemble
of 1000 replicates of a IкB double gene knocked-out mutant. Computational results (left column) are compared with population-level
experimental data (right column) from Ref. [20]. Panel (A): IкBβ and IкBε knocked-out mutant. Panel (B): IкBα and IкBβ knocked-out mutant. Panel
(C): IкBα and IкBε knocked-out mutant.
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become out of phase, resulting in an SE average that is
strongly under-damped. Because higher χ values cover a
larger sampling space, individual nuclear NF-кB curves
bifurcate into different classes of patterns: some are
sustained oscillatory while others are single-peaked.
Thus, if the population-level experimental data exhibit
sustained oscillations versus damped oscillations versus
single-peak profiles, the variation in single-cell profiles
induced by χ can be used to guide sampling from an ap-
propriate range of heterogeneity when generating input
rate constants.
In this subsection, we showed how the SE method with its

many replicates is a model for a population of cells in a he-
terogeneous set of intracellular states. By varying the
heterogeneity factor χ for sampling kinetic parameters used
as inputs to the pathway model, fits to experimental data
can be produced even when population-averaged data and
single-cell data exhibit different characteristics, as in the NF-
кB signaling system. In the next subsection, we discuss the
distribution of single-cell NF-кB responses in more detail.

Prediction of distributions of individual cellular responses
for the wild type and mutants
Distributions of dynamic features
In Figure 8, we summarize the output of our SE compu-
tational model for distributions of single-cell responses
for the wild type and the mutants discussed in the previ-
ous sub-section. Six dynamic features are shown: the



Figure 6 Distributions of four dynamic patterns of the individual time-series curves of nuclear NF-кB profiles for an ensemble of 1,000
replicates of the wild type, A20 knocked-out mutant, and three IкB genes double knocked-out mutants. A few examples of four dynamic
patterns are plotted in the top panel: (A) single-peaked pattern (blue), (B) under-damped oscillation (red), (C) hyperbolic pattern (black), and (D)
sustained oscillation (yellow) where color within a parenthesis denotes color in the bottom panel. Individual time-series curves are classified as
one of the four dynamic patterns.
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amplitude of the first peak (First Maximum), the timing
of the first peak (First Translocation Time), the time
between the first and the second peaks (First Period), the
level of the first minimum (First Minimum), the amplitude
of the second peak (Second Maximum), and the asymptotic
Steady State value. Surprisingly, for each dynamic feature,
there is a significant amount of overlap between the distri-
butions for the wild type and those of the mutants. This
implies that if we used a conventional modeling scheme
which fits a single set of parameter values and outputs a
single representative time-series of intracellular response,
we could draw incorrect conclusions as to the effect of a
knocked-out gene on cellular response. To avoid this, we
compute the entire distribution of responses and look
for significant changes when genes are knocked out. In
Figure 8(A), the distributions of the First Maximum are
the same for both the mutants and the wild type. This dy-
namic feature is thus not an indicator of the physiological
defects caused by the knock-out genes. In Figure 8(B), the
distribution of the First Translocation is shifted to the
right for the A20 knocked-out mutant and to the left for
IкBβ and IкBε double knocked-out mutant, whereas the
wild type and two other mutants have similar distribu-
tion. In Figure 8(C), only the wild type and the IкBβ



Figure 7 Dependence of the individual time-series curves (blue lines) and the statistical ensemble average (red line) of nuclear NF-кB
profiles for a mutant with IкBβ and IкBε genes double knocked-out, on the heterogeneity factor χ (the interval size of the uniform
distribution or kinetic rate parameters). (A) χ = 10% ; (B) χ = 30% ; (C) χ = 50% ; (D) χ = 70%.
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and IкBε double knocked-out mutant have well-defined
periods of roughly 2 hours; the First period of other
mutants is too broadly distributed to define an average.
In Figure 8(D), the ratio of the First Minimum to the
First Maximum indirectly measures the spikiness of the
oscillations; the smaller the ratio, the spikier the tem-
poral profile becomes. Only the wild type and the IкBβ
and IкBε double knocked-out mutant exhibit a spiky re-
sponse. In Figure 6(F), the ratio of the Steady State to the
First Maximum provides useful information about the
relative magnitude and strength of the negative regulators
of IкB isoforms and A20. Since the distributions of the
First Maximum are the same for the wild type and mutants,
we conclude that the smaller steady-state level of nuclear
NF-кB concentration infers stronger negative feedback.
The mutants ordered by steady-state level are as follows:
A20 knocked-out mutant < IкBα and IкBε knocked-out
mutant < IкBα and IкBβ knocked-out mutant < IкBβ
and IкBε knocked-out mutant < wild type. The relative
strength of the negative regulators can then be inferred:
A20 > IкBα > IкBε > IкBβ. Of course, this ordering is con-
sistent with the choice of nominal values for the respective
kinetic rate constants, as listed in Table 1.

Distribution of dynamic patterns
The individual time-series of the nuclear NF-кB concentra-
tions can be classified into one of four dynamic patterns
(damped oscillation, sustained oscillation, single peaked,
and monotonic-increasing patterns) as shown in Figure 6.
The underlying mechanism for each dynamic pattern is
rather simple. The monotonic-increasing (or over-damped)
pattern originates from strong negative feedback loops,
while the single-peaked pattern results from weak negative
feedback loops. The oscillatory patterns arise from
intermediate-strength negative feedback loops. But it re-
mains an open question to correlate each dynamic pattern
with a specific cellular physiology [37-39]. To elucidate this
connection, we stimulate the ensemble of NF-кB signaling
networks with the same signal strength (TR = 1), for both
the wild type and mutants. We then classify a thousand in-
dividual temporal profiles into one of the four dynamic pat-
terns. The distributions of the patterns are represented by
bar graphs in Figure 6 which shows that both the wild type
and mutants exhibit at least two different patterns of re-
sponse under the same strength of stimulation. For the wild
type, most of the nuclear NF-кB profiles have a damped-
oscillatory pattern, with less than 10% of the profiles as
sustained-oscillatory. This indicates a damped-oscillatory
response is the most probable, and it is robust against per-
turbation of the network parameter values. For the mutant
with a knocked-out A20 gene, both single-peaked and
damped-oscillatory patterns are nearly equally probable.
But the damped oscillatory profiles are very similar to a
single-peaked pattern. Thus for this mutant, a damped-



Figure 8 Distributions of six dynamic features of nuclear NF-кB profiles, for an ensemble of 1,000 replicates of the wild type
(black lines), A20 knocked-out mutant (red lines), IкBα and IкBβ genes double knocked-out mutant (blue lines), IкBα and IкBε genes
double knocked-out mutant (yellow lines), and IкBβ and IкBε genes double knocked-out mutants (green lines). The six dynamic features
are First Maximum (the amplitude of the first peak) in panel (A), First Translocation Time (the timing of the first peak) in panel (B), First Period
(the time between the first and the second peaks) in panel (C), Ratio of First Minimum to First Maximum (ratio of the first minimum value to the
first maximum value) in panel (D), Ratio of Second Maximum to First Maximum (ratio of the second peak amplitude to the first maximum value)
in panel (E), and Ratio of Steady State to First Maximum (ratio of the steady state level to the first maximum value) in panel (F).
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oscillatory response occurs in a region of the parameter
space where the negative regulators are not strong enough
to induce the oscillatory pattern. For the mutant with IкBβ
and IкBε genes double knocked-out, sustained-oscillatory
and damped-oscillatory patterns are equally probable re-
sponses. The damped-oscillatory responses in this mutant
are very different from those in the mutant with a knocked-
out A20 gene, and are more similar to a sustained oscilla-
tion. The fraction of sustained-oscillatory responses (about
50%) dramatically increases in comparison to the wild type
case (less than 10%). For mutants with IкBα and IкBβ genes
double knocked-out and with IкBα and IкBε genes double
knocked-out, their respective distributions are similar to
that of the mutant with the A20 gene knocked-out. As
shown in Figures 5(B) and 5(C) and Figure 4(B), both the
individual profiles and the statistical ensemble average of
the nuclear NF-кB concentrations for all these mutants
(A20 gene knocked-out, IкBα and IкBβ genes double
knocked-out, IкBα and IкBε genes double knocked-out)
exhibit similar single-peaked patterns. In summary, there
are two distinctive groups exhibiting two respective pat-
terns of nuclear NF-кB profile response: the first group,
consisting of the wild type and the IкBβ and IкBε double
knocked-out mutant, is dominated by highly oscillatory re-
sponses. The second group, consisting of the A20
knocked-out, the IкBα and IкBβ double knocked-out, and
the IкBα and IкBε double knocked-out mutants, shows
mostly single-peaked (non-oscillatory) responses.
In this subsection, we used the SE method to generate

distributions of various dynamical responses from a large



Table 1 Biochemical reactions and their associated reaction rate constants in the computational model of the NF-κB
signaling network

Reactions I II III IV V

IKKa + IкBα→ IKKa:IкBα Aα [a] 0.2 [1] 0.1813

IKKa + IкBβ→ IKKa:IкBβ Aβ [a] 0.05 [3] 0.02997

IKKa + IкBε→ IKKa:IкBε Aε [a] 0.05 [3] 0.04244

IKKa + IkBα:NF-кB→ IKKa:IкBα:NF-кB Bα [a] 1 [1] 1.024

IKKa + IkBβ:NF-кB→ IKKa:IкBβ:NF-кB Bβ [a] 0.25 [3] 0.3683

IKKa + IkBε:NF-кB→ IKKa:IкBε:NF-кB Bε [a] 0.25 [3] 0.42

NF-кBn→ NF-кBn + A20t C1 [b] 0.0000005 [1] 0.000000506

0→ A20t C2 [c] 0 [1] 0

A20t→ 0 C3 [b] 0.0004 [1] 0.0002438

A20t→ A20t + A20 C4 [b] 0.5 [1] 0.5807

A20→ 0 C5 [b] 0.0003 [1] 0.0003769

IKKa:IкBα→ IKKa + IкBα Dα [b] 0.00125 [2] 0.002046

IKKa:IкBβ→ IKKa + IкBβ Dβ [b] 0.00175 [2] 0.0005609

IKKa:IкBε→ IKKa + IкBε Dε [b] 0.00175 [2] 0.002142

IKKa:IкBα:NF-кB→ IKKa + IккBα:NF-кB Dα [b] 0.00125 [2] 0.002046

IKKa:IkBβ:NF-кB→ IKKa + IкBβ:NF-кB Dβ [b] 0.00175 [2] 0.000561

IKKa:IкBε:NF-кB→ IKKa + IкBε:NF-кB Dε [b] 0.00175 [2] 0.002142

IKKa:IкBα:NF-кB→ IKKa:IкBα + NF-кB Eα [b] 0.000001 [2] 0.00000144

IKKa:IкBβ:NF-кB→ IKKa:IкBβ + NF-кB Eβ [b] 0.000001 [2] 0.00000124

IKKa:IкBε:NF-кB→ IKKa:IкBε + NF-кB Eε [b] 0.000001 [2] 0.00000064

IKKa:IкBα + NF-кB→ IKKa:IкBα:NF-кB Fα [a] 0.5 [2] 0.3789

IKKa:IкBβ + NF-кB→ IKKa:IкBβ:NF-кB Fβ [a] 0.5 [2] 0.2135

IKKa:IкBε + NF-кB→ IKKa:IкBε:NF-кB Fε [a] 0.5 [2] 0.3528

IкBα:NF-кB→ NF-кB + IкBα Gα [b] 0.000001 [2] 0.00000064

IкBβ:NF-кB→ NF-кB + IкBβ Gβ [b] 0.000001 [2] 0.00000044

IкBε:NF-кB→ NF-кB + IкBε Gε [b] 0.000001 [2] 0.00000069

IкBαn:NF-кBn→ NF-кBn + IкBαn Gα [b] 0.000001 [2] 0.00000064

IкBβn:NF-кBn→ NF-кBn + IкBβn Gβ [b] 0.000001 [2] 0.00000044

IкBεn:NF-кBn→ NF-кBn + IкBεn Gε [b] 0.000001 [2] 0.00000069

IкBα + NF-кB→ IкBα:NF-кB Hα [a] 0.5 [2] 0.4593

IкBβ + NF-кB→ IкBβ:NF-кB Hβ [a] 0.5 [2] 0.7753

IкBε + NF-кB→ IкBε:NF-кB Hε [a] 0.5 [2] 0.2895

IкBαn + NF-кBn→ IкBαn:NF-кBn Hα [a] 0.5 [2] 0.4593

IкBβn + NF-кBn→ IкBβn:NF-кBn Hβ [a] 0.5 [2] 0.7753

IкBεn + NF-кBn→ IкBεn:NF-кBn Hε [a] 0.5 [2] 0.2895

NF-кB→ NF-кBn I1 [b] 0.0025 [1] 0.003037

NF-кBn→ NF-кB K01 [b] 0.00005 [3] 0.00005537

IKKn→ IKKa K1 [b] 0.0025 [1] 0.003273

A20 + IKKa→ A20 + IKKi K2 [a] 0.1 [1] 0.07075

IKKa→ IKKi K3 [b] 0.0015 [1] 0.00202

0→ IKKn Kprod [c] 0.000025 [1] 0.000009752

IKKn, IKKa, or IKKi→ 0 Kdeg [b] 0.000125 [1] 0.0001561

Volume ratio of cytoplasm to nucleus Kv 1 5 [1] 5

IкBαn:NF-кBn→ IкBα:NF-кB Lα [b] 0.01 [1] 0.013979

IкBβn:NF-кBn→ IкBβ:NF-кB Lβ [b] 0.005 [3] 0.001567

IкBεn:NF-кBn→ IкBε:NF-кB Lε [b] 0.005 [3] 0.006583
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Table 1 Biochemical reactions and their associated reaction rate constants in the computational model of the NF-κB
signaling network (Continued)

IкBα:NF-кB→ NF-кB Mα [b] 0.000025 [1] 0.00002837

IкBβ:NF-кB→ NF-кB Mβ [b] 0.000025 [3] 0.00003609

IкBε:NF-кB→ NF-кB Mε [b] 0.000025 [3] 0.00000866

Total NF-кB concentration NF-кB [d] 0.06 [1] 0.06

IKKa:IкBα:NF-кB→ IKKa + NF-кB Pα [b] 0.1 [1] 0.12928

IKKa:IкBβ:NF-кB→ IKKa + NF-кB Pβ [b] 0.05 [3] 0.06454

IKKa:IкBε:NF-кB→ IKKa + NF-кB Pε [b] 0.05 [3] 0.08434

IкBαn→ IкBα Qα [b] 0.0005 [1] 0.0005123

IкBβn→ IкBβ Qβ [b] 0.0005 [3] 0.0007398

IkBεn→ IkBε Qε [b] 0.0005 [3] 0.0002184

IKKa:IкBα→ IKKa Rα [b] 0.1 [1] 0.123

IKKa:IкBβ→ IKKa Rβ [b] 0.1 [3] 0.03837

IKKa:IкBε→ IKKa Rε [b] 0.1 [3] 0.1571

IкBαn:NF-кBn→ NF-кBn Sα [b] 0.000001 [2] 0.00000037

IкBβn:NF-кBn→ NF-кBn Sβ [b] 0.000001 [2] 0.000001131

IкBεn:NF-кBn→ NF-кBn Sε [b] 0.000001 [2] 0.000001037

NF-кBn→ NF-кBn + IкBαt Uα [b] 0.0000005 [1] 0.000000279

NF-кBn→ NF-кBn + IкBβt Uβ [b] 0 [2] 0

NF-кBn→ NF-кBn + IкBεt Uε [b] 0.00000005 [3] 0.000000059

IкBα→ IкBαn Vα [b] 0.001 [1] 0.0009786

IкBβ→ IкBβn Vβ [b] 0.001 [3] 0.0004871

IkBε→ IkBεn Vε [b] 0.001 [3] 0.00147

IкBα, IкBαn→ 0 Wα [b] 0.0001 [1] 0.000132

IкBβ, IкBβn→ 0 Wβ [b] 0.0001 [3] 0.000133

IкBε, IкBεn→ 0 Wε [b] 0.0001 [3] 0.000042

IкBαt→ IkBαt + IkBα Xα [b] 0.5 [1] 0.4552

IкBβt→ IкBαt + IкBβ Xβ [b] 0.5 [3] 0.3828

IкBεt→ IкBαt + IкBε Xε [b] 0.5 [3] 0.3304

0→ IкBαt Yα [c] 0.00000005 [3] 0.000000084

0→ IкBβt Yβ [c] 0.000000005 [3] 0.00000000414

0→ IкBεt Yε [c] 0.000000005 [3] 0.00000000508

IкBαt→ 0 Zα [b] 0.0004 [1] 0.0003375

IкBβt→ 0 Zβ [b] 0.0004 [3] 0.0002031

IкBεt→ 0 Zε [b] 0.0004 [3] 0.0004742

The far left column denotes biochemical reactions. The symbols for reaction rate constants are in the column I. Their units and their published nominal values are
in columns II and III respectively. Column IV denotes the reference: [1] for Ref. [21], [2] for Ref. [20], and [3] for the average of values from Refs. [20,21]. Column V
lists values used in this paper. The units for [a] are μM-1 s-1, for [b] are s-1, for [c] are μM s-1, and for [d] are μM.
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ensemble of single-cell simulations, and compared those
distributions for the wild type and various mutants. We
made two key findings. First, there is significant overlap
between the distributions of the wild type and mutants.
This indicates that two individual cells, even if they are
genetically different, can respond to the same stimulus in
a similar manner. A better way to characterize the differ-
ences induced by the differing genetic conditions is to
model a large ensemble of cells and compare the full
distributions of single-cell responses. Second, for this
biochemical pathway, we observed that distributions of
the first Maximum response were the same for any gen-
etic conditions. Similarly, the distributions of the first
translocation time responses were the same for the wild
type and two of the genetic mutants. This means that
some dynamic features are not good indicators of
changes in the NF-кB signaling system for genetic com-
parative studies. The SE approach can be used to screen
out bad indicators among the many possible candidates.
In the next subsection, we investigate the distributions
of dynamic responses for the NF-кB signaling system
under two different dosage conditions.



Figure 9 Individual time-series curves (blue lines) and the ensemble average (red) of the key protein concentrations for an ensemble
of 1000 replicates of the wild type, stimulated by small dosage (A, C, E, G, and I) or large dosage (B, D, F, H, and J).
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Statistical ensemble analysis of dosage-dependent NF-кB
dynamical behavior
Dosage-dependent dynamical behaviors of individual and
ensemble-averaged temporal profiles
We numerically investigated the NF-кB signaling network in
response to two different stimulation dosages. As shown in
Figure 9, even though a small dosage (TR= 0.01) is 100
times smaller than a large dosage (TR= 1), the small dosage
still triggers a substantial amount of NF-кB response from
about half the replicates. The other half do not respond at all
to the small dosage. In contrast, the large dosage induces
strong NF-кB response from all the replicates homoge-
neously. For example, in Figure 9(A) where the ensemble re-
ceives a small dosage, half the temporal profiles of nuclear
NF-кB have a single peak and the other half do not. For the
half with a peak, the peaks occur after hours of time-delay
and there is a large variation in the delays. The steady-
state level of nuclear NF-кB concentration is broadly
Figure 10 Distributions of six dynamic features of nuclear NF-κB prof
signaling system undergoing small (TR = 0.01; red line) or large (TR =
First Maximum in panel (A), First Translocation Time in panel (B), First Perio
Ratio of Second Maximum to First Maximum in panel (E), and Ratio of Stea
distributed between zero and 100 nM. In Figure 9(B), the
large dosage induces a synchronized appearance of the
first peak in all the temporal profiles after a time delay of
half an hour. However, even with a large dosage, there is
a large cell-to-cell variation both in the amplitude of
the first peak and in the timing of successive peaks. In
Figures 9(C) and (D), IKK responses to the small dosage
stimulation are sharply different from those with large
dosage stimulation, i.e., very low levels of IKK versus
single-peaked responses with a large amplitude. These
IKK profiles are inversely correlated with the profiles of
cytoplasmic IкBα. The steady state levels of A20 are 2-3
times higher.

Dosage-dependent distribution of the dynamic features
The distributions of responses for a thousand-replicate
ensemble to large (TR = 1) and small (TR = 0.01) dosage
are shown in Figure 10. In Figure 10(A) and (C), both
iles for an ensemble of 1,000 replicates of the wild type NF-κB
1; black line) dosage stimulations. The six dynamic features are
d in panel (C), Ratio of First Minimum to First Maximum in panel (D),
dy State to First Maximum in panel (F).
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the First Maximum and the First Period share similar
dosage-dependent behavior: the strength and duration of
the response increase with dosage. But, for the First
Translocation Time and the Ratio of the First Minimum
to the First Maximum metrics in Figure 10(B) and (D),
the dosage-dependent behavior is inverted: the larger
dosage induces a peak at an earlier time with a smaller
First Minimum level. Moreover, the larger dosage makes
the distribution more narrowly-distributed. This indicates
the larger dosage induces an earlier and spikier response,
while the smaller dosage induces more heterogeneous First
Maximum and First Minimum levels of nuclear NF-кB
concentration. Lastly, both the ratios of the Second Ma-
ximum to the First Maximum and of the Steady State to
the First Maximum share similar dosage-dependent be-
havior in Figures 10(E) and 10(F): the smaller dosage
induces a distribution at larger values, i.e., closer to one.
In other words, when stimulated by the smaller dosage,
the levels of the First Maximum, of the subsequent ma-
xima, and of the Steady State are the same, i.e., NF-кB
profiles exhibit either a monotonically-increasing pattern
or single-peaked pattern with low peak amplitude. In
addition, the full half-maximum width of the distribution
is unaffected by the dosage amount.

Dosage-dependent distribution of the dynamic patterns
As shown in Figure 11, when stimulated by a small
(TR = 0.01) dosage, 80% of the nuclear NF-кB profiles are
damped-oscillatory whereas only 20% of are single-peaked.
But, those damped oscillatory responses are similar to a
single-peaked response. The distribution induced by the
large dosage (TR = 1) corresponds to that of the wild type
case in Figure 6. We note that for small dosage stimulation
the distribution of the dynamic patterns, the SE average,
and the individual profiles of nuclear NF-кB concen-
tration, as shown in Figures 9 and 11, are very similar
to those for the mutants responding to large dosage
Figure 11 Distribution of the dynamic patterns of nuclear
NF-кB concentration profiles for an ensemble of 1,000 replicates of
the wild type NF-кB signaling system undergoing small (TR = 0.01)
or large (TR = 1) dosage stimulations. The same four dynamic
patterns and coloring scheme are used as in Figure 6.
stimulation with IкBi and IкBε genes double knocked-out,
as shown in Figures 5 and 6. We also observed that when
the heterogeneity factor χ is increased from χ = 30% to χ =
70%, small dosage stimulation generates more heteroge-
neous dynamic patterns, i.e. nuclear NF-кB profiles in all
the pattern categories.
In this subsection, we analyzed the dynamical response of

the cellular replicates under two different stimulant dosage
conditions. This yielded distributions of six dynamic fea-
tures and associated dynamic patterns that are descriptive
characterizations of the NF-кB signaling system. Unlike the
earlier analysis of differential genetic conditions, the diffe-
ring stimulus dosages generate non-overlapping distribu-
tions and clearly distinctive dynamical behaviors. Some of
our predictions, e.g., the distribution of first translocation
time in Figure 10(B) and dynamic patterns in Figure 11,
are experimentally validated [36].

Sigmoidally shaped SE average of the dose-response curves
We numerically investigated the distribution of dose-
response curves from the SE of the NF-кB system. In
this analysis we used only 50 replicates of the NF-кB sys-
tem because of the high computational cost of calculating
a single dose-response curve. Each replicate of the NF-кB
signaling system is stimulated with a persistent signal for
30 hours, and the average (quasi-steady-state) level of
nuclear NF-кB concentration is measured between 20 and
30 hours after stimulation. To check for hysteresis effects,
we computed the dose response curve twice, first by in-
creasing the signal strength from TR = 0 to TR = 0.1 in a
step-like manner and then by decreasing it from TR = 0.1
to TR = 0. If the forward and backward dose-response
curves were significantly different, it could be regarded as
a sign of hysteresis. In Figure 12, both forward and back-
ward dose-response curves for each replicate look the
Figure 12 The individual dose-response curves (blue lines) and
the statistical ensemble average (red line) for an ensemble of
50 replicates of the wild type NF-кB signaling system.
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same, i.e. no hysteresis effects were seen. Figure 12 also
shows both the individual dose-response curves and the
SE average have a sigmoidal shape, which indicates a
switching behavior between on and off states. For a signal
strength greater than the inflection point of a dose-
response curve, the stationary level quickly reaches a pla-
teau whose value is three orders of magnitude higher than
its low stationary level at a signal smaller than the inflec-
tion point. Lastly, the cell-to-cell variability in the statio-
nary nuclear NF-кB level is dramatically larger with a
weak signal than with a strong signal, i.e., the variation is
two orders of magnitude at TR = 10-4 and one order of
magnitude at TR = 0.1. The variability is a maximum at
the inflection point of the SE dose-response curve, where
it is roughly four orders of magnitude. The cell-to-cell
variability in the location of the inflection point (along
the x-axis) is about one order of magnitude.
Discussion and conclusion
In this paper, we have used a novel statistical ensemble
(SE) method to mimic protein dynamics in a population
of cells influenced by extrinsic noise. For our model of the
NF-кB signaling system, we showed that the SE averages
match population-averaged experimental data. The added
value of the SE method is that it can also produce entire
distributions of response, which can potentially be com-
pared to experimental observations at the single-cell level.
The main predictions enabled by the SE method were as
follows: (a) nuclear NF-кB concentration profiles for single
cells are expected to fall into one of several distinct hetero-
geneous dynamic patterns, (b) larger dosages should induce
more oscillatory dynamic patterns of nuclear NF-кB
response, while smaller dosages should primarily induce
single-peaked patterns, (c) larger (smaller) dosages should
make First translocation times more narrowly-distributed
(broadly-distributed) and shift the peak of its distribution to
earlier (later) times, and (d) the shape of dose-response
curves, both at the single-cell and population level, should
be sigmoidal. After making these predictions computa-
tionally, our experimental colleagues used single-cell
fluorescence imaging to monitor NF-кB nucleo-cytoplasmic
translocation dynamics in lipopolysaccharide-insulted
murine macrophage cells, and found that nuclear GFP-RelA
(a subunit of NF-кB dimers) profiles are very heterogeneous.
They also found NF-кB dynamic responses to be much
more heterogeneous and less oscillatory when the stimulant
dosage was smaller. They also stimulated the murine mac-
rophages with two different dosages (1 nM and 1 μM) of E.
Coli lipopolysaccharide and found two distinctly different
distributions of NF-кB translocation time [36]. Thus two
of our predictions have been verified by our collaborators
who are planning to publish the results elsewhere. We
hope our computational analyses will elicit more single-
cell experimental measurement to verify the predicted
dynamic behaviors.
We wish to emphasize that the novelty of our analysis

is not due to its methodology, but rather the viewpoint
we adopt with regard to computational modeling of cellular
response. Most previous modeling efforts have focused on
bifurcation analysis of the response of a dynamical system
as its input kinetic rate constants are varied. This approach
makes a one-to-one correspondence between a form of
dynamic response and a single set of parameter values.
By contrast, the assumption in the SE approach is that
the dynamics of protein response in individual cells is
intrinsically heterogeneous. We assume a population of
cells (the replicates of the SE) does not occupy a single
point, but rather a volume of points in high-dimensional
parameter space. We choose a hybercube sub-volume of
this space (a midpoint and interval size for each dimension)
and sample from it efficiently to assign kinetic parameters
to each replicate in the SE. In this regard, our SE ap-
proach looks similar to sensitivity analysis by using
Latin Hypercube Sampling method. But, our analysis is
not for sensitivity analysis of cell signaling systems to
perturbation of model parameter values, but for gener-
ation of the heterogeneous responses in single cells. As
explained below, we choose the bounds of this sub-
volume by fitting the resulting SE averages to experi-
mentally observed population-level averages. Once this
is done and the averages match, our assumption is that
we can understand the heterogeneous behavior of the
biochemical network at the single-cell level by analyzing
the wealth of distribution data provided by the SE compu-
tations across its set of replicates.
The sigmoidal shape of the dose-response curve reveals

two important properties of NF-кB signaling: its switching
behavior and its monostability (i.e., no hysteresis). The inflec-
tion points of individual sigmoidal curves can be viewed as
activation thresholds for the NF-кB signaling pathway. As
shown in Figure 12, the NF-кB response is quite small for
signal strength below the threshold, while the response in-
creases dramatically (log scale on y-axis) for signal strengths
just above the threshold. Knowing that some NF-кB target
genes are inflammatory cytokines and that over-expressed
inflammatory response is harmful to the host, we can specu-
late that the NF-кB signaling network employs this sigmoidal
dose-response curve to down-regulate excessive inflamma-
tory responses, i.e., to only turn on if the danger level is sig-
nificantly high, otherwise to shut down. We also note that
the amplitude and timing of the first response peak for in-
flammatory cytokines (such as TNFα) are known to be cri-
tical in mediating timely and effective immune response.
This is motivation for measuring the dosage-dependent tran-
sient dynamic response of NF-κB target genes to investigate
the shape of the dose-response. Lastly, TNFα autocrine sig-
naling forms a positive feedback loop in the NF-кB signaling
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network and can induce bistability, which could modify our
results indicating monostability.
Our statistical analysis of protein dynamics depends on

how accurately the computationally generated ensemble of
the NF-кB signaling system represents a true biological
population of individual cells. This question is equivalent to
what is the true distribution of extrinsic noise? I.e., what is
the distribution from which the kinetic input parameters
should be sampled? In this paper, we have chosen a simple
answer to this question by assuming the distribution is uni-
form and bounded. We devised a heuristic fitting algorithm
to find the bounding limits of the uniform distribution for
each kinetic parameter by minimizing the discrepancy be-
tween the SE averages and the population-level experimen-
tal data. This heuristic scheme could be converted to a
more rigorous optimization problem: to find the distribu-
tion of kinetic parameters for a network model which
minimizes the difference between the SE average and the
population-level experimental measurements, while sim-
ultaneously reproducing the range of experimentally-
observed heterogeneous protein dynamics in single cells.
Additional improvements could also be made to the

procedure for sampling from the parameter space. For
example, the sampling could become more biologically
relevant, by accounting for changes in the distribution
of extrinsic noise over time as cells traverse their cell
cycle. We have also assumed no correlation between
pairs of kinetic parameters. In fact some parameters may
be co-dependent because cellular energy resources are
limited: e.g., as one kinetic process is accelerated, others
may be inhibited to balance cellular energy consumption.
All of these computational tasks would be made easier
with additional single-cell experimental data from which
the true distribution of extrinsic noise could be inferred.
Finally, we note that our analysis in this paper was sim-

plified by categorizing the nuclear NF-кB response profiles
into four dynamic patterns. This simplified various statis-
tical analyses and made it easier to characterize changes in
the distribution when genes were knocked-out. Our choice
was based on mathematical characterization of the dy-
namic protein profiles. However, it is possible this neglects
other biologically important details of the nuclear NF-кB
response, e.g. classification by time periodicity or by
steady-state level. Since the choice of categories can affect
subsequent analysis, this is an important factor to consider
when using the SE methodology.

Methods
Six dynamic features of nuclear NF-кB profiles
We define six dynamic features to represent the
distinguishing characteristics of temporal profiles of nuclear
NF-кB concentration. The first translocation time is the
time when the first peak occurs; the first period measures
the time between the first two peaks; the first and second
maxima are the amplitudes of the first and second peaks;
the first minimum is the amplitude of the “valley” between
the first two peaks; steady state refers to the asymptotic
amplitude at sufficiently long time. Using the first max-
imum as a reference level, we use scaled ratios, i.e., the first
minimum, the second maximum, and the steady state are
normalized by the first maximum. The distributions of
these dynamical features are presented in Figures 8 and 10.

Generation of the SE of NF-кB signaling network
Each kinetic rate constant listed in Table 1 is randomly
sampled from an interval (x0(1-χ), x0(1 + χ)) where χ0
is the reference value and χ is a heterogeneity factor.
To sample efficiently in the high dimensional space of
dozens of parameters, we use the Latin Hypercube
Sampling methodology discussed below. For this paper,
we used χ = 0.3. To generate a statistical ensemble (SE)
of N replicates, we simply generate N sets of randomly
sampled kinetic parameters.

Algorithm to fit the SE average to population-level
experimental data
The goal of our fitting algorithm is to determine kinetic
parameters that provide the best match for features of the
SE average to the experimental time-series data. We do not
attempt to fit all of the eighty kinetic parameters. This can
result in “over-fitting”, with too many parameters fit to too
little data. Also, by sensitivity analysis, others and we have
found there are only a handful of kinetic parameters in the
NF-кB signaling network whose variation significantly af-
fects the temporal profile of the nuclear NF-кB concentra-
tion [23,35,40]. Based on our previous studies [35,40], we
choose the two kinetic parameters most highly correlated
with each dynamic feature and varied that set of parameters
in the fitting procedure. The heuristic steps are as follows.
(1) Use an educated guess for initial kinetic parameters and
set the heterogeneity factor to χ = 039. (2) Generate the SE
and resulting protein profiles and calculate the deviation of
the six dynamic features of the SE average from the target
(experimental) dynamic features. (3) Identify the dynamic
feature with largest deviation and modify the two kinetic
parameters associated with it. (4) Repeat steps 1-3 until
the dynamic features are close to the target values. (5)
When a good fit is not achievable decrease χ in a step-like
manner. All of the data in Figures 3, 5, 4, 7 were obtained
through this process.

Numerical simulation of the NF-кB signaling network
A coupled system of ordinary differential equations
(ODEs) is derived from the NF-кB signaling network
in Figure 2. Using a 4th order Runge-Kutta scheme, we
numerically integrate the ODEs, using initial conditions
(i.e., the cytoplasmic NF-кB concentration being equal
to the total NF-кB concentration and zero concentrations
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of all other biochemical species) and kinetic parameters
shown in Table 1 and sampled as described below. Before
stimulation, the system runs for 33 hours until its constit-
uents reach equilibrium values. Then, we simulate persist-
ent stimulation by turning on the reaction, IKKn→ IKKa
with a rate TR*K1 and a non-zero constant value of TR.
The ChemCell software package is used to carry out part
of numerical simulation [41].

Latin hypercube sampling (LHS)
LHS is a constrained Monte Carlo sampling scheme.
Monte Carlo sampling is a commonly-used approach for
assessing the uncertainty of a computational model. By
sampling repeatedly from the assumed joint probability
function of the input variables, and evaluating the response
for each sample, the distribution of responses of the model
can be estimated. This approach yields reasonable estimates
for the distribution of responses, but a large number of
samples is needed if there are many input variables, i.e. a
high-dimensional input space. A large sample size can be
computationally expensive, which motivates an alternative
approach, namely LHS. LHS yields more precise estimates
of the response distribution with a smaller number of sam-
ples from high-dimensional input spaces [42]. Suppose that
the model has K kinetic rate variables and we want N sam-
ples, where a sample is a set of K values, one per variable.
LHS first selects N different values for each of the K vari-
ables, by dividing the range of each variable into N non-
overlapping intervals on the basis of equal probability. One
value from each interval is selected randomly, in accord
with the assumed probability density within the interval.
The N values for the first kinetic rate variable are then paired
in a random manner (equally likely combinations) with the
N values of the second variable. These N pairs are combined
in a random manner with the N values of the third variable
to form N triplets, and so on, until N K-tuples are formed.
Each K-tuple becomes a set of kinetic rate parameters for
one replicate within the statistical ensemble of N replicates.
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