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Background and objective: The maternal glucose-insulin axis is central for metabolic

adaptations required for a healthy pregnancy. Metabolic changes in obese mothers in

early pregnancy have been scantly described. Here we characterized the glucose-insulin

axis in the first trimester of human pregnancy and assessed the effect of maternal obesity

and fat mass.

Methods: In this cross-sectional study, maternal blood samples (N = 323) were

collected during voluntary pregnancy termination (gestational age 4+0–11+6 weeks)

after overnight fasting. Smokers (N = 198) were identified by self-report and serum

cotinine levels (ELISA). Maternal BMI (kg/m2) and serum leptin (ELISA) were used as

proxy measures of obesity and maternal fat mass, respectively. BMI was categorized

into under-/normal weight (BMI < 25.0 kg/m2), overweight (BMI 25.0–29.9 kg/m2) and

obese (BMI≥ 30.0 kg/m2), and leptin in tertiles (1st tertile: leptin< 6.80 ng/ml, 2nd tertile:

leptin 6.80–12.89 ng/ml, 3rd tertile: leptin > 12.89 ng/ml). ISHOMA insulin sensitivity index

was calculated from glucose and C-peptide (ELISA) serum concentrations. Analyses

of covariance including multiple confounders were performed to test for differences in

glucose, C-peptide and ISHOMA between gestational age periods, BMI and leptin groups.

C-peptide and ISHOMA were log-transformed before analyses.

Results: At weeks 7–9, fasting glucose and C-peptide levels were lower (P < 0.01

and P < 0.001, respectively) and insulin sensitivity higher (P < 0.001) than at weeks

4–6. Glucose levels were not significantly different between BMI or leptin categories.

In contrast, C-peptide increased by 19% (P < 0.01) between the normal weight and

the overweight group and by 39% (P < 0.001) between the overweight and obese

group. In the leptin groups, C-peptide increased by 25% (P < 0.001) between the 1st

and 2nd leptin tertile and by 15% (P < 0.05) between the 2nd and 3rd leptin tertile.

ISHOMA decreased with higher BMI and fat mass. ISHOMA decreased by 18% (P < 0.01)

between the normal weight and the overweight group and by 30% (P < 0.01) between

the overweight and the obese group. In the leptin groups, ISHOMA decreased by 22% (P

< 0.001) between the 1st and 2nd leptin tertile and by 14% (P < 0.05) between the 2nd

and 3rd leptin tertile.
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Conclusions: At the group level, fasting glucose, C-peptide and insulin sensitivity

dynamically change in the first trimester of human pregnancy. Maternal obesity is

associated with higher C-peptide and lower insulin sensitivity at all periods in the

first trimester of human pregnancy, while glucose is unaltered. These findings have

implications for the timing of early gestational diabetes mellitus risk screening.

Keywords: first trimester pregnancy, obesity, fat mass, glucose, C-peptide, insulin sensitivity

INTRODUCTION

The first trimester of pregnancy is a critical period for
placentation and early cell differentiation, making it especially
sensitive to environmental changes (1). The timing of the
exposure to adverse metabolic influences is crucial since it will
affect organogenesis (2). Therefore, any dysregulation in the
maternal metabolism already in the first trimester of pregnancy
may result in pregnancy complications (3, 4). Maternal metabolic
disturbances such as obesity and type 2 diabetes mellitus
(T2DM) are associated with decreased fetal growth early in
pregnancy, followed by a catch-up growth (5, 6), suggesting
a central role of the maternal glucose-insulin axis in the
metabolic and endocrine adaptations required for a healthy
pregnancy. Indeed, impaired fasting glucose levels at weeks 9–
10 positively associate with an increased risk of developing
gestational diabetes mellitus (GDM) and giving birth to large
for gestational age (LGA) offspring (7). Obesity is well-known
to modify the glucose-insulin axis, as it often goes hand in
hand with hyperinsulinemia and insulin resistance (8). This
poses a risk for adverse pregnancy outcomes. However, despite
their importance, metabolic changes in obese mothers early in
pregnancy have been poorly described, either in small cohorts,
at only a short time period within the first trimester or not fully
addressing the glucose-insulin axis (9, 10). Indirect evidence in
women with T1DM, whose insulin requirement declines at the
end of the first trimester of pregnancy, suggests a change in
insulin sensitivity in this early pregnancy period (11, 12). To
the best of our knowledge, no one has systematically studied
changes in insulin as well as insulin sensitivity during the
first trimester, and potential influences of maternal obesity on
those changes. We hypothesized that the glucose-insulin axis
in the first trimester of human pregnancy differs depending on
maternal obesity status. Hence, in the present cross-sectional
study we aimed to analyse the influence of maternal obesity on
the glucose-insulin axis in the first trimester of human pregnancy
spanning the range of week 4+0 to 11+6. Because of its well-
known effects on insulin sensitivity (13, 14), we objectively
ascertained maternal smoking and included it as an important
potential confounder.

MATERIALS AND METHODS

Study Population and Design
The study was approved by the ethical committee of the
Medical University of Graz (no.31-094 ex 18/19). All participants
provided written informed consent after full explanation of the
purpose and nature of all procedures.

This prospective, cross-sectional study was conducted in a
non-academic setting between May 2017 and August 2018.
It included 323 pregnant women, who underwent voluntary
pregnancy termination (gestational age 4+0–11+6 weeks).
Pregnant women ≥ 18 years old with a singleton pregnancy
were included, women with known co-morbidities, e.g., pre-
existing diabetes mellitus, were excluded. Information on age
and smoking were self-reported by the participants. Height
(centimeters) and weight (kilograms) were measured before
pregnancy termination and used to calculate body mass index
(BMI; kg/m2) as an indicator of maternal obesity. Gestational
age was defined as days post last menstrual period (LMP) and
corroborated by ultrasound measurement of crown-rump length
(CRL). Self-reported non-smoking status was complemented by
quantification of serum cotinine levels. If cotinine levels were
above the threshold (cut-off of ≤ 0.03 nmol/l) (15), women were
classified as smokers independently of the self-reported status.
Cohort characteristics are shown in Table 1.

Blood Collection and Storage
Venous blood (8ml) was collected after overnight fasting in S-
Monovette R© (Sarstedt, Nümbrecht, Germany REF.: 02.1063, clot
activator) collection tubes and centrifuged at 2,000 × g at 4◦C
for 10min after arrival in the laboratory. After centrifugation, the
serum fraction was aliquoted and immediately frozen at −80◦C.
Processing time, defined as the time (minutes) between blood
collection and centrifugation of the sample in the laboratory, was
carefully recorded.

Cotinine, Leptin, C-Peptide and Glucose
Assays
Serum cotinine levels were measured with a competitive
immunoassay (Abnova, Taipei, Taiwan Cat# KA0930) using a
cut-off of ≤ 0.03 nmol/l (15) cotinine for smokers. Analytical
sensitivity of the assay was 1 ng/ml, cross-reactivities: nicotine
< 1%, nicotinamide < 1%, nicotinic acid < 1%.

Leptin (ng/ml), used as a proxy for maternal fat mass,
was measured by a sandwich immunoassay (DRG, Marburg,
Germany, Cat# EIA2395). Intra-assay and inter-assay CVs were
6.2 and 6.6%, respectively. The analytical sensitivity was 0.7 ng/ml
and recovery was 93.5% with no cross-reactivity with human
insulin, proinsulin, C-peptide, glucagon or IGF-I. Serum C-
peptide (pmol/l) was measured by a Sandwich Immunoassay
(R&D SystemsMinneapolis, USA Cat# DICP00). Intra-assay and
inter-assay CVs were 3.1 and 8.3%, respectively. The analytical
sensitivity was 2.88 pmol/l and recovery was 100.4%. Cross-
reactivity of < 0.5% was observed with recombinant human IGF
I, IGF II, insulin, proinsulin, and relaxin.
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TABLE 1 | Characteristics of the women participating in the study stratified by BMI.

Maternal characteristics All Stratified by BMI P

N = 323 Under-/normal

weight

N = 227

Overweight

N = 72

Obese

N = 24

Age, years (mean ± SD, N = 322) 29.5 ± 7.0 29.3 ± 7.0 30.4 ± 7.2 28.6 ± 5.9 0.413

Smokers [N (%)] 198 (61.3) 143 (63.0) 39 (54.2) 16 (66.7) 0.348

Gestational age [N (%)] 0.018

4–6 weeks 134 (41.5) 90 (39.6) 32 (44.4) 12 (50.0)

7–9 weeks 138 (42.7) 108 (47.6) 21 (29.2) 9 (37.5)

10–12 weeks 51 (15.8) 29 (12.8) 19 (26.4) 3 (12.5)

BMI, kg/m2 [median (IQR)] 22.7 (20.5–25.4) 21.3 (19.7–22.9) 26.8 (25.7–28.3) 32.3 (31.1–35.3) <0.001

Leptin, ng/ml [median (IQR), N = 321] 9.6 (5.0–15.8) 8.0 (4.0–11.7) 16.2 (9.9–18.6) 20.6 (16.4–29.1) <0.001

Fasting glucose, mmol/l (mean ± SD) 4.7 ± 0.8 4.7 ± 0.8 4.8 ± 0.8 5.0 ± 0.9 0.129

Fasting C-peptide, pmol/l [median (IQR), N = 322] 357.7 (270.1–454.8) 329.1 (258.0–422.1) 414.4 (301.6–404.3) 545.9 (431.7–680.8) <0.001

ISHOMA [median (IQR), N = 322] 0.76 (0.55–1.04) 0.82 (0.61–1.08) 0.68 (0.49–0.89) 0.50 (0.38–0.68) <0.001

IS20/(FCPxFPG) [median (IQR), N = 322] 12.10 (8.85–16.62) 13.12 (9.79–17.35) 10.94 (7.92–14.31) 8.02 (6.04–10.81) <0.001

ISQUICKI (mean ± SD, N = 322) 0.22 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 0.21 ± 0.21 <0.001

BMI, Body mass index (BMI < 25.0 kg/m2: under-/normal weight; BMI 25.0–29.9 kg/m2: overweight; BMI ≥ 30.0 kg/m2: obese); Gestational age, postmenstrual period; ISHOMA,

Homeostatic model assessment of insulin sensitivity; IQR, Interquartile range; SD, Standard deviation. Skewed variables were log-transformed before analysis. Statistically significant

results in bold.

Serum glucose (mmol/l) was measured using hexokinase-
based test (Glucose HK Gen.3, Roche Diagnostics, Mannheim,
Germany) on an automated analyzer (cobas R© 8000 c701, Roche
Diagnostics, Mannheim, Germany). Previous studies showed a
7% per hour decrease in glucose levels in whole blood (16) due to
glucose consumption by erythrocytes. Therefore, glucose values
were corrected accordingly for processing time.

Outcomes
Main outcomes were fasting serum glucose, fasting C-peptide
and insulin sensitivity. Fasting serum glucose and fasting C-
peptide concentrations were used to calculate insulin sensitivity
based on three indices: Homeostatic model assessment of insulin
sensitivity (ISHOMA), ISQUICKI and IS20/(FCPxFPG) (17, 18), using
the following formulas:

ISHOMA =
22.5

Cpeptide
(

pmol/l
)

× glucose
(

mg/dl
)

ISQUICKI =
1

logCpeptide
(

pmol/l
)

+ log glucose (mg/dl)

IS
20

FCP × FPG
=

20

Cpeptide (nmol/l)× glucose (mmol/l)

Statistical Analyses
Normal distribution of data was assessed visually with histograms
and QQ-plots and by comparison of mean and median values.
Skewed data were log-transformed before being used in statistical
models and re-transformed for the presentation of results.

For description of baseline characteristics, mean and
standard deviation (SD) were calculated for normally distributed

continuous variables, median and interquartile range (IQR)

were calculated for continuous variables without normal

distribution. Categorical variables are described by frequencies
and percentages. BMI and leptin are presented as both

continuous and categorical variables. BMI was categorized into
under- and normal weight (BMI < 25.0 kg/m2) overweight

(25.0–29.9 kg/m2) and obesity (≥ 30.0 kg/m2) (19). In absence of
established cut-off points for leptin and to match with the three
BMI categories, leptin levels were categorized in tertiles (1st
tertile leptin < 6.80 ng/ml, 2nd tertile leptin 6.80–12.89 ng/ml
and 3rd tertile leptin > 12.89 ng/ml). Baseline characteristics are
presented for all participants combined as well as stratified by
BMI group and smoking status. Differences between the groups
were tested by analysis of variance (ANOVA) for continuous
variables and chi-square test for categorical variables.

To assess whether the outcome variables glucose, C-peptide
and insulin sensitivity are associated linearly with gestational
age, leptin and BMI, the outcome variables were stratified by
gestational age (weeks 4+0–6+6, weeks 7+0–9+6, and weeks
10+0–116), the BMI groups and leptin tertiles. As changes in the
outcome variables between the gestational age groups, BMI and
leptin groups were non-linear, all variables were kept categorical
for all further analyses.

ANOVA was used to assess differences of fasting glucose,
fasting C-peptide and ISHOMA, between gestational age periods
(4–6 weeks, 7–9 weeks, 10–12 weeks). To examine whether
the associations are influenced by covariates, analyses were
repeated as analysis of covariance (ANCOVA), adjusting for BMI
(categorical), maternal age (years; continuous), smoking (yes/no;
dichotomous), and processing time (minutes; continuous).

Associations between maternal obesity (BMI) or fat mass
(leptin) and metabolic parameters (fasting glucose, fasting
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C-peptide and ISHOMA) were examined using ANCOVA,
including the a-priori defined covariates gestational age (4–6
weeks, 7–9 weeks, 10–12 weeks; categorical), maternal age (years;
continuous), smoking (yes/no; dichotomous), and processing
time (minutes; continuous). Equal variances of variables were
verified by Levene’s test. Results are presented as estimated
marginal means and 95% confidence intervals.

Interactions between gestational age and smoking, gestational
age and leptin and gestational age and BMI were tested,
respectively, by including both variables and all covariates in the
ANCOVAmodel and adding an interaction term. An interaction
term was deemed significant if P < 0.10.

We calculated that our sample size of 323 women was
sufficient to detect a small effect size of 0.03 for the association
between BMI and glucose, with a significance level of 5% and
statistical power of at least 80%. Previously reported effect sizes
were much larger (20).

Data analyses used R (v3.5.1) (21), graphs were produced
using ggplot2 (version 3.2.1) (22) and ggpubr (version 0.0.2) (23)
packages. A two-tailed P-value of< 0.05 was regarded significant
for all analyses.

Sensitivity Analyses
Sensitivity analyses for glucose correction (16), extreme outliers
and gestational age (24–26) were carried out as a test of
robustness of the results (Supplementary Materials).

RESULTS

The 323 women in the study had a BMI ranging from 16.6
to 41.4 kg/m2 and leptin levels between 1.3 and 47.1 ng/ml
(Table 1). Gestational age, leptin, fasting C-peptide and the three
insulin sensitivity indexes were significantly different between
BMI groups, while there were no significant differences in fasting
glucose between BMI groups.

Smoking Does Not Affect Glucose,
C-peptide and Insulin Sensitivity
Non-smokers were defined as those with non-smoking in self-
report and cotinine levels ≤ 0.03 nmol/l (15). Based on this
criterion, 125 women (38.7%) were classified as non-smokers
and 198 (61.3%) women as smokers. While BMI was similar
(P > 0.05) between the groups, leptin was higher in the non-
smokers (P < 0.01) (Supplementary Table 1). Maternal age was
also higher in the non-smokers (P < 0.01). Glucose and C-
peptide levels as well as insulin sensitivity (ISHOMA) were similar
in both smokers and non-smokers (P > 0.05).

The Three Insulin Sensitivity Indexes
Provide Similar Outcomes
Insulin sensitivity was estimated using ISHOMA, ISQUICKI and
IS20/(FCPxFPG) indexes. The results were comparable for all three
indexes (not shown). ISHOMA has been more extensively used in
the literature and, thus, will be subsequently reported.

Glucose, C-peptide and Insulin Sensitivity
Levels Change During the First Trimester
of Pregnancy
Gestational age was categorized in three periods (weeks 4–6,
weeks 7–9, and weeks 10–12) to test if changes of fasting glucose,
fasting C-peptide and insulin sensitivity across the first trimester
were linear. As the relationship was non-linear, gestational age
was used as categorical variable throughout.

In the unadjusted analyses, mean fasting glucose
concentrations decreased between gestational weeks 4–6
and weeks 7–9, but not significantly thereafter until weeks 10–12
(Figure 1, Supplementary Table 2a). After adjusting the analyses
for BMI and other confounders, results remained similar, with
estimated marginal mean (EMM) fasting glucose decreasing by
6% (P < 0.01) between gestational weeks 4–6 (4.9 mmol/l) and
weeks 7–9 (4.6 mmol/l), but remaining stable thereafter until
weeks 10–12 (4.5 mmol/l) (Supplementary Table 2b).

Fasting C-peptide levels decreased from gestational weeks 4–6
to gestational weeks 7–9, but not significantly thereafter (weeks
7–9 to 10–12). After adjusting for BMI and other confounders,
results remained similar, with EMMC-peptide decreasing by 18%
(P < 0.001) between gestational weeks 4–6 (397.5 pmol/l) and
weeks 7–9 (328.0 pmol/l), but remaining unaltered thereafter
until weeks 10–12 (316.8 pmol/l). Insulin sensitivity (ISHOMA)
increased from gestational weeks 4–6 and weeks 7–9, but not
significantly thereafter (weeks 7–9 to 10–12). After adjusting for
BMI and other confounders, results remained similar, with the
EMM ISHOMA increasing by 29% (P< 0.001) between gestational
weeks 4–6 (0.65) and weeks 7–9 (0.84), but no further significant
change thereafter (weeks 7–9 to 10–12) (0.90).

Maternal BMI and Fat Mass Affect the
Glucose-Insulin Axis in the First Trimester
BMI and measured leptin concentration in blood were used as a
proxy for maternal obesity and fat mass. Serum leptin correlated
with BMI (r = 0.510; P < 0.001) (Supplementary Figure 1)
and was not influenced by advancing gestational age
(Supplementary Table 3). Estimated marginal means of the
metabolic parameters adjusted for gestational age and additional
confounders are presented by BMI and leptin group in Table 2.

Glucose levels were not significantly different between BMI
or leptin categories (P > 0.05) (Table 2). These results did not
change significantly in the sensitivity analyses adjusting for 6%
and 8% glucose consumption per hour (Supplementary Table 4).
However, C-peptide significantly increased with increasing
maternal BMI and leptin. C-peptide increased by 19% (P < 0.01)
between the normal weight (327.5 pmol/l) and the overweight
group (389.6 pmol/l) and by 39% (P < 0.001) between the
overweight and obese group (542.7 pmol/l). In the leptin groups,
C-peptide increased by 25% (P < 0.001) between the 1st tertile
(289.5 pmol/l) and the 2nd leptin tertile (363.1 pmol/l) and
by 15% (P < 0.05) between the 2nd and 3rd leptin tertile
(417.2 pmol/l). The increase in C-peptide resulted in decreased
ISHOMA with higher BMI and fat mass. ISHOMA decreased by 18%
(P < 0.01) between the normal weight (0.83) and the overweight
group (0.68) and by 30% (P < 0.01) between the overweight and
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FIGURE 1 | Temporal changes during the first trimester of pregnancy of

fasting glucose (A), fasting C-peptide (B), and insulin sensitivity (ISHOMA ) (C).

Gestational age was divided into three categories (weeks 4–6, 7–9, and

10–12) and glucose, C-peptide and ISHOMA values were compared with

ANOVA. Glucose and C-peptide decreased between weeks 4–6 and 7–9,

whereas ISHOMA increased. **P < 0.01, ***P < 0.001, NS, not significant.

the obese group (0.47). In the leptin groups, ISHOMA decreased
by 22% (P < 0.001) between the 1st tertile (0.94) and the 2nd
leptin tertile (0.74) and by 14% (P < 0.05) between the 2nd and
3rd leptin tertile (0.63).

No Interactions Between Maternal BMI,
Leptin, Gestational Age and Smoking
To investigate whether the strength of the relationship between
the metabolic parameters and BMI and leptin, respectively,
differs between the gestational age groups and between smokers
and non-smokers, interaction terms were added to the analyses.
No significant interactions were found. Thus, while the metabolic
parameters are independently associated with gestational age and
maternal obesity or fat mass, no interaction was found between
the variables, meaning that the relationship between the glucose-
insulin axis and BMI and leptin groups is comparable during the
whole first trimester of pregnancy.

Sensitivity Analyses
Sensitivity analyses (a) applying different corrections for glucose
consumption, (b) excluding outliers, and (c) testing the potential
effect of misreporting gestational age provided comparable
results (Supplementary Tables 4–7).

DISCUSSION

The present study analyzed the effect of maternal obesity and
fat mass on the maternal glucose-insulin axis during the first
trimester of pregnancy. The main findings were: (1) glucose and
C-peptide concentrations in maternal serum decrease between
week 4–6 and 7–9, paralleled by an increase in insulin sensitivity,
and (2) increasing degrees of maternal obesity and fat mass were
associated with higher C-peptide and lower insulin sensitivity,
but not with changes in glucose levels.

To our knowledge this is the first study measuring fasting
concentrations of serum glucose, C-peptide and calculating
insulin sensitivity early in pregnancy (day 28 to 84) in a large
sample size (323 serum samples). Furthermore, we were able to
objectively distinguish smokers from non-smokers by combining
self-report with cotinine levels measured in serum.

Temporal Changes
Gestational age was statistically different between BMI groups,
which could have influenced the temporal changes observed in
glucose, C-peptide and ISHOMA. However, adjusting the analyses
for BMI did not change the significance, suggesting that the
differences in the glucose-insulin axis and gestational age period
are independent of BMI.

Peripheral sensitivity to insulin and glucose early in pregnancy
are similar to the pre-gravid period and depend on the
metabolic status of the mother (27). Comparable to our study,
a decrease in fasting plasma glucose during the first trimester
in normal weight and overweight women was already described
in a US American and a Chinese population (9, 10). The
present results in a European population suggest that these
changes may be independent of lifestyle and ethnicity. The
decrease we found in C-peptide between week 4–6 and 7–9
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TABLE 2 | Association between maternal BMI and leptin with fasting glucose, fasting C-peptide and insulin sensitivity (ISHOMA ).

Under-/normal weight (G1) Overweight (G2) Obese (G3)

EEM (95% CI) EEM (95% CI) EEM (95% CI) P G1-G2 P G1-G3 P G2 -G3

Fasting glucose, mmol/l 4.7 (4.6; 4.8) 4.8 (4.6; 5.0) 4.9 (4.6; 5.2) 0.514 0.216 0.653

Fasting C- peptide, pmol/l 327.5 (311.1; 343.6) 389.6 (359.0; 428.9) 542.7 (473.2; 642.7) 0.002 <0.001 <0.001

ISHOMA 0.83 (0.78; 0.87) 0.68 (0.61; 0.75) 0.47 (0.40; 0.56) 0.002 <0.001 0.001

Leptin 1st tertile (G1) Leptin 1nd tertile (G2) Leptin 3rd tertile (G3)

EMM (95% CI) EMM (95% CI) EMM (95% CI) P G1-G2 P G1-G3 P G2-G3

Fasting glucose, mmol/l 4.7 (4.5; 4.8) 4.7 (4.6; 4.9) 4.8 (4.7; 4.9) 0.756 0.354 0.759

Fasting C- peptide, pmol/l 289.5 (269.4; 311.1) 363.1 (338.6; 389.3) 417.2 (388.7; 447.8) <0.001 <0.001 0.017

ISHOMA 0.94 (0.87; 1.02) 0.74 (0.68; 0.80) 0.63 (0.58; 0.69) <0.001 <0.001 0.023

Adjusted for: gestational age (3 categories), maternal age (years), smoking and processing time (minutes). C-peptide and ISHOMA log-transformed before analysis and retransformed by

exponentiation. BMI, Body mass index (BMI< 25.0 kg/m2: under-/normal weight; BMI 25.0–29.9 kg/m2: overweight; BMI≥ 30.0 kg/m2: obese); CI, Confidence interval; EMM, Estimated

marginal means; G1, Group 1; G2, Group 2; G3, Group 3; ISHOMA, Homeostatic model assessment of insulin sensitivity; Leptin, (1st tertile: < 6.80 ng/ml; 2nd tertile: 6.80–12.89 ng/ml;

3rd tertile: > 12.89 ng/ml). Statistically significant results in bold.

is seemingly different from a longitudinal study in 34 women
(28) showing an increase in insulin levels from pre-conception
to week 12–14. Possible explanations could be the cross-
sectional design, the much larger sample size of our study,
or differences between measuring C-peptide and insulin levels.
Alternatively, it may represent true physiology of an increase
in fasting insulin levels between late first and early second
trimester. Indeed, in a previous longitudinal time series analysis
there was a trend for an increase in fasting insulin between
weeks 8 and 14 (29).

The decrease in serum glucose and C-peptide concentrations
we detected in early first trimester could in part be explained
by a dilution effect caused by the increase in maternal plasma
volume in early pregnancy as previously proposed (30). Plasma
volume begins to rise at around week 6 of gestation (31), and
increases by 7–10% until week 12 (32). However, if the decrease
was only due to a dilution effect, then similar relative decreases
in glucose and C-peptide would be expected. While the 6%
decrease in glucose concentration between week 4 and 9 could
be explained by the dilution effect, in the same period, C-peptide
decreases by 18%. Therefore, changes in circulating fasting C-
peptide levels are unlikely the sole result of plasma volume
changes, and additional mechanismsmust be in place. Hormones
or exosomes (33) released from the placenta have been implicated
in maternal adaptation to pregnancy and may contribute to the
changes found here.

One of the difficulties when studying the first trimester of
pregnancy is the accurate determination of gestational age. Self-
reported last menstrual period is not always reliable due to
irregular cycles or inability to precisely remember the date
of the last menstruation (26). Ultrasound measurement of
the crown-rump length (CRL), generally acknowledged as the
most accurate method for the assessment of gestational age
(24), is impossible or technically challenging at the earliest
stages of pregnancy and we, therefore, used LMP data in
our study. To accommodate these potential inaccuracies, we
performed two sensitivity analyses, which confirmed robustness
of the results.

The dynamic changes in fasting glucose concentrations during
the first trimester have clinical relevance. They imply that
screening in early pregnancy for unrecognized T2DM or GDM
risk based on fasting glucose (34) would be more effective after
7–9 weeks of gestation when, based on our data, fasting glucose
and fasting C-peptide concentrations have stabilized.

Effects of Obesity and Fat Mass
We used BMI and serum leptin for the analysis of obesity
and fat mass effects. The BMI was calculated from measured
weight and height, avoiding self-report bias. The data were
recorded prior to pregnancy termination and may in principle
not accurately reflect pre-pregnancy BMI. However, body
composition, objectively measured with bioelectrical impedance
analysis, and BMI do not significantly change in the first trimester
of pregnancy (35). Hence, the BMI of the present study can be
assumed to reflect pre-pregnancy BMI.

However, BMI is a poor indicator of fat mass (36, 37) and
inferior to direct measurements of visceral adipose tissue depth
in explaining insulin resistance variance (38). Therefore, we
measured serum leptin as a better proxy for maternal fat mass
and performed all the statistical tests with both parameters. The
changes observed in glucose, C-peptide and insulin sensitivity
were comparable between BMI and leptin categories, which add
confidence that the BMI-associated differences are the result
of fat mass differences. Although we cannot disregard some
placental contribution to maternal leptin levels in the first
trimester, we argue that most of the leptin measured here was
secreted by maternal adipose tissue, hence reflecting maternal fat
mass, because (1) maternal serum leptin correlated with maternal
BMI, and (2) serum leptin did not increase with increasing
gestational age, not even after adjusting for BMI.

The higher maternal fat mass, measured as leptin, was
associated with higher C-peptide and lower insulin sensitivity.
Higher insulin levels and insulin resistance in obese as compared
to normal weight has also been reported before in a small cohort
measured at one time point (mean gestational age week 9) (39).
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Smoking alters metabolism in a number of ways, including
changes in plasma lipids and increased insulin resistance (13, 14).
Interestingly, in our study smoking did not significantly influence
the glucose-insulin axis. However, leptin levels were lower in the
smokers. This has been described before outside of pregnancy
(40) and several mechanisms have been suggested to explain this
phenomenon (36, 37, 41, 42).

Strengths and Limitations
A specific strength is the inclusion of the very early weeks
of gestation, because of the predominant histiotrophic route
of nourishing the embryo/feto-placental unit. This may
require higher maternal concentrations of key metabolites
as compared to the later stages in the first trimester, when
the maternal circulation supplies its nutrients directly to the
feto-placental unit.

The cohort comprised women, who intentionally had their
pregnancies terminated for psychosocial reasons. Smoking
women are overrepresented (61%) compared to the average
prevalence of female smokers (22%) in Austria (43). Both aspects
may limit representativeness of the results. As we do not have
socio-economic information on the women, we could not adjust
for this in the analyses.

ISHOMA is the most widely used index for insulin
sensitivity and ISHOMA correlates with glucose clamp
results, the gold standard for measuring insulin sensitivity
(44), but there is evidence that it might not be the most
suitable in all populations and ethnicities. For example
it is of limited use in subjects with low BMI, reduced β-
cell function or high fasting plasma glucose (45). We lack
information regarding the ethnicity of our study population.
Thus, to avoid bias by limiting the calculation of insulin
sensitivity to ISHOMA, we used three different indexes
ISHOMA, ISQUICKI and IS20/(FCPxFPG) (17, 18) as a proxy for
maternal insulin sensitivity, and all three provided essentially
similar results.

A limitation is the non-academic setting, which precluded
spinning the blood immediately after collection. Hence, we had
to introduce a correction factor for glucose consumption by
red blood cells. However, sensitivity analyses using different
correction values did not significantly change the results.
For diabetes diagnosis, collection of plasma instead of serum
is preferred, since it might improve the diagnosis in those
patients with glucose levels close to the cut-off values (46).
In our study, we excluded patients with known comorbidities
such as pre-existing diabetes. Therefore, the use of serum or
plasma for glucose quantification should not have affected
the results. Another limitation is the cross-sectional design,
which did not allow testing changes of metabolic parameters
within different subgroups over time. Therefore, we could
not assess whether metabolic heterogeneity of obesity
may have influenced the results, which are limited to the
group level.

Finally, fetal sex should have been considered, because
carrying a male fetus is associated with higher fasting glucose in
the mother (47) and an increased risk of developing GDM (48).
However, we did not have placental tissue available for all subjects
for genotyping and thus could not test sex-effects in our study.

CONCLUSIONS

The first trimester of pregnancy is a dynamic period that
requires metabolic adaptations. We have shown differences in
fasting glucose, fasting C-peptide and ISHOMA even within the
narrow time window of 8 weeks, i.e., week 4–12, covered in the
present study. Furthermore, as we demonstrate for the first time,
maternal obesity and higher fat mass are associated with higher
fasting C-peptide and lower insulin sensitivity throughout the
first trimester of human pregnancy. This suggests impairment in
the glucose-insulin axis already very early in the first trimester
in obese women. As a speculation, early dysregulation in the
glucose-insulin axis may link maternal obesity/fat mass with
altered placental development (49) and contribute to adverse
pregnancy outcomes in obese mothers. The variation in the
glucose-insulin axis in the first trimester both with time and
maternal fat mass may explain the poor predictive power of
early fasting blood glucose for later GDM. Based on the present
study, GDM risk is best assessed in the last weeks of the
first trimester of pregnancy, when the glucose-insulin axis has
stabilized. The dynamic changes shown here call for future
studies encompassing a wider range of metabolites and hormones
to improve the understanding of the physiologic mechanisms
underlying early metabolic and endocrine adaptive responses of
the mother to a beginning pregnancy.
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