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Abstract
Covariate modeling is an important opportunity for pharmacometrics to in-
fluence decision making in drug development. The stepwise covariate model 
(SCM) building procedure is the most common method for covariate model de-
velopment. Despite its advantages, the traditional SCM method is known to have 
long runtimes and the suboptimal ability to select relevant covariates, especially 
in more complex phase III settings. In this work, two alternative approaches 
are presented: SCM+, which introduces the “adaptive scope reduction” and 
changes to general estimation settings, and “stage- wise filtering,” which groups 
covariates into categories based on their importance (mechanistic, structural, 
and exploratory). The three methods (SCM, SCM+, and SCM+ with stage- wise 
filtering) are applied to data from a simulated phase III population pharma-
cokinetic study and are compared in terms of efficiency and relevance. The two 
SCM+ methods were considerably more efficient than the traditional SCM: the 
number of function evaluations was reduced by 70% for SCM+ and by 76% for 
SCM+ with stage- wise filtering compared to SCM; the corresponding number of 
executed models was reduced by 44% for SCM+ and 70% for SCM+ with stage- 
wise filtering. In addition, among the three methods, SCM+ with stage- wise fil-
tering selected the highest number of relevant covariates. Given the improved 
efficiency and ability to select relevant covariates shown in this work, the use of 
SCM+ and stage- wise filtering can greatly increase the efficiency of covariate 
modeling in drug development, which will ultimately facilitate more timely sup-
port for decision making.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Covariate modeling is an important opportunity for pharmacometrics to influ-
ence decision making in drug development. To this aim, the identified covari-
ates need to be delivered on time and be considered relevant. Covariate modeling 
is often carried out using stepwise procedures (e.g., stepwise covariate model 
[SCM]). The standard SCM workflow is time- inefficient with suboptimal ability 
to select relevant covariates.
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INTRODUCTION

Covariate model development is a key component of phar-
macometrics, population pharmacokinetics (PKs), and 
PK/pharmacodynamic (PK/PD) model development.1 
The covariate model may have meaningful influence on 
drug development decisions and can, for example, justify 
changes in dosing strategies, and identify patient subpop-
ulations with specific characteristics of drug absorption or 
metabolism.

A comprehensive review of the methods used for co-
variate selection in pharmacometric analysis was pub-
lished by Hutmacher and Kowalski in 2014.1 In the 
context of pharmacometric covariate model development, 
stepwise covariate model building procedures are the 
most commonly used.1 Among other advantages, these 
procedures are simple to implement, easy to understand, 
and generally accepted by regulatory authorities. On the 
other hand, an obvious drawback is that they may be 
time- consuming, especially with complex models and/or 
with many potential parameter– covariate relations to con-
sider. This is particularly relevant for the phase III setting, 
where focus is often set on identifying, or ruling out, the 
presence of patient subpopulations that may require alter-
native dosing schedules. In addition, stepwise variable se-
lection models have been criticized for their sensitivity to 
high correlations between covariates, which may result in 
implausible selection of predictors and inclusion of excess 
noise variables1,2 and may thus lead to models with poor 
predictive capabilities. However, as concluded by Ribbing 
and Jonsson,3 selection bias and its impact on predictive 
performance is mainly an issue for covariates with a low 
power to be selected (i.e., typically weak covariates in 
small datasets).

Clinical drug development proceeds in phases, 
going from small studies in healthy volunteers aimed at 

establishing safe dose ranges (phase I), proof- of- concept 
and identification of candidate dosing regimen studies 
(phase II), to large clinical trials that focus on estab-
lishing therapeutic benefit in wider patient populations 
(phase III). The sequential nature of most drug devel-
opment programs entails that once the program reaches 
phase III, considerable knowledge has been accumu-
lated on the studied condition and the characteristics of 
the drug. This implies that before starting any covariate 
modeling work on the phase III data, the clinical de-
velopment team often has reasonable expectations on 
candidates for relevant parameter– covariate relations. 
However, this knowledge is often not used (see Svensson 
et al. illustrating an exception4) and covariate screening 
is performed with an exploratory mindset, where all co-
variates are treated in the same way, regardless of the 
prior knowledge accumulated.

In this work, we illustrate an alternative concept to 
the common framework for pharmacometric covariate 
model development using stepwise approaches. It is based 
on the implementation of stepwise covariate searches in 
Perl- speaks- NONMEM (i.e., the stepwise covariate model 
[SCM] tool in PsN.5,6 This concept has two components: 
the first is SCM+, which is a development of the tradi-
tional stepwise algorithm used in SCM.6 SCM+ intro-
duces “adaptive scope reduction” (ASR)7 and a number 
of changes to general estimation settings; SCM+ aims at 
improving the overall efficiency of the stepwise covariate 
search. The second component is “stage- wise filtering,” 
which groups covariates into categories based on their 
importance (mechanistic > structural > exploratory co-
variates) and aims at improving the ability to select rele-
vant covariates. Although the implementation of the SCM 
and SCM+ is NONMEM- specific,8 the general concepts 
explored in this paper can be adapted and used in other 
applications.

WHAT QUESTION DID THIS STUDY ADDRESS?
Can SCM be improved in terms of efficiency and ability to select relevant 
covariates?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
SCM+ is introduced and shown to be more efficient than SCM, with similar abil-
ity to select relevant covariates. Stage- wise filtering is a grouping principle that 
involves grouping covariates into categories (mechanistic, structural, and explor-
atory) and test them in order of importance. Stage- wise filtering improved the 
ability to select relevant covariates.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Given the improved efficiency and ability to select relevant covariates, the use of 
SCM+ and stage- wise filtering can increase the influence that covariate modeling 
has on drug development decision making.
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To characterize the benefits of this alternative ap-
proach over the traditional SCM approach, we applied 
the different methods to data from simulated phase III 
population PK studies and compared their efficiency and 
ability to select relevant covariates. Specifically, (a) the ef-
ficiency, in terms of total number of function evaluations 
and executed models, as well as (b) the ability to select 
relevant covariates were compared among SCM, SCM+, 
and SCM+ with stage- wise filtering.

METHODS

Overview

A simulated phase III example study was used in this 
analysis. The simulation was designed to include some 
of the challenges often encountered in a phase III setting, 
for example, an analysis dataset including both smaller 
healthy- volunteer studies and larger patient studies with 
different formulations, food effects, multiple dose levels 
(denoted low, middle, and high dose), and realistic co-
variate distributions (non- normal correlations of varying 
magnitude). To add further complexity, the simulation 
model was different from the estimation model. This is 
partly because the simulation model is not identifiable 
from an estimation perspective and because of parameter-
ization differences.

Simulated data

The example was setup to mimic an orally administered 
drug in a phase III setting: the PKs of the drug has been 
characterized using a pooled dataset consisting of two 
phase I studies and one phase III study. The character-
istics of the studies closely resemble three real studies 
used in the analysis published by Smania and Jonsson9 
and are briefly described below. Altogether, 100 pooled 
analysis datasets were simulated and each of them was 
subjected to the SCM procedures investigated in this 
paper.

The studies

The first phase I study was a single high dose, cross- over, 
food- effect study and included 30 richly sampled (0– 48 h 
postdose, 11 samples per subject) healthy volunteers.

The second phase I study included 30 healthy volun-
teers that were either poor or normal cytochrome P450 
2D6 (CYP2D6) metabolizers. Fasting subjects were ad-
ministered the low, middle, or high dose daily for 14 days. 

Rich sampling was carried out between 0 and 24 h after 
the first and last doses (19 samples per subject).

The phase III study included 500 patients with daily 
dosing of the low, middle, or high dose for 4 weeks. The 
sampling was sparse with one predose sample and one 
postdose sample (2– 4 h after dosing) at 4 weeks. All sub-
jects were assumed to be in the fed state at dosing and 
were assigned one of two different oral formulations.

Patient characteristics

Covariate data were simulated using conditional distri-
bution (CD) modeling9 based on the observed covariate 
distribution from the three real studies used as templates. 
This method retains the original multivariate distribu-
tion of the covariates without reducing the number of 
unique covariate vectors (per simulated dataset) like a 
bootstrap approach would. Eleven covariates were con-
sidered: age, alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), bilirubin, creatinine clearance 
(CRCL), CYP2D6 genotype, ethnicity, National Cancer 
Institute (NCI) liver function classification, race, sex, and 
body weight (WT). The same age and sex values were used 
across the simulated datasets to “seed” the simulations.9 
Only baseline values were considered for these covari-
ates. CRCL was calculated from the baseline serum creati-
nine using the Cockcroft– Gault formula10 capping CRCL 
at 150 ml/min. The NCI liver function classification was 
based on bilirubin and ALT levels.11

In addition, food intake and formulation were con-
sidered as covariates and their values were given by the 
designs of the studies. Altogether, each subject was associ-
ated with 13 covariates. It was assumed that there were no 
missing covariates.

Simulation model for PK data

Plasma PK samples were simulated in NONMEM from 
a one- compartment model with linear elimination and 
sequential zero and first- order absorption. Elimination 
was simulated by including both hepatic and renal com-
ponents. The renal contribution to elimination was regu-
lated by the parameter fe, set to 0.4 for the typical subjects.

A mixture of categorical and continuous covariate– 
parameter relations of various strengths were used. This 
process was assisted by visually comparing the simulated 
changes in parameters, given (a) the size of the coef-
ficient and (b) the range or frequencies of the covariate 
(Figure S1). The parameterizations and coefficients used 
for simulation are available as supplementary mate-
rial (Model code S1).
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Regarding the covariate– parameter relationships con-
sidered, WT was included on hepatic clearance (CL) and 
volume of distribution (V) with allometric constants of, 
respectively, 0.75 and 1. Diet was a strong covariate on ab-
sorption, affecting the first- order absorption rate constant, 
zero- order absorption duration, and relative bioavailabil-
ity (Frel). CYP2D6 and NCI were intermediate covariates 
on hepatic CL and Frel. The effect size of CYP2D6 gen-
otype was set so that CYP2D6 was responsible for 50% 
of the hepatic CL (assuming hepatic extraction ratio of 
0.35); coefficients were calibrated to achieve changes in 
apparent hepatic CL in line with values reported for an 
example CYP2D6 substrate.12 Formulation was a weak- 
intermediate covariate on Frel, whereas CRCL was a weak 
covariate on renal CL. Continuous covariate effects were 
implemented using an exponential parametrization, ex-
cept for WT on CL and V, which were included using 
power relationships.

Interindividual variabilities (IIVs) were generally in-
cluded using log- normal distributions on all parameters, 
and weak correlations between these IIVs were included 
in the simulations. Finally, IIV was also included on fe 
(additive on the logit scale), and the exponential residual 
error had an associated exponential IIV.

Estimation model

The estimation model had a different and simpler 
structure than the simulation model and is included 
in the supplementary material  (Model code S1). The 
base estimation model was a one- compartment model 
with linear elimination. In contrast to the simulation 
model, only total CL was modeled. The sequential zero 
and first- order absorption was parameterized in terms 
of mean absorption time (MAT). The MAT was esti-
mated as two fractions: one for the zero- order absorp-
tion (Equation 1) and one for the first- order absorption 
(Equation 2).

 

where Dur0– orderabs is the duration of the zero- order ab-
sorption and f0– orderabs is the fraction of MAT that reflects 
the zero- order absorption and is an estimated parameter 
of the model.

CL, V, MAT, Frel, and the residual error were associated 
with log- normal IIVs without correlations.

Concentration measurements below an assumed lower 
limit of quantification were excluded from the estimation.

Stepwise covariate model building  
procedures

SCM and SCM+

The SCM approach proceeds in two stepwise phases: a 
forward inclusion phase and a backward elimination 
phase (Figure  1, green shapes). In each step of the for-
ward phase, the covariate– parameter relationships in the 
defined search scope are tested one at a time. Among the 
statistically significant relationships, the most significant 
one (with the lowest p value) is included. This proceeds 
until no more relations are significant. The model ob-
tained in this forward step is then subjected to a stepwise 
backward phase where, at each step, the least significant 
covariate– parameter relationship (with the highest p 
value), is removed from the model. This is repeated until 
no more relations can be removed, at which point the 
model is considered final.5,6

For the SCM+ approach,7 ASR is added to the default 
SCM algorithm. ASR reduces the defined search scope 
during the forward search based on the performance of 
each covariate– parameter relation in the previous steps 
(Figure 1, blue shapes). Although the first forward step is 
identical to the SCM (Figure 1), when moving on to the next 
forward step the number of parameter– covariate relations 
to be tested is reduced. By using the ASR, any covariate– 
parameter relation that is not significant according to the 
forward inclusion criteria is removed from the search scope 
(until the additional forward step, see below). This process 
is repeated for each subsequent forward step until no ad-
ditional covariate– parameter relation remains to be tested. 
After this, in an additional forward step, SCM+ retests all 
relationships that were excluded by the ASR. Should one 
of the removed covariates be significant in the retesting, 
the remaining removed covariates will be tested again until 
none of them is significant. Then, the backward elimina-
tion proceeds as described for the SCM.

To improve efficiency, SCM+ also uses different esti-
mation settings than SCM. The default NONMEM ter-
mination criterion is changed to CTYPE = 4, which only 
considers changes in objective function value between 
iterations instead of the more complex criteria used by 
default.7 The maximum number of function evaluations 
allowed (i.e., MAXEVAL in NONMEM) is also restricted 
in SCM+ and is set dynamically based on the number of 
function evaluations used by the base model.7

Stage- wise filtering

With stage- wise filtering, the analyst categorizes co-
variates into three groups: mechanistic, structural, and 

(1)Dur0−orderabs =MAT ⋅ f0−orderabs

(2)ka =
1

(

MAT ⋅

(

1 − f0−orderabs
))
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exploratory. Mechanistic covariates are those known to 
have an impact on one or more parameters of the model 
and are included in the base model without being tested 
(e.g., often WT on elimination and disposition, based 
on the reasonable assumption that these processes are 
related to body size). Coefficients for mechanistic co-
variates can be fixed or estimated. Structural covariates 

are those that have a strong rationale to impact one or 
more model parameters; these are often specific to the 
study design (e.g., formulation or diet status). Structural 
covariates are tested prior to exploratory covariates. 
Exploratory covariates are those that are not mecha-
nistic or structural and are explored for hypothesis- 
generating reasons.

F I G U R E  1  Overview of the stepwise covariate model (SCM) and SCM+ algorithms.

T A B L E  1  Covariates tested in the traditional SCM, SCM+, and SCM+ with stage- wise filtering

Category Parameter SCM and SCM+ Stage- wise filtering

Mechanistic CL None WT,a genotype

V WTa

Structural CL None CRCL

MAT Diet, formulation, genotype

Frel Diet, formulation, genotype

Exploratory CL CRCL, age, AST, ALT, BILI, sex, race, ethnicity, NCI, 
CYP2D6 genotype, WT

Age, AST, ALT, BILI, sex, race, 
ethnicity, NCI

V Age, AST, ALT, BILI, sex, race, ethnicity, NCI, WT Age, AST, ALT, BILI, sex, race, 
ethnicity, NCI

MAT Age, AST, ALT, BILI, diet, sex, race, ethnicity, NCI, 
genotype, formulation

Age, AST, ALT, BILI, sex, race, 
ethnicity, NCI

Frel Age, AST, ALT, BILI, diet, sex, race, ethnicity, NCI, 
genotype, formulation

Age, AST, ALT, BILI, sex, race, 
ethnicity, NCI

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BILI, bilirubin; CL, clearance; CRCL, creatinine clearance; Frel relative 
bioavailability; MAT, mean absorption time; NCI, National Cancer Institute –  in reference to liver function classification; SCM, stepwise covariate model; V, 
volume of distribution; WT, body weight.
aFixed to the standard allometric exponents.
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Stage- wise filtering proceeds in three phases: (a) addi-
tion of mechanistic covariates to the base model and no 
testing is involved; (b) stepwise inclusion of structural 
covariates; and (c) stepwise inclusion of exploratory co-
variates. The stepwise inclusion phases can be done using 
either SCM or SCM+: in this paper, only SCM+ is used for 
the inclusion. The three covariate categories are hierarchi-
cal, meaning that a structural covariate cannot replace a 
mechanistic covariate, and an exploratory covariate can-
not replace a structural or mechanistic covariate.

Covariate analysis

Additional settings were used for this analysis: covariate 
categories with 10 or fewer subjects were merged with the 
most common category (for unordered categorical vari-
ables) or nearest category (for ordered categorical vari-
ables). Categorical covariates were binarized so that each 
level became a yes/no covariate (“one- hot encoding”). In 
the SCM and SCM+ analysis, covariate pairs that had an 
absolute correlation >0.6 were reduced so that only one 
of the covariates was used in the analysis. With stage- wise 
filtering, the correlation filter was only used for the ex-
ploratory covariates.

The covariates tested with the SCM, SCM+, and SCM+ 
with stage- wise filtering are listed in Table 1 according to 
their classification; the specific settings used for the com-
parison of the three approaches are listed in Table 2.

Evaluation of the stepwise procedures

The stepwise procedures were compared in terms of ef-
ficiency as well as in terms of ability to identify relevant 
covariate– parameter relations.

Efficiency was quantified in two ways: the total num-
ber of function evaluations and the number of executed 
NONMEM models. The number of function evaluations is 
an indicator of computational burden and should be less 
dependent on hardware differences and CPU load than ac-
tual runtime, whereas the number of executed NONMEM 
runs is independent of which underlying load balancing 
strategies are used.

Efficiency is presented as relative difference (in per-
centage) between the alternative approach and the SCM 
approach. Percentages are calculated using the formula 
(here, they are shown for the number of function evalu-
ations, which is then adapted to consider the number of 
models):

The relevance of each method was evaluated as the 
number of identified covariate– parameter relations. 
Because the multilevel covariate CYP2D6 was binarized 
(see above), the relevance was evaluated both as the 
number of covariate coefficients as well as the number 
of covariates regardless of the number of coefficients 
identified. For the sake of simplicity, both statistics will 
be referred to as covariate– parameter relations until the 
actual results are presented. The identified covariate– 
parameter relations were divided into three groups: true, 
related, and unrelated. The group “true” includes all 
covariate– parameter relations present in the simulation 
model. “Related” indicates that the covariate has an ab-
solute correlation of ≥0.5 with covariates included in the 
covariate– parameter relations in the simulation model. 
The group “unrelated” includes the remaining covariates. 
The frequency of covariate relations in each group gives a 
measure of relevance. In total, there were 14 true covari-
ate coefficients in the simulation model (counting each of 
the three binarized CYP2D6 categories separately on both 
CL and Frel) and 10 true possible covariate– parameter re-
lations. When the covariate relations are considered in 
terms of being “related” or “unrelated,” their number var-
ied among simulated datasets based on the correlations 
between covariates.

Software and hardware

The population PK analyses were performed in the non-
linear mixed effect modeling software NONMEM ver-
sion 7.4.48 using the first- order conditional estimation 
method with interaction (FOCEI). SCM is implemented 
in PsN,5,13,14 and the work in this paper, including 
SCM+, was done using PsN version 4.9.0. SCM+ is inte-
grated in PsN versions from 5.2.6 and on. The software 
R version 3.5.315 was used for the data management and 
postprocessing.

RESULTS

Description of the simulated covariate data

The simulated covariate data available for testing was 
summarized across all 100 datasets (Table  3) and their 
distribution was explored graphically for abnormalities 
(data not shown). The correlation structure between the 
covariates across all 100 simulated datasets is visualized 
in Figure  S2 and the frequency of datasets with covari-
ate pairs with absolute correlation of at least 0.5 or 0.6 
is shown in Table  3. An absolute correlation coefficient 
higher than 0.6 (e.g., between ALT and AST) in a specific 

% =
nEvalsSCM − nEvalsSCM+

nEvalsSCM
× 100
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simulated dataset determined the exclusion of one of the 
covariates from the corresponding SCM and SCM+ analy-
sis according to the settings described in Table 2.

Efficiency

Figure  2 shows the comparison of efficiency among the 
three methods. The two SCM+ methods were consider-
ably more efficient than the SCM: the reduction in the 
number of function evaluations compared to the SCM 
was 70% for SCM+ and 76% for SCM+ with stage- wise 
filtering. The corresponding reduction in the number of 
executed models was 44% for SCM+ and 70% for SCM+ 
with stage- wise filtering.

Relevance

Table 4 provides a summary of the number of covariate– 
parameter relationships, stratified by true, related, and 
unrelated, for each of the three methods. SCM+ with 
stage- wise filtering selected the highest number of true co-
variate coefficients (8.0 on average) compared to the SCM 

(5.1) and SCM+ (5.1) approaches. The SCM and SCM+ 
were in all aspects comparable. All approaches had low 
selection frequencies of related and unrelated covariate– 
parameter relationships.

Figure  3 visualizes the inclusion frequencies by pa-
rameter and type of covariate relations. Compared to the 
other two methods, SCM+ with stage- wise filtering in-
cluded more frequently the covariates CYP2D6 genotype, 
WT on CL, and WT on V, as these were considered mech-
anistic covariate– parameter relationships for stage- wise 
filtering and were therefore included in the base model. 
Overall, the SCM and SCM+ approaches gave compara-
ble selections of covariate– parameter relationships across 
parameters.

When frequency of inclusion was visualized stratify-
ing by the covariates’ groups (mechanistic, structural, and 
exploratory), the mean number of mechanistic covariate 
coefficients selected by SCM and SCM+ was 2.0, whereas 
it was 5.0 for the stage- wise filtering approach (Table S1). 
In addition, all three approaches had comparable means 
of included structural (about 2.2) and exploratory (about 
1.3) covariate coefficients. The frequency of inclusion of 
structural and exploratory covariates did not differ among 
the three methods.

T A B L E  2  Settings and handling of covariates adopted, in each simulated dataset, for the three SCM approaches compared

SCM (n = 100)a SCM+ (n = 100)a
SCM+ with stage- wise filtering 
(n = 100)a

Covariate– parameter relationships in 
base model

None None Weight on CL and V, with 
fixed allometric exponents 
(respectively 0.75 and 1); 
CYP2D6 genotype on CL

Stage- wise filtering No No Yes

Inclusion of covariates with absolute 
correlation coefficient >0.6

Only one of the 
covariates is 
included

Only one of the covariates is 
included

If mechanistic or structural 
covariates: both covariates 
are tested; if exploratory 
covariates: one of the 
covariates is omitted

The p value forward selection 0.01 0.01 0.01

The p value backward elimination 0.001 0.001 0.001

Adaptive scope reduction applied to all 
forward steps (threshold p value)

No Yes (0.01) Yes (0.01)

Retesting of all stashed relationships No Yes Yes

General estimation settings applied Those of the 
base model

CTYPE = 4 criterionb; maximum 
number of function 
evaluations (MAXEVAL in 
NONMEM) set to 3.1 times 
the function evaluations used 
by the base model

CTYPE = 4 criterionb; maximum 
number of function 
evaluations (MAXEVAL in 
NONMEM) set to 3.1 times the 
function evaluations used by 
the base model

Abbreviations: CL, clearance; SCM, stepwise covariate model; V, volume of distribution.
aNumber of simulated datasets.
bThe CTYPE = 4 criterion restricts the termination check to only consider the objective function value (OFV).13
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T A B L E  3  Baseline characteristics across the 100 simulated datasets, including the percentage of the simulated datasets with absolute 
correlation greater or equal to 0.5 or 0.6

Covariate Mean [min, max]a Correlationsb

Age, year 49.1 [49.1, 49.1]c CRCL (49%/0%)

ALT (U/L) 30.5 [28.6, 32.9] AST (100%/100%), NCI (97%/40%)

AST (U/L) 26.8 [25, 28.5] ALT (100%/100%), NCI (3%/0%)

Bilirubin 9.05 [8.5, 9.7] NCI (15%/0%)

CRCL (ml/min) 119 [116, 122] Age (49%/0%), WT (100%/89%)

CYP2D6 genotype

EM 83% [79%, 88%] None

IM 7.3% [5.2%, 11%]

PM 5.7% [2.5%, 7.7%]

UM 4% [2.1%, 5.9%]

Diet

Both 5.4% [5.4%, 5.4%] None

Fasted 5.4% [5.4%, 5.4%]

Fed 89% [89%, 89%]

Ethnicity

Hispanic or Latino 43% [35%, 49%] None

Not Hispanic nor Latino 57% [51%, 65%]

Formulation

Formulation 1 35% [35%, 35%] None

Formulation 2 65% [65%, 65%]

NCI

Mild impairment 14% [11%, 17%] ALT (97%/40%), AST (3%/0%), BILI 
(15%/0%)

Moderate impairment 1.1% [0.18%, 2.7%]

Normal function 85% [81%, 89%]

Race

American Indian or Alaska Native 0.88% [0.18%, 2.7%] None

Asian 3.4% [1.8%, 6.2%]

Black or African American 15% [11%, 19%]

Native Hawaiian/Pacific Islander 1.2% [0.18%, 2.5%]

White 80% [76%, 85%]

Sex

Female 44% [44%, 44%]c None

Male 56% [56%, 56%]

Weight (kg) 90.9 [88.6, 94.3] CRCL (100%/89%)

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BILI, bilirubin; CRCL, creatinine clearance; EM, extensive metabolizer; IM, 
intermediate metabolizer; NCI, National Cancer Institute –  in reference to liver function classification; PM, poor metabolizer; UM, ultrarapid metabolizer; WT, 
body weight.
aFor the continuous covariates, the mean is the mean of the means across the simulated datasets (and similarly for the min and max). For the categorical 
variables, the mean is the mean of the covariate category frequency across the simulated datasets (and similarly for the min and max).
bThe percentages in parentheses report the frequency of datasets with correlations between two covariates and refer to an absolute correlation greater or equal 
to, respectively, 0.5 and 0.6. For example, for the covariate CRCL with WT, the correlations “100%/89%” indicate that in 100% and 89% of the simulated data 
sets the absolute correlation exceeded respectively 0.5 and 0.6. Covariate pairs with absolute correlation below 0.5 in all simulated datasets are marked as 
“None” in the Correlation column.
cThe same age and sex values were used across the simulated datasets to “seed” the simulations (see Smania and Jonsson8 for details).
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DISCUSSION

This analysis used simulated data to compare SCM, 
SCM+, and SCM+ with stage- wise filtering in terms of 
efficiency and the ability to identify relevant covariates. 
SCM+ and SCM+ with stage- wise filtering showed a 
considerably increased efficiency compared to the SCM 
(Figure  2), whereas SCM+ with stage- wise filtering im-
proved the ability to select relevant covariates compared 
to SCM or SCM+ (Table 4).

The work described in this paper required extensive 
computations and would not have been possible without 
using a large computational cluster. To generalize the re-
sults across different CPU speeds, cluster workload, and 
parallelization options, the total number of function 

evaluations was used as a proxy for overall runtime. 
Efficiency was also assessed as overall computational bur-
den. Depending on the load balancing strategy used (i.e., 
how the parallel execution of multiple NONMEM runs 
is organized), the overall runtime may be reduced, but 
the overall computational burden will remain the same. 
This is an important aspect in a finite computational en-
vironment where the computational resources are shared 
with many users. In this work, the number of executed 
NONMEM models was used as a measure of overall com-
putational burden.

Compared to SCM, SCM+ includes two main changes: 
the introduction of ASR and the use of more efficient es-
timation settings (CTYPE = 4 and a limit on MAXEVAL). 
The ASR reduces the number of models to estimate (44% 

F I G U R E  2  Comparison of efficiency 
between the stepwise covariate model 
(SCM) and either SCM+ or SCM+ with 
stage- wise filtering. (a) Reduction in the 
number of function evaluations for SCM+ 
or SCM+ with stage- wise filtering versus 
SCM. (b) Reduction in the number of 
executed models for SCM+ or SCM+ with 
stage- wise filtering versus SCM. For both 
panels, the gain in efficiency is shown 
as the percentage reduction (higher 
value = more efficient) in total number of 
function evaluations or total number of 
models executed. The solid vertical line 
represents the median value within each 
panel. The plot is based on data from 100 
simulated datasets.
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reduction with SCM+; Figure 2b). The more efficient es-
timation settings will increase the efficiency per model 
but not the number of models. Together, these changes re-
sulted in a 70% reduction in the total number of function 
evaluations for SCM+ versus SCM (Figure 2a).

SCM+ with stage- wise filtering also showed a consid-
erable reduction in the number of executed models com-
pared to SCM (70%) and SCM+. The reason for this is that 
stage- wise filtering already included WT on CL, WT on V, 
and CYP2D6 genotype on CL in the base model and no 
covariate testing was performed on these before inclusion. 
Despite the reduction in the required number of models 
compared to SCM+, SCM+ with stage- wise filtering had 
a similar overall gain in efficiency (Figure  2a). The rea-
son for this is that the base model for stage- wise filtering 
is more complex and with more parameters to estimate, 
which in turn requires more function evaluations per 
model execution. In this work, the reduction in number 
of models and the overall increase in number of function 
evaluations per model balanced each other out so that the 
overall efficiency of SCM+ with stage- wise filtering was 
comparable to that of SCM+.

Regarding the ability to identify relevant covariates, 
SCM and SCM+ showed comparable results, both in terms 
of the number of covariate coefficients and the number of 
covariate– parameter relationships included (Table 4). This 
is an important finding because the reduced search scope 
and fewer function evaluations per model in SCM+ may 
introduce a risk of not identifying important covariates. 
However, the comparable selection of relevant covariates 
by SCM and SCM+ suggests that using SCM+ does not 
lead to an apparent risk of selecting different covariates 
than the SCM. On the other hand, because the SCM and 

SCM+ are different search algorithms they may select 
slightly different covariates on a dataset- by- dataset basis, 
particularly for weak covariate relations.

Among the three approaches, SCM+ with stage- wise 
filtering had the highest frequency of inclusion of rele-
vant covariates, both in terms of the number of covariate 
coefficients and the number of covariate– parameter rela-
tionships (Table 4, Figure 3). This is mainly due to the in-
clusion of mechanistic covariates in the base model, and 
it demonstrates the benefits of including prior knowledge 
in the model development. Specifically, the difference be-
tween the number of covariate coefficients and covariate– 
parameter relationships was 2 (8.63 vs. 6.63), which 
matches the two additional coefficients included by con-
sidering CYP2D6 as mechanistic covariate. Mechanistic 
covariates are included in the model without testing, 
which is motivated by the fact that these covariates are 
classified as “mechanistic covariates.” Only covariates that 
are known to have an impact on model parameters (based 
on prior knowledge and/or mechanistic understand-
ing) may fall into this category. Importantly, all involved 
stakeholders should agree on this classification (e.g., in 
a drug- development setting the full team needs to accept 
this classification). Once the model is finalized, changes 
in the definition of mechanistic covariates will require a 
complete model re- development. Therefore, if a complete 
agreement about these covariates is lacking, a better setup 
is to categorize them as structural covariates so that they 
are tested against the data.

A related question is what happens if the prior knowl-
edge (i.e., the classification of a covariate as mechanistic 
and its inclusion in the model without testing), is incor-
rect. This depends on what “incorrect” means. If the 

T A B L E  4  Number of included covariate coefficients and covariate– parameter relationships for each SCM approach

(n = 100)
Mean number of covariate 
coefficients [min, max]

Mean number of covariate– 
parameter relations [min, max]

Total SCM 5.51 [3, 9] 5.45 [3, 9]

SCM+ 5.61 [3 ,9] 5.54 [3, 9]

SCM+ with stage- wise filtering 8.63 [8, 11] 6.63 [6, 9]

Truea SCM 5.06 [2, 8] 5 [2, 8]

SCM+ 5.11 [2, 8] 5.04 [2, 8]

SCM+ with stage- wise filtering 8.03 [7, 10] 6.03 [5, 8]

Related SCM 0.32 [0, 1] 0.32 [0, 1]

SCM+ 0.28 [0, 2] 0.28 [0, 2]

SCM+ with stage- wise filtering 0.41 [0, 1] 0.41 [0, 1]

Unrelated SCM 0.13 [0, 1] 0.13 [0, 1]

SCM+ 0.22 [0, 3] 0.22 [0, 3]

SCM+ with stage- wise filtering 0.19 [0, 2] 0.19 [0, 2]

Abbreviation: SCM, stepwise covariate model.
aThe total number of true covariate coefficients is 14 and of true covariate– parameter relations is 10.
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mechanistic underpinning of the covariate categorization 
turns out to be wrong (e.g., if the drug is actually not a 
CYP2D6 substrate and previous study results were some-
how artifacts), then, using CYP2D6 genotype as a mecha-
nistic covariate can be claimed to be objectively incorrect. 
In this case, provided the coefficients for this covariate are 
estimated, the estimated impact of the covariate should 
approach zero with very wide confidence intervals. This 
does not impact the predictive abilities of the model and it 
should be clear to the analyst that there is no support for 
the covariate in the data. If the covariate coefficients were 
fixed in the model, the covariate will have to be removed 
from the scope and the model will have to be re- developed. 
On the other hand, if the data does not support the estima-
tion of a true covariate effect (e.g., the impact of smoking 
if there are no smokers in the dataset), then the estimated 
impact of the covariate will also approach zero with wide 
confidence intervals. The only way to separate this situ-
ation from the previous one is that there is a mechanis-
tic underpinning for including smoking, whereas in the 
CYP2D6 case there is not. However, the fact that the data 
does not support the estimation of a covariate effect does 
not mean that the covariate is incorrect. In the end, to un-
derstand the covariate modeling results it is necessary to 

know why a certain covariate is in the model and what 
properties the current dataset has.

In ASR, the covariate categorization is made to re-
flect the current state of knowledge about the drug and 
is driven by the properties of the drug and not by generic 
and drug- independent properties of the covariates. For 
example, CYP2D6 genotype may be a mechanistic covari-
ate for a drug that is mainly eliminated via the CYP2D6 
pathway but may be an exploratory covariate for a drug 
for which the elimination pathways are still to be eluci-
dated. The categorization of a covariate may also change 
as more information about the drug is collected. In early 
drug development, it is likely that most covariates will 
be regarded as exploratory ones whereas in later phases, 
based on the accumulated knowledge, one or more covari-
ates will probably be categorized as mechanistic for one or 
more parameters.

In this example, WT was regarded as a mechanistic co-
variate on CL and V, in line with the reasonable assump-
tion that both drug elimination and disposition are related 
to body size. In addition, the simulated drug was assumed 
to be a CYP2D6- substrate, a property that should be 
known when a drug reaches phase III; therefore, CYP2D6 
genotype was regarded as a mechanistic covariate on CL. 

F I G U R E  3  Frequency of included covariates stratified by relevance of the covariate– parameter relationship. Only covariates that were 
selected in at least one iteration are shown. The plot is based on data from 100 simulated datasets.
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On the other hand, had the example been set in a phase I 
or II setting, it may have been more reasonable to consider 
CYP2D6 to be an exploratory covariate. As mentioned 
above, we strongly recommend that the categorizing of 
covariates is discussed and agreed on upfront with all 
involved stakeholders (subject matter experts, medical 
members of the team, etc.).

The stage- wise filtering approach has the additional 
advantage that more plausible covariates are added (if 
they are mechanistic) or get a chance to be included in the 
model (if they are structural) before the more exploratory 
covariates are considered; in line with this, less plausible 
covariates cannot replace covariates that are already in-
cluded in the model. This will help reducing discussions 
about why certain covariates were included in the model 
and if they potentially take the place of other covariates. 
Similarly, if exploratory covariates are identified without a 
plausible explanation, or if the involved stakeholders feel 
doubtful about their relevance, it is still possible to use the 
model with only mechanistic and structural covariates 
(for which there should be a clear rationale) for further 
analysis e.g., in PK/PD modeling.

The unrelated covariates, which can be considered as 
false covariates, were only selected with low frequency 
by the three approaches (Figure  3). This indicates that 
the settings used, and especially the p values, prevent the 
selection of false positive covariates. SCM+, and more so 
SCM+ with stage- wise filtering, may be expected to in-
clude fewer false positive covariates than SCM because 
they require fewer models (Figure  2b), which in turn 
should result in lower type I errors.

An additional method in the context of shortening run-
times is model linearization. This method has been shown 
to increase the efficiency of stepwise covariate model de-
velopment16 even to a greater extent than what was found 
for SCM+ in this work. However, to our knowledge, the 
linearization approach has not been widely used for co-
variate modeling within drug development. On the other 
hand, nothing prevents model linearization from being 
used together with SCM+ for further efficiency gains.

In this work, the simulation setup used was more 
complicated than that usually seen in methodological 
studies. The covariate distributions in each simulated 
dataset were generated using CD modeling9: this ap-
proach retains the distributional properties of the real 
covariate data that was used as a template while still 
not resorting to random selection of complete individ-
ual covariate vectors. The combination of phase I stud-
ies with specific objectives (assessment of food effects 
and impact of CYP2D6 genotype) and large (phase III) 
patient studies mimic the common situation for which 
the SCM+, and particularly stage- wise filtering, was 
designed for. With a simpler and, to some extent, less 

realistic analysis dataset structure, the practical benefits 
of SCM+ with and without stage- wise filtering would 
have been less obvious. Another aspect that can be re-
garded as a concession to realism is that the simulation 
model is different from the estimation model. This will 
always be the case in a real situation, although in much 
more complex ways. The current example illustrates the 
difficulty in knowing what a true covariate is or how a co-
variate should be included “mechanistically” in a model. 
This explains also why the “related” covariate category 
was used in the assessment of the results. Selection of 
a “false” but correlated covariate, instead of the “true” 
covariate, does not mean that the selection is incorrect. 
Instead, it may mean that in a specific data sample the 
signal to which the two covariates are correlated is better 
described by the “false” rather than the “true” covariate.

The alternative covariate model building strate-
gies implemented in this work build on the SCM tool 
as implemented in PsN and are therefore, by nature, 
NONMEM- centric. However, the general concepts of 
ASR and stage- wise filtering can be used in other appli-
cations and implementations. The additional NONMEM 
and FOCEI- specific settings (adjusting MAXEVAL and 
changing the termination criteria to CTYPE  =  4) may 
be harder to directly translate to other software; how-
ever, there may be settings of the same nature that can be 
tweaked to adjust the parameter estimation to suit what 
is needed in stepwise covariate searches. For example, if 
the Importance Sampling algorithm in NONMEM is used 
instead of FOCEI, CTYPE  =  4 would still be applicable 
but the adjustments to MAXEVAL can be substituted with 
adjustments to the NITTER and ISAMPLE settings.

In summary, SCM+ and SCM+ with stage- wise filter-
ing are novel stepwise covariate model building strate-
gies that are more efficient and with a greater ability to 
identify relevant covariates than the traditional SCM ap-
proach. Within the drug development setting this means 
that modeling results can be delivered within shorter time 
and with larger impact compared to methods that are less 
efficient and relevant.
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