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As animals explore an environment, the hippocampus is 
thought to automatically form and maintain a place code 
by combining sensory and self-motion signals. Instead, we 
observed an extensive degradation of the place code when 
mice voluntarily disengaged from a virtual navigation task, 
remarkably even as they continued to traverse the identical 
environment. Internal states, therefore, can strongly gate 
spatial maps and reorganize hippocampal activity even with-
out sensory and self-motion changes.

The hippocampus forms spatial codes that are critical for navi-
gation1–4. These codes are based on features of the environment, 
including sensory cues and the location of rewards5–8. Indeed, hip-
pocampal codes remap when animals are exposed to environments 
with distinct sensory cues or different task requirements and when 
cues and rewards are moved within an environment9,10. In addi-
tion, spatial codes are based on egocentric information, including 
self-motion11,12, and often degrade when animals are not actively 
moving themselves through an environment13–15.

Models of the hippocampus propose that sensory and 
self-motion signals combine to automatically form a spatial code in 
a self-supervised manner when an animal actively moves through 
an environment and experiences sensory cues12,15–19. Consistent 
with this idea, place codes form rapidly in new environments even 
before animals understand the behavioral relevance, such as before 
experiencing rewards20,21. Also, place codes are present even during 
behaviors that likely do not require hippocampal activity or detailed 
spatial maps, such as random foraging22,23. Moreover, place cells 
are easily identified across a wide range of experimental settings. 
Together, these results suggest that the hippocampus always main-
tains a spatial map of an environment during movement, and this 
spatial code is remapped selectively when the environment changes.

In this study, we took advantage of voluntary changes in a mouse’s 
engagement in a goal-directed navigation task to test whether the 
conjunction of sensory and self-motion signals is sufficient for hip-
pocampal spatial coding or if internal states modulate place codes. 
Mice were trained in virtual reality to navigate a 2-m-long linear 
track that repeated in a circular topology (Fig. 1a). Mice received 
liquid rewards if they licked a spout in a 20-cm-long reward zone, 
whereas licks in other parts of the track were unrewarded23 (Fig. 1a,b).  
Only one reward was available on each lap. In a subset of trials 
(‘crutch trials’), we gave a reward in the reward zone even without a 
lick to help mice learn the reward location (Fig. 1b). In other trials 
(‘probe trials’), we omitted the reward to test the mouse’s behavior 
regardless of consumption licks (Fig. 1b). Trained mice exhibited 
selective licking near the reward zone, including in probe trials, 
indicating a memory of the reward location (Fig. 1c).

We measured the activity of hundreds of CA1 neurons using 
cellular-resolution calcium imaging24 (Fig. 1d–f and Extended Data 

Fig. 1). As expected, we observed place cell activity in a large fraction 
of neurons, forming a sequence that tiled the entire track (Fig. 1g,h).  
Surprisingly, however, toward the end of some sessions, this sequen-
tial pattern disappeared, and the same population of neurons shifted 
to distinct activity patterns (Fig. 1g,h). This change in activity 
occurred even though the mouse continued to traverse the track and 
ran past identical visual cues on all trials. Notably, our imaging field 
of view was stable throughout the session (Extended Data Fig. 2).

The shift in neural activity patterns appeared to coincide with 
voluntary disengagement of the mouse from the task, which was 
apparent as a reduction of licking and a decline in the fraction of tri-
als that the mouse performed correctly (Fig. 2a). We developed two 
lick-based metrics to characterize the change in task engagement 
in well-trained mice. Lick selectivity quantifies the level of licking 
in the peri-reward zone compared to an equally sized zone on the 
opposite side of the track. We also calculated the number of spatial 
bins with licks on each trial as a measure of the amount of licking 
throughout the track. An engaged mouse is expected to lick dur-
ing the trial to trigger a reward and show preferential licking at the 
reward zone, whereas a disengaged mouse may lick less and without 
spatial selectivity. We calculated these two metrics on individual tri-
als and clustered the trials into two groups. One cluster had high 
lick rate and selectivity, which we termed ‘engaged’ trials, and the 
other had low lick rate and selectivity, which we termed ‘disengaged’ 
trials (Fig. 2b,c).

Some sessions had nearly exclusively engaged trials, whereas 
others had appreciable numbers of both and were the focus of this 
study. Disengaged trials typically occurred at the end of the session 
when mice had received close to 1 ml of rewards and occurred in 
streaks that were longer than expected by chance (Fig. 2d,e and 
Extended Data Fig. 3). As a result, there was a high probability that 
a disengaged trial was followed by another disengaged trial, and the 
same was true for engaged trials, indicating that sessions had sepa-
rate periods of engagement and disengagement (Fig. 2e). Thus, mice 
appeared to switch from an engaged to disengaged behavioral state, 
often near the end of a session.

Hippocampal neurons formed consistent place cell sequences 
within the engaged trials, but the profile of population activity 
was markedly different in the disengaged trials (Figs. 2f,g and 3b). 
This surprising change in neural activity, as mice performed trials 
with identical visual cues and continued to traverse the same maze, 
raised the question of whether the spatial code had remapped or 
degraded. We trained separate decoders to predict the mouse’s spa-
tial position in the maze based on activity in either the engaged or 
disengaged trials. The decoder trained on the engaged trials accu-
rately predicted the mouse’s location on held-out engaged trials, 
indicating that a robust spatial map was present (Fig. 2h, left and 
2i). This decoder’s error increased by nearly 100% when tested on  
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disengaged trials, confirming the major change in hippocam-
pal activity. Notably, the decoder trained on the disengaged tri-
als performed poorly when tested on other disengaged trials and 

was equally poor when tested on engaged trials (Fig. 2h, right). 
Decoding error in the disengaged trials was lower than chance lev-
els, and, thus, the spatial code was degraded but not absent. These 
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effects were qualitatively similar across different calcium indicators 
and decoding approaches (Extended Data Fig. 4). In contrast, in ses-
sions without behavioral disengagement, the decoding accuracy was 
similar throughout the session (Extended Data Fig. 5). These results 
reveal that the spatial code degraded when the mouse voluntarily 
disengaged from the task despite running continuously through the 
same environment. Although remapping may have contributed to 
the reorganization, the much worse spatial decoding in disengaged 
trials indicates a substantial degradation of the place code.

In the disengaged trials, mice received fewer rewards and ran 
at a uniform speed across the track, without slowing down as they 
approached the reward zone (Fig. 2j, top). If the absence of reward 
zone activity led to the degraded spatial code, then we expect decod-
ing error to increase primarily near the reward zone22. Instead, 
decoding performance was worse throughout the track (Fig. 2i). 
Furthermore, the changes in the place code between engaged and 
disengaged trials were qualitatively similar when considering only 
the non-rewarded part of the track (Extended Data Fig. 6). We also 
examined decoding accuracy on probe trials, during which the 
reward was omitted. Although decoding error was slightly higher on 
probe trials compared to standard trials with correct performance, 
the increase in error during disengagement was over 400% higher 
(Extended Data Fig. 7). Therefore, peri-reward and retrospective 
reward effects likely cannot fully account for the change in the spatial 
code between engaged and disengaged trials. To test potential effects 
of changes in running speed, we sub-sampled from engaged and dis-
engaged trials to match the running speeds for all spatial positions in 
the maze (Fig. 2j, bottom). With the running speed matched between 
engaged and disengaged trials, we still found a degradation of the 
spatial code, indicating that differences in running did not cause the 
change in the spatial code as the mouse disengaged from the task 
(Fig. 2k). Together, these results rule out two major behavioral differ-
ences between the engaged and disengaged trials and, instead, point 
to the mouse’s internal state as a key determinant of the spatial code.

We considered that population activity may undergo a gain 
change, resulting in lower activity during voluntary disengage-
ment10,25–27. Instead, we found similar levels of population activity 
in the engaged and disengaged trials (Fig. 3a,b). Also, whereas place 
field tuning was highly correlated between trials within the engaged 
period, tuning was uncorrelated between engaged and disengaged 
trials (Fig. 3b). Thus, the degradation of the spatial code was more 
likely due to a reorganization of activity than a weakening of activity 
or rate remapping.

Consistent with a reorganization of activity and degradation of the 
place code, despite similar levels of activity the number of place cells 
in the disengaged trials was approximately 35% lower (Fig. 3c). Also, 
52% of cells with place fields in the engaged trials no longer had place 
fields when the mouse disengaged, and 25% of cells with no place field 
had a place field in the disengaged trials (Extended Data Fig. 8a–c). 
For cells with place fields in both engaged and disengaged trials, only 
approximately half had place fields in similar locations (Extended 
Data Fig. 8d–f). Although place cells were present in the disengaged 
trials, they had greatly reduced reliability, measured as the trial-to-trial 
correlation in their spatially binned activity (Fig. 3d,e). They also had 
less spatial selectivity, measured as the preference for activity inside 
the place field relative to outside the field (Fig. 3f). Therefore, as the 
mouse voluntarily disengaged from the task, the overall activity levels 
in CA1 remained similar, but the reliability and selectivity of place 
cells decreased, resulting in a degraded spatial code.

To understand the time course of these changes, we compared 
the neural activity around switches from a streak of engaged trials to 
a streak of disengaged trials. Some place cells underwent a marked 
change in activity from one trial to the next (Fig. 3g). The decod-
ing error of the mouse’s spatial location from population activ-
ity increased within about five trials or approximately 30 seconds 
around the disengagement onset (Fig. 3i). Similarly, the selectivity 
of activity for the place field compared to locations outside the place 
field dropped sharply within a few trials of when the mouse behav-
iorally disengaged (Fig. 3g,h). Therefore, the degradation of the hip-
pocampal code happened within a small number of trials spanning 
approximately less than 1 minute.

Collectively, our results reveal that the hippocampal spatial code 
degraded extensively when mice voluntarily disengaged from a 
goal-directed task. Remarkably, this degradation of the place code 
occurred even though the mouse experienced the identical visual 
cues and spatial positions as it ran continually through the virtual 
environment. Thus, conjunctive sensory and self-motion signals are 
not sufficient to form a reliable spatial map in the hippocampus, and 
robust place codes are not always maintained during exploration of 
an environment. Rather, the active engagement of an animal with 
its environment is essential for the maintenance of spatial maps and 
serves as a functional gate on the reliable firing of place cells. Our 
results challenge the idea that the generation of a spatial map is an 
automatic and unsupervised process and, instead, indicate that an 
animal’s internal state can profoundly affect spatial coding in the 
hippocampus, even in the absence of changes in the external world.

Fig. 3 | The disengaged trials had fewer place cells and lower quality place fields. a, Mean population activity in the engaged and disengaged trials. 
Each gray line indicates one session. n = 32 sessions and 8 mice. Two-sided Wilcoxon signed-rank test, P = 0.70. b, Left: trial–trial correlation of spatially 
binned activity averaged across cells of all sessions on 20 trials (at least 80% engaged) immediately before a streak of at least ten disengaged trials. n = 12 
sessions and 6 mice. Values along the diagonal were set to 0. The top 1% of correlation values were saturated. Right: mean trial-wise activity of all cells 
on the corresponding trials. The s.e.m. is shown as gray shading but is contained in the line width. c, Fraction of imaged cells with place fields. Place fields 
and properties were calculated using a matched number of engaged and disengaged trials that are closest to each other in time. Two-sided Wilcoxon 
signed-rank test, P = 8.0 × 10−7. n = 32 sessions and 8 mice. d, Each pair of columns corresponds to one cell. The first two cells have place fields in both 
engaged and disengaged trials (9,837 cells total showed similar pattern); the third cell lost its place field in disengaged trials (10,792 cells showed similar 
pattern); and the last cell gained a place field in disengaged trials (3,254 cells showed similar pattern). First row: cell images with cell masks outlined. 
Second row: trial-wise activity for 20 engaged trials immediately before a streak of 20 disengaged trials. Dark blue represents 0 activity (a.u.). Top 1% 
values were saturated and indicated as max activity. Third row: mean activity (black traces) across periods. Red lines indicate location of a significant 
place field. Gray shading indicates 99% confidence bounds for shuffled data. e, Left: reliability of place fields (mean trial-to-trial correlation of spatially 
binned activity). Two-sided Wilcoxon rank-sum test, P = 0. Right: reliability across position. n = 20,629 place fields in engaged trials; 13,091 place fields in 
disengaged trials. f, Left: selectivity of place field activity. Two-sided Wilcoxon rank-sum test, P = 9.6 × 10−200. Right: selectivity across position. n = 20,629 
place fields in engaged trials; 13,091 place fields in disengaged trials. g, Representative trial-wise activity and place field selectivity of four cells around 
disengaged streak onsets. Dark blue represents 0 activity (a.u.), and the max activity after saturating the top 1% of values is indicated. Green vertical line 
marks the first disengaged trial. h, Selectivity change around disengaged streak onsets for cells with place fields in engaged trials. Left: shading represents 
mean ± s.e.m. across cells. Right: shading represents mean ± s.e.m. across sessions. n = 12 sessions and 6 mice. i, Trial-wise decoding error around 
disengaged streak onsets. The decoder was trained on ten mostly engaged trials and tested on 20 mostly engaged trials immediately before a disengaged 
streak of at least ten trials. Chance-level error is 50 cm. Left: shading represents mean ± s.e.m. across frames of each trial. Right: shading represents mean 
± s.e.m. across sessions. n = 15 sessions and 6 mice. a.u., arbitrary unit; NS, not significant.
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Our findings add to an emerging literature describing how inter-
nal states alter brain-wide dynamics25,26,28,29 by making a connection 
between task engagement and internal state with well-studied hip-
pocampal place codes. Previous work has shown that place codes 
degrade when animals are transported on a cart or presented 
with open-loop replay of movement through a virtual environ-
ment14,15,29,30. Also, place and grid cells remap under different task 
demands22,31,32 and switch between maps of the same spatial con-
text33,34. Although some of these changes may reflect differences 
in engagement, they are difficult to disentangle from changes in 
behavior and neural activity levels and may involve remapping 
instead of spatial code degradation. Here, we took advantage of the 
mouse’s voluntary disengagement from the task while it continued 
to run through the virtual maze, thus preserving identical sensory 

cues and similar movement patterns across engagement states. It 
is possible that the extent of disengagement we observed might be 
more likely in virtual reality, but even if in real-world settings the 
changes due to behavioral engagement are less drastic, we predict 
that internal states nevertheless modulate hippocampal codes.

Our results raise the possibility that an active mechanism deter-
mines the behavioral relevance of an environment and exerts 
top-down influence to gate spatial representations in CA1 (ref. 35). 
In this case, the change in internal state would modulate the hip-
pocampal place code. Alternatively, the changes in place codes that 
we observed could arise for separate reasons and cause the change 
in behavior associated with disengagement. Future experiments will 
be needed to test the underlying mechanisms and define whether 
engagement is best considered as a change in attention, satiety  
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and/or motivation. Regardless of the mechanisms, our results reveal 
that the hippocampus does not always maintain a spatial map and 
that place codes degrade even as animals experience the identical 
visual cues and spatial positions. This modulation of place codes 
could serve a general role in hippocampal function, such as to aid 
rapid task switching and toggling between spatial and non-spatial 
processing.
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Methods
Mice. All experimental procedures were approved by the Harvard Medical School 
Institutional Animal Care and Use Committee and were performed in compliance 
with the Guide for Animal Care and Use of Laboratory Animals. Imaging and 
behavioral data were collected from four Thy1-jRGECO1a GP8.31 (ref. 36) (030526, 
Jackson Laboratory) × B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J (018306, Jackson 
Laboratory) double-transgenic male mice, two B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1
Mmay/J transgenic male mice (018306, Jackson Laboratory) and five C57BL/6J 
wild-type male mice (000664, Jackson Laboratory)36,37. All mice were adult males at 
least 12 weeks old at the start of experiments. A subset of these data was collected 
for experiments studying Fos expression. Here, Fos expression (EGFP fluorescence) 
was not analyzed and will be reported in following work.

Virtual reality and behavioral hardware. We used a miniaturized modified 
version of the visual virtual reality system that has been described previously38–40. 
Head-restrained mice ran on a spherical treadmill that was constrained with a 
yaw and roll blocker to rotate only in pitch (forward and backwards relative to 
the mouse’s body). Ball movement was detected by two optical sensors (ADNS-
9800, Avago Technologies) connected to a Teensy 3.2 microcontroller (https://
www.pjrc.com/) mounted to a custom-printed circuit board. Forward translation 
in the virtual environment was controlled by rotation of the ball, with velocity 
gain adjusted such that distance traveled in the virtual environment equaled 
the distance traveled on the surface of the ball. The virtual environment was 
back-projected (laser pico-bit projector, Celluon) onto a parabolic screen 
surrounding ~180° of the mouse in azimuth, with a minimum screen distance 
from the mouse of approximately 5 inches. Designs for the virtual reality and 
behavior hardware are available at https://github.com/HarveyLab/mouseVR. Water 
rewards were delivered via a metal spout, with a solenoid valve controlling reward 
timing and quantity. Licks were detected by a custom electrical circuit triggered by 
the mouse’s tongue. Multiple contacts made within a single iteration of the Virtual 
Reality Mouse Engine (ViRMEn) (~60 Hz) were considered to be a single lick event 
for the purposes of behavioral analysis.

Virtual environment. Virtual environments were constructed using the ViRMEn 
in MATLAB41. Environments consisted of tracks 2 m in length. The end of the track 
was continuous with the beginning of the track, such that it repeated continuously 
in a circular topology. The walls of the track were tiled with textures to serve as 
visual landmarks.

Behavior task. Before being exposed to the virtual environment, mice were 
habituated and trained to run and lick the water spout to receive rewards. Once 
transitioned into the visual environment, the task contingency was fixed, and 
water rewards were delivered after the first lick in the reward zone. The reward 
zone was 1/10th the length of the track (20 cm). Occasionally (on 0.7% of trials), 
manual rewards were delivered by the experimenter to ensure that lick detection 
and reward delivery systems were working; trials with manual rewards were 
excluded from further analysis. In the final version of the behavioral task, mice 
were required to traverse the linear track and lick in a specific reward zone to 
receive water rewards. Three trial types were present within each session: standard, 
crutch and probe. In crutch trials (0–30% of trials), a water reward was delivered 
as soon as the mouse entered the reward zone, regardless of licking behavior. In 
standard trials (60–90% of trials), a water reward was delivered after the first lick 
in the reward zone. In probe trials (10% of trials), no rewards were delivered, 
regardless of the mouse’s licking behavior. Probe trials allowed us to assess licking 
and running behavior in the absence of rewards. For crutch and standard trials, 
licks that occurred in the reward zone after the delivery of reward were deemed 
‘consumption licks’ and did not contribute to measures of licking selectivity or 
numbers of licks. All other licks were considered non-consumption licks.

Surgery. Before behavioral training, dental cement was used to attach a titanium 
head plate to the skull of a 6–8-week-old mouse, typically during the cannula 
implant surgery. Upon recovery, the mouse was put on a water schedule, receiving 
1 ml of water in total per day. Body weight was monitored daily to ensure that it 
was maintained above 80% of the pre-restriction measurement.

Virus injections. Before placement on the water schedule, mice were 
anesthetized with isoflurane (1–2% in air) and given an injection of dexamethasone 
(intraperitoneal, 2 mg kg−1 of body weight) and buprenorphine (0.5 mg kg−1, 
ZooPharm). Three craniotomies were centered around a target 1.8 mm lateral to 
the midline (right hemisphere) and −2.3 mm posterior to bregma. The approximate 
locations of the three craniotomies were (1.55, −2.3), (1.93, −2.08) and (1.93, −2.52) 
mm (ML and AP axes, respectively) from bregma. Virus injections were performed 
using beveled glass micropipettes with tips positioned ~1.3 mm below the dura. 
Approximately 60 nl of AAV1/2 CAG-jRGECO1a (1 × 1011 titer, into B6.Cg-T
g(Fos-tTA,Fos-EGFP*)1Mmay/J mice) or pGP-AAV1-syn-jGCaMP8m-WPRE 
(1 × 1012 titer, into wild-type mice) was injected in each location. No virus injections 
were performed in the double-transgenic mice (Thy1-jRGECO1a x B6.Cg-Tg(Fos-tT
A,Fos-EGFP*)1Mmay/J).

Cannula implant. Cannula implants for hippocampal imaging were performed 
on water-restricted mice at approximately 90% pre-restriction body weight. 

Analgesic and anesthetic procedures were carried out as described for the viral 
injections. The hippocampal window and head plate surgery were carried out 
following the procedure developed by Dombeck et al.24,42. An approximately 
2.8-mm-diameter craniotomy was made using both a trephine drill and a 
hand-held dental drill, centered over the previous virus injection craniotomies. The 
dura was removed using a needle, micro knife and forceps (Fine Science Tools). 
The cortex was then aspirated slowly down to the white matter of the external 
capsule. During aspiration, saline was repeatedly applied to the brain. Saline 
irrigation was continued until all major bleeding stopped. The outer layers of the 
external capsule were then peeled away using light suction within the saline well, 
without directly touching the fibers. Irrigation with saline was continued until 
all bleeding stopped. A cannula was then lowered down into the craniotomy and 
cemented in place using Metabond dental cement. In a subset of mice, a small drop 
of Kwik-Sil was applied to the surface of the external capsule before the cannula 
was inserted. Cannulas were prepared in advance by bonding a 2.5-mm-diameter 
cover glass with a stainless steel tube (2.31 mm inner diameter, 2.77 mm outer 
diameter, 1.5 mm long) using UV-curable optical adhesive (Norland Products). 
During the cannula implant surgery, dental cement was used to attach a titanium 
head plate to the skull parallel to the surface of the hippocampal window. Upon 
recovery, the mouse was put back on a water schedule.

Two-photon imaging. Data were collected using a custom-built resonant-scanning 
two-photon microscope. The spherical treadmill was mounted on a three-axis 
translation stage (Dover Motion) to position the mouse with respect to 
the objective. Two-photon excitation of jRGECO1a36,43 was achieved using 
a mode-locked diode-pumped femtosecond laser at 1,040 nm (YBIX, 
Time-Bandwidth) or 1,070 nm (Fidelity-2, Coherent). A titanium sapphire 
laser was used for two-photon excitation of jGCaMP8m44 at 920 nm (Coherent 
Chameleon Vision). Emitted light was filtered and collected by a GaAsP 
photomultiplier tube. The microscope was controlled by ScanImage 2019 (Vidrio 
Technologies). Images were acquired at 30 Hz at a resolution of 512 × 512 pixels 
corresponding to a field of view of 448 × 448 μm or 768 × 768 μm. To synchronize 
imaging and behavioral data, the imaging frame clock and a subset of behavioral 
signals were recorded in pClamp (Molecular Devices) at 1,000 Hz. After recording, 
behavioral signals collected in ViRMEn were synchronized with the imaging 
clock and downsampled to the imaging frame rate (30 Hz), using linear or 
nearest-neighbor interpolation.

Maintaining the same field of view within an imaging session. Mice were 
head-fixed using a custom head plate holder designed for reproducible day-to-day 
mounting of the mouse on the ball. Once the mouse was head-fixed, the cannula 
and window were cleaned using multiple cycles of filtered water and light vacuum 
suction to remove fine dust and debris. The imaging well and cannula were filled 
with filtered, freshly boiled (and cooled) water to mitigate the formation of air 
bubbles in the cannula during imaging. The mouse was positioned under the 
objective, and the field of view was manually aligned with a reference image taken 
on day 1 of the experiment. During the imaging session, small manual adjustments 
were made to counter lateral and axial drift. Post hoc assessment of drift and image 
quality was performed by manually examining sped-up and downsampled movies 
of the entire experiment after motion correction. Insufficiently stable experiments 
were excluded before analysis of the data. Correlations for field-of-view images at 
different periods of the recording session were calculated as a metric for imaging 
stability (Extended Data Fig. 2).

Pre-processing of imaging data and source extraction. Before source extraction, 
in-plane motion was corrected using a hierarchical non-rigid registration approach 
(https://github.com/HarveyLab/Acquisition2P_class/)45,46. Spatial footprints and 
activity traces of putative neuron sources were identified and extracted from 
registered movies using Suite2p (https://github.com/MouseLand/suite2p)47. 
The resulting sources were classified into two groups: putative cell body and 
non-cell body sources. Classification was performed using a simple convolutional 
neural network trained in MATLAB on manually labelled CA1 data as described 
previously46 with the exception of two output classes rather than three.

Fluorescence trace pre-processing. Raw traces extracted by Suite2p were further 
processed as follows. First, fluorescence fluctuations in the surrounding neuropil of 
each cell were subtracted from the raw fluorescence traces (coefficient 0.8)48. Next, 
baseline fluorescence estimate was computed as the 30th percentile in a 60-second 
moving window. ΔF/F was computed by subtracting and dividing the raw trace by 
the baseline. Zero-baseline ΔF/F traces were deconvolved using OASIS (https://
github.com/zhoupc/OASIS_matlab) and then smoothed with a Gaussian kernel 
(0.5-second standard deviation)49.

Data inclusion criteria. In total, 103 sessions were recorded from 11 mice. 
Thirty-nine sessions from nine mice met the inclusion criteria for enough trials (at 
least 50 trials), good behavior performance (mean lick selectivity of all trials with 
licks exceeding 0.7; see ‘Behavioral analysis’ section for lick selectivity calculation) 
and good imaging quality and neural activity (at least 20 trials with decoding 
error less than 10 cm when trained on a sliding Bayesian decoder; see ‘Decoders’ 
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section). We also required that sessions have more than ten engaged and ten 
disengaged trials (see ‘Behavioral analysis’ section for engagement classification) 
because we aimed to compare neural activity across engagement states and needed 
more than ten trials for our decoding analyses. In total, 32 sessions from eight mice 
(four with jRGECO1a and four with jGCaMP8m) met all these criteria. Within 
each session, we excluded trials whose duration was less than 3 seconds or more 
than 60 seconds (0.05% of all trials) and crutch trials with licks only in the reward 
zone (3.4% of all trials).

Behavioral analysis. Analyses were performed using custom MATLAB code. We 
used two lick-based metrics to define task engagement. The precision of licking 
was calculated as lick selectivity. The total licks were approximated as the number 
of 5-cm spatial bins with licks, which is less sensitive to individual trials’ differences 
in the number of licks. For standard and crutch trials, we counted only the first lick 
after reward became available and excluded consumption licks. The reward zone 
for the lick selectivity calculations starts 10 cm before rewards became available to 
include anticipatory licking. We first binned licks on each trial into 2-cm-wide bins 
and applied Gaussian smoothing with standard deviation of 10 cm to denoise the 
occurrence of licks, and lick selectivity was calculated as the following:

lick selectivity =
smoothed licks in reward zone − smoothed licks in opposite zone
smoothed licks in reward zone + smoothed licks in opposite zone

The lick selectivity and number of bins with licks of all trials pooled across 
sessions were calculated and normalized respectively before k-means clustering 
with two clusters. Trials in the cluster with higher lick selectivity and number 
of bins with licks were labeled as ‘engaged’, and trials in the other cluster were 
considered ‘disengaged’. Silhouette scores were computed for all trials to evaluate 
the quality of clustering. Among the total 8,212 trials, only five trials had negative 
silhouette scores, and 95% of trials had silhouette scores greater than 0.9. All 
sessions contained more than ten engaged trials, and 32 sessions from eight mice 
(four with jRGECO1a and four with jGCaMP8m) also contained more than ten 
disengaged trials. These 32 sessions were used in the main analyses. The remaining 
seven sessions that had fewer than ten disengaged trials are shown in Extended 
Data Fig. 5.

To illustrate that disengaged trials tended to occur in streaks, we computed the 
fraction of trials that fall into streaks of different length and the transition matrix 
between engaged and disengaged trials in Fig. 2e. The same analyses were repeated 
on randomly shuffled data with matching number of engaged and disengaged trials 
for each session, and the results were averaged over 1,000 repeats.

Place field definition and metrics. The linear track was divided into 40 spatial 
bins, each 5 cm wide, for place field and decoding analyses. For each cell, we 
calculated the average deconvolved neural activity inside each bin and applied 
Gaussian smoothing with standard deviation of 10 cm. For the raster plot of each 
session (Figs. 1g,h and 2f), cells whose standard deviation of activity exceeded the 
30th percentile of all neurons’ standard deviation were included and sorted by the 
location of their most active spatial bin, calculated using their activity on all correct 
standard trials.

Significant place cells were determined by a shuffle test. During each shuffle, 
the true position of the mouse was circularly shifted relative to the neural activity 
by a random number of ≥500 imaging frames and then divided into six chunks 
whose order was randomly permuted so that the activity–position relationship was 
perturbed while the temporal and autocorrelation structure was preserved. Neural 
activity was then binned by spatial positions as described above. Significant place 
fields consisted of at least three consecutive spatial bins (≥15 cm), and, within each 
bin, the true activity exceeded the 99th percentile of the shuffled activity. Only one 
place field was considered for each cell because very few cells (3.4%) had more 
than one field. Two versions of shuffling were used. The first one used only neural 
activity on correct standard trials and repeated shuffling 100 times to generate a 
qualitative comparison between the activity in the engaged and disengaged trials 
(Fig. 2g). The second version repeated shuffling 1,000 times and was used for 
more quantitative comparisons of place fields in Fig. 3c–h and Extended Data 
Figs. 6b and 8, where place field properties in the engaged and disengaged trials 
were computed separately from a matched number of trials that are closest to 
each other in time. Specifically, the engaged trials had the shortest distance (in 
number of trials) from the median disengaged trial. The peak of each place field 
was determined by the spatial bin with peak activity. Reliability was defined as 
the pairwise Pearson correlation between the activity on each trial. The in-field 
and out-of-field activity were computed and normalized by the number of spatial 
bins. Selectivity was defined as the difference between the in-field and out-of-field 
activity, divided by their sum. Selectivity ranged between −1 and 1 (all out-of-field 
firing to all in-field firing, respectively).

For all cells with place fields in engaged trials, their engaged place fields were 
used as masks to define in-field and out-of-field positions for the disengaged trials, 
and the trial-wise selectivity around disengagement onset is shown in Fig. 3g,h.

Decoders. Population decoders were used to decode animal position from the CA1 
activity50–52. Specifically, naive Bayesian decoders were used to decode position 
from the activity of all imaged neurons on individual frames within a session. 

The code was modified from the placeBayes function in the Buzsaki laboratory’s 
GitHub repository (https://github.com/buzsakilab/buzcode/blob/6418ba3b4307c67
3988bcf6ca44b15927fef5a7d/analysis/spikes/positionDecoding/placeBayes.m). The 
decoder assumed Poisson firing and independence between neurons and adopted 
a uniform prior for all spatial bins. Following conventions in the field, imaging 
frames with running velocity less than 5 cm s−1 were excluded because place cells 
are modulated by locomotion. We tuned the decoder of each session separately by 
inputting a spatially binned activity template based on the ‘training’ trials, and the 
decoder’s performance was evaluated on the held-out trials not used for training. 
Decoding error was defined as the absolute difference between the true spatial bin 
and the decoded bin and ranges between 0 and 20 spatial bins (or 0 cm and 100 cm) 
due to the circular nature of the linear track. Chance-level decoding was ten spatial 
bins or 50 cm. For each frame and each spatial bin:

P (pos|aall) = C
( N
∏

i=1
fi (pos)ai

)

e−τ
∑N

i=1 fi(pos)

where aall is the activity of all cells; C is the normalization constant; τ is the 
temporal bin size of one frame (1/30 s); N is the total number of cells; for each cell, 
fi(pos) is the spatially binned activity template, and ai is the activity on the frame. 
The position bin with highest conditional probability given activity of all neurons 
was selected as the decoded position.

Three versions of Bayesian decoders were used in the main analyses. The first 
decoder was used to calculate a baseline decoding performance as part of the 
imaging quality inclusion criteria. The decoder is trained on a sliding window of 
20 trials at a time and tested on the immediate next trial. The sessions included 
in the main analyses have at least 20 trials whose decoding error was less than 
10 cm. These trials can occur at any point in the session and do not need to occur 
in a streak. Figure 2f and Extended Data Fig. 5a show the decoded position of two 
example sessions using this sliding decoder.

The second decoder was used to compare the spatial code across different 
engagement states and trial types (Fig. 2h and Extended Data Figs. 4a–c, 6 and 
7). After assigning trials into engaged and disengaged clusters based on licking 
behavior, we trained the decoder on ten trials of the same engagement type at 
a time. For each iteration of training, a decoder was fit and the error computed 
for each of the held-out trials. For each train/test analysis (for example, ‘train on 
engaged, test on disengaged’), the mean trial-wise decoding error was computed 
across train/test splits that met those conditions. To assess decoding performance 
in sessions with fewer than ten disengaged trials, the same decoder setup was used, 
but training trials were either from the first or the second half of the engaged trials 
(Extended Data Fig. 5b, left).

To control for the changes in the speed profile between the engaged and 
disengaged periods, we performed speed matching and re-ran the same decoder 
setup on speed-matched frames (Fig. 2j,k). Speed matching was done between 
two sets of ten trials of the same or opposite engagement type at a time. We first 
discretized the running speed into bins of 5 cm s−1 increments. At every location 
on the track (each 2-cm spatial bin), we found the overlap in the speed distribution 
of the two sets of trials to be matched, which served as the target number of 
frames for every speed bin. We then subsampled frames from the two sets of trials 
without replacement so that the resulting speed profiles were matched at every 
spatial bin, and the total number of selected frames was also matched. Each trial 
after speed matching now consisted of a subset of its original imaging frames. 
Spatially binned activity was then calculated from the speed-matched frames. 
One set of ten trials was used to train the decoder at a time, and the decoder was 
tested on its speed-matched partner trials. The mean trial-wise decoding error 
was again computed. Pairs of blocks with more than ten empty spatial bins (due to 
non-overlapping speed distributions) were excluded from the calculation of mean 
decoding error.

The last version of decoder was used to assess trends in decoding performance 
around disengaged streak onsets. For this analysis, we selected disengaged streaks 
of at least ten trials in length and with the 30 trials preceding these streaks being 
at least 80% engaged. Fifteen sessions had streaks that met this criterion. For each 
session, the first ten trials of the preceding trial group (trials 21–30 before the 
streak) were used to train the decoder, and testing was done on the 20 subsequent 
trials and then the disengaged trials in a streak. The mean trial-wise decoding error 
is reported in Fig. 3i.

In addition to using Bayesian decoders, as a control analysis we also compared 
the spatial code in engaged and disengaged trials using a template matching 
decoder, which does not assume Poisson firing. This decoder considers the 
similarity in population vectors. At each spatial bin in the maze, we calculated 
the average population activity vector from a set of training trials as the template. 
Then, for each time point to be decoded, we compared that time point’s population 
activity vector to the template at all position bins by calculating their cosine 
similarity. We considered the spatial bin in the template whose activity vector most 
closely matched that of the time point to be the decoded position. The results from 
this decoder and the Bayesian decoder are very similar (Extended Data Fig. 4d).

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. Sample sizes in terms of mice, sessions and neurons are similar to 
other contemporary studies in the field4,29,30. Of 103 sessions in 11 mice, 39 met 
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inclusion criteria based on behavioral performance, number of trials and decoding 
accuracy (see ‘Data inclusion criteria’ section). As all mice were subject to the 
same behavioral task, experimental conditions and analysis, randomization across 
subjects and blinding to experimental conditions were not necessary and did not 
take place during the experiments or data analysis. The study originally consisted 
of data from six mice (jRGECO1a calcium indicator). During peer review, data 
were collected from an additional five mice using the more sensitive jGCaMP8m 
calcium indicator in C57BL/6J wild-type mice (see ‘Mice’ section). These new 
data were subjected to the same analyses as the data presented in the original 
submission. Results were successfully replicated, appearing highly consistent across 
the two datasets collected approximately 2 years apart in different cohorts of mice. 
Data are pooled across these two sets of experiments, and, for key analyses, they 
are shown separately in Extended Data Fig. 4. For hypothesis testing, we chose the 
non-parametric two-sided Wilcoxon rank-sum test and Wilcoxon signed-rank 
tests to avoid making normality assumptions about the data distribution. 
Individual data points are shown when possible.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available on Dryad at https://doi.org/10.5061/dryad.2280gb5tx.

Code availability
The code used to analyze the data is available upon reasonable request.
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Extended Data Fig. 1 | Example fluorescence traces and deconvolved activity. a. Representative jGCaMP8m ∆F/F, deconvolved activity, and 
reconstructed ∆F/F for four cells, at different temporal scales. Shaded regions in the columns 1 and 2 indicate expanded regions in columns 2 and 3, 
respectively. b. Representative jRGECO1a traces, plotted as in (a). c. Additional example jGCaMP8m ∆F/F traces. d. Histograms of correlation between 
∆F/F and reconstructed ∆F/F from deconvolution across cells (left) and sessions (right).
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Extended Data Fig. 2 | Stability of the imaging field of view. a. Example session mean image, image from the engaged trials, and image from the 
disengaged trials, and local correlation map between them. For each pixel x in the FOV, the local neighborhood used for correlation calculation is a square 
of 41 by 41 pixels with x in the center. Similar results were obtained from 32 sessions that met inclusion criteria and contained more than 10 engaged 
and disengaged trials. b. Correlation between the mean session FOV image and FOV images of the engaged and disengaged trials. Two-sided Wilcoxon 
signed rank test, p = 0.06. The mean correlation between FOVs in the engaged and disengaged trials is 0.992. n = 32 sessions, 8 mice. c. Mean noise in the 
engaged and disengaged trials. Noise was defined as the activity less than 2 standard deviations from the mean activity of each cell. Two-sided Wilcoxon 
signed rank test, p = 0.46. n = 32 sessions, 8 mice. d. Standard deviation of noise in the engaged and disengaged trials. Two-sided Wilcoxon signed rank 
test, p = 0.97. n = 32 sessions, 8 mice.
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Extended Data Fig. 3 | Session duration and reward volume at the onset of the longest disengaged streak. a. Histograms of session duration, onset time 
of the longest disengaged streak, and the fraction of total session duration at the onset of the longest disengaged streak. b. Histograms of cumulative 
reward volume at the longest disengaged streak onset.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Decoding and place field quality for different calcium indicators, fluorescence trace processing, and decoding methods. All 
panels are plotted as in Fig. 2h-i and Fig. 3e-f. a. jRGECO1a sessions. Two-sided Wilcoxon signed rank test: Engaged vs. disengaged for decoder trained 
on engaged trials, p = 4.4 × 10−4. Engaged vs. disengaged for decoder trained on disengaged trials, p = 0.03. Train/test on engaged vs. train/test on 
disengaged, p = 4.4 × 10−4. Two-sided Wilcoxon rank sum test: reliability p = 0, selectivity p = 9.64 × 10−200. n = 16 sessions, 4 mice. Shading represents 
mean ± SEM. b. jGCaMP8m sessions. Two-sided Wilcoxon signed rank test: Engaged vs. disengaged for decoder trained on engaged trials, p = 4.4 × 10−4. 
Engaged vs. disengaged for decoder trained on disengaged trials, p = 0.02. Train/test on engaged vs. train/test on disengaged, p = 2.3 × 10−3. Two-
sided Wilcoxon rank sum test: reliability p = 0, selectivity p = 9.64 × 10−200. n = 16 sessions, 4 mice. Shading represents mean ± SEM. c. ΔF/F instead of 
deconvolved activity. Two-sided Wilcoxon signed rank test: Engaged vs. disengaged for decoder trained on engaged trials, p = 8.0 × 10−7. Engaged vs. 
disengaged for decoder trained on disengaged trials, p = 0.54. Train/test on engaged vs. train/test on disengaged, p = 1.1 × 10−6. Two-sided Wilcoxon rank 
sum test: reliability p = 0, selectivity p = 5.7 × 10−206. n = 32 sessions, 8 mice. Shading represents mean ± SEM. d. Template matching decoder. Two-sided 
Wilcoxon signed rank test: Engaged vs. disengaged for decoder trained on engaged trials, p = 8.0 × 10−7. Engaged vs. disengaged for decoder trained on 
disengaged trials, p = 0.54. Train/test on engaged vs. train/test on disengaged, p = 1.7 × 10−6. n = 32 sessions, 8 mice. Shading represents mean ± SEM.
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Extended Data Fig. 5 | Sessions with fewer than ten disengaged trials. a. Portion of one example session with fewer than ten disengaged trials (standard 
trials only). Top: Raster plots of deconvolved activity, sorted by the location of each neuron’s maximal activity on correct trials. Only neurons whose 
standard deviation of activity is above the 30th percentile of all neurons’ standard deviation are shown. Top 8% pixels were saturated. Decoded positions 
and decoding error were calculated using a sliding-window decoders as in Fig. 2f. Licks and correctness are shown at the bottom. b. Decoding performance 
of within-type held-out trials. Each gray line represents one session. Left: mean trial-wise decoding error of sessions without sufficient disengaged trials. 
The errors on held-out trials from the first half of the engaged trials (trained and tested on the first half) were compared to those from the second half of 
the engaged trials (trained and tested on the second half). Two-sided Wilcoxon signed rank test, p = 0.81. n = 7 sessions, 4 mice. Right: mean trial-wise 
decoding error of sessions with more than ten disengaged trials, as in Fig. 2h first and last bar. Two-sided Wilcoxon signed rank test, p = 2.2 × 10−6. n = 32 
sessions, 8 mice.
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Extended Data Fig. 6 | Decoding and place field characteristics for the non-rewarded half of the track. a. Similar to Fig. 2h, except for the non-rewarded 
half of the track. Two-sided Wilcoxon signed rank test: Engaged vs. disengaged for decoder trained on engaged trials, p = 8.0 × 10−7. Engaged vs. 
disengaged for decoder trained on disengaged trials, p = 0.91. Train/test on engaged vs. train/test on disengaged, p = 0.04. n = 32 sessions, 8 mice. b. 
Similar to Fig. 3e,f, except for only the non-rewarded half of the track. Two-sided Wilcoxon rank sum test: reliability p = 0, selectivity p = 1.9 × 10−222. n = 32 
sessions, 8 mice.
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Extended Data Fig. 7 | Decoding error for various trial types. a. Violin plots showing decoding error distributions for five trial types using the decoder 
from Fig. 2h trained on engaged trials. Number of trials: engaged rewarded, 3080; engaged probe, 352; disengaged probe, 429; disengaged isolated, 
189; disengaged streak, 1855. Only streaks of more than ten trials were considered. Two-sided Wilcoxon rank sum test: Engaged rewarded vs. engaged 
probe, p = 2.1 × 10−12. Engaged probe vs. disengaged probe, p = 1.9 × 10−86. Disengaged isolated vs. disengaged streak, p = 1.3 × 10−50. Disengaged probe vs. 
disengaged streak, p = 2.3 × 10−6.
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Extended Data Fig. 8 | Place field peak locations and properties. a. Peak location of place fields in engaged and disengaged trials. n = 20,629 place fields 
in the engaged trials, 13,091 place fields in the disengaged trials. b. Left: Place field status in the disengaged trials for cells with place fields in engaged 
trials. n = 20,629 cells. Right: peak locations of lost place fields. c. Left: Place field status in the disengaged trials for cells without place fields in the 
engaged trials. n = 13,091 cells. Right: peak locations of gained place fields. d. Peak locations for cells with place fields in both engaged and disengaged 
trials. n = 9837 cells. e. Absolute shift in place field peak from engaged to disengaged trials. In the shuffled data (gray), the disengaged place field peak 
locations were randomly permuted 1000 times, and the absolute shifts were calculated. f. Histogram of true and random shifts in peak locations between 
engaged to disengaged trials. Same shuffling procedure as in (e).
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Sample size No statistical methods were used to predetermine sample sizes.  The original submission contained data from 6 mice. During review, data 

from an additional 5 mice were collected using a different calcium indicator. The number of mice and imaging sessions were chosen to 

approximately match the original dataset in size. Sample sizes in terms of mice and neurons are similar to other contemporary studies in the 

field (for example, see references 4, 7, 8, 23, and 29).

Data exclusions A small number of sessions were excluded due to instability in imaging quality as described in Methods. All other experiments were analyzed, 

with inclusion criteria for specific analyses as described in Methods. 

Replication All jRGECO1a data were collected prior to analysis. During review, experiments were replicated using the more sensitive indicator jGCaMP8m. 

These data subjected to the same analyses as in the original submission and results were successfully replicated. Data are pooled across these 

two sets of experiments, but for key analyses are shown independently in Extended Data Figure 4. 

Randomization No randomization was carried out in the experimental design, all mice were subjected to the identical behavioral paradigm and imaging setup. 

Blinding All subjects took part in the same behavioral task and experimental conditions, therefore blinding during experiments was not necessary. All 

analyses took place after initial manual screening of the data (i.e. for imaging quality and stability). Besides screening of imaging quality, there 

were no manual steps in the analyses or experiments that required blinding. 
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Laboratory animals Imaging and behavioral data were collected from four Thy1-jRGECO1a GP8.31 (Stock No. 030526, Jackson Laboratory) x B6.Cg-

Tg(Fos-tTA,Fos-EGFP*)1Mmay/J (Stock No. 018306, Jackson Laboratory) double transgenic male mice, two B6.Cg-Tg(Fos-tTA,Fos-

EGFP*)1Mmay/J transgenic male mice (Stock No. 018306, Jackson Laboratory), and five C57BL/6J wild-type male mice (Stock No. 

000664, Jackson Laboratory). All mice were adult male mice at least 12 weeks old at the start of experiments.  Mice were housed in a 

12 h: 12 h reverse light:dark cycle at an ambient temperature of  22 °C and ambient relative humidity of 50%. 

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and Use Committee and were 

performed in compliance with the Guide for Animal Care and Use of Laboratory Animals. 
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