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1  | INTRODUC TION

In addition to the cerebellum, the primary motor cortex (M1) is a 
critical region for motor functions and motor learning (Galea, 
Vazquez, Pasricha, de Xivry, & Celnik, 2011; Hardwick, Rottschy, 

Miall, & Eickhoff, 2013; Nodera & Manto, 2014; Sugata et al., 2020; 
Wagner et al., 2019). Indeed, previous studies reported that M1 
plays an important role in the stabilization of motor learning (Pollok, 
Latz, Krause, Butz, & Schnitzler, 2014; Baraduc, Lang, Rothwell, 
& Wolpert, 2004; Muellbacher, Ziemann, Boroojerdi, Cohen, & 
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Abstract
Introduction: It has been suggested that transcranial alternating current stimulation 
(tACS)	at	both	alpha	and	beta	frequencies	promotes	motor	function	as	well	as	motor	
learning.	However,	limited	information	exists	on	the	aftereffects	of	tACS	on	motor	
learning and neurophysiological profiles such as entrainment and neural plasticity in 
parallel.	Therefore,	in	the	present	study,	we	examined	the	effect	of	tACS	on	motor	
learning	and	neurophysiological	profiles	using	an	off-line	tACS	condition.
Methods: Thirty-three healthy participants were randomly assigned to 10 Hz, 20 Hz, 
or the sham group. Participants performed visuomotor learning tasks consisting of a 
baseline task (preadaptation task) and training task (adaptation task) to reach a target 
with a lever-type controller. Electroencephalography was recorded from eight loca-
tions	during	the	learning	tasks.	tACS	was	performed	between	the	preadaptation	task	
and	adaptation	task	over	the	left	primary	motor	cortex	for	10	min	at	1	mA.
Results: As	a	result,	10	Hz	tACS	was	shown	to	be	effective	for	initial	angular	error	
correction in the visuomotor learning tasks. However, there were no significant dif-
ferences in neural oscillatory activities among the three groups.
Conclusion: These results suggest that initial motor learning can be facilitated even 
when	10	Hz	tACS	is	applied	under	off-line	conditions.	However,	neurophysiological	
aftereffects	were	recently	demonstrated	to	be	induced	by	tACS	at	individual	alpha	
frequencies	rather	than	fixed	alpha	tACS,	which	suggests	that	the	neurophysiologi-
cal aftereffects by fixed frequency stimulation in the present study may have been 
insufficient to generate changes in oscillatory neural activity.
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Hallett, 2001; Censor & Cohen, 2011; Sugata et al., 2014). In addi-
tion, the relationship between oscillatory neural activities generated 
from M1 and the ability for motor learning was recently reported 
(Pollok et al., 2014; Sugata et al., 2014; Yanagisawa et al., 2012). 
In particular, several studies demonstrated that neural profiles 
for low-frequency components such as alpha and beta bands are 
associated with both motor function and motor learning (Pollok 
et al., 2014; Sugata et al., 2014; Yanagisawa et al., 2012). For exam-
ple, alpha oscillation influences the visual and sensorimotor systems 
(Foxe,	Simpson,	&	Ahlfors,	1998;	Rihs,	Michel,	&	Thut,	2007;	Sugata	
et al., 2014; Yanagisawa et al., 2012; Zhuang et al., 1997) while beta 
oscillation facilitates motor function and motor learning (Boonstra, 
Daffertshofer, Breakspear, & Beek, 2007; Houweling, Daffertshofer, 
van	Dijk,	&	Beek,	2008;	Sugata	et	al.,	2014).	As	such,	the	alpha	band	
is considered to be related to visuomotor systems, while the beta 
band is associated with motor systems.

Transcranial	alternating	current	stimulation	(tACS)	is	a	noninva-
sive brain stimulation technique that employs oscillatory electrical 
stimulation with the aim of facilitating neural activity at specific fre-
quency bands (Tavakoli & Yun, 2017). Recent studies have shown 
that	applied	stimulation	by	tACS	modulates	neurophysiological	and	
behavioral aspects in a frequency-specific manner (Fröhlich, 2015; 
Herrmann, Rach, Neuling, & Strüber, 2013; Tavakoli & Yun, 2017). 
For example, researchers reported that motor function and motor 
learning	can	be	modulated	by	10	Hz	and	20	Hz	tACS	over	M1	(Pollok,	
Boysen, & Krause, 2015; Wach et al., 2013a). These findings suggest 
that	tACS	at	alpha	and	beta	frequencies	over	M1	has	the	possibil-
ity to modulate oscillatory neural activities and to improve motor 
function	and	motor	learning.	Accordingly,	motor	function	and	motor	
learning may be facilitated by changing oscillatory neural activities 
through	externally	applied	alpha	and	beta	tACS.

In	 the	tACS	method,	 two	types	of	stimulation	conditions	were	
applied from the point of view of the task performance. These two 
types of simulations were termed “online” (Pollok et al., 2015) and 
“off-line” conditions (Krause, Meier, Dinkelbach, & Pollok, 2016). 
In	 the	 online	 condition,	 tACS	 was	 applied	 “during”	 the	 task.	 On	
the other hand, in the off-line condition, participants performed a 
given	cognitive	task	first,	then	received	tACS,	and	were	then	tested	
again	on	the	same	cognitive	task	without	tACS.	tACS.	Many	stud-
ies have focused on online condition because synchronized oscilla-
tory neural activity at each frequency promotes neuronal plasticity 
(Pollok et al., 2015; Reato, Rahman, Bikson, & Parra, 2013; Wach 

et	 al.,	 2013b).	 In	 contrast,	 the	 effects	 of	 off-line	 tACS	 have	 not	
been clarified, although several mechanisms were suggested (Reato 
et	 al.,	 2013).	 Recent	 studies	 reported	 that	 by	 using	 off-line	 tACS,	
entrainment	of	oscillatory	power	changes	by	tACS	lasted	more	than	
30 min (Wach et al., 2013a; Wach et al., 2013b; Kasten, Dowsett, 
& Herrmann, 2016), and an improvement in motor function was 
observed	 after	 alpha	 and	 beta	 tACS	 (Krause	 et	 al.,	 2016;	 Wach	
et	al.,	2013a).	Furthermore,	 the	aftereffects	of	 tACS	by	alpha	and	
beta frequencies were reported to modulate both behavioral and 
physiological profiles in parallel (Kasten et al., 2016). However, the 
aftereffects	of	tACS	at	alpha	and	beta	frequencies	on	behavioral	and	
neurophysiological profiles related to motor learning remain to be 
clarified.

Considering the findings that behavioral and neurophysiological 
profiles	can	be	modulated	by	alpha	and	beta	tACS,	we	hypothesized	
that performance of motor learning and oscillatory neural activities 
could	be	equally	modulated	after	alpha	and	beta	tACS.	To	test	this	
hypothesis,	we	examined	 the	aftereffects	of	 tACS	on	motor	 lean-
ing and related oscillatory neural activities using visuomotor learn-
ing tasks and electroencephalography (EEG) in human participants. 
These series of results suggest that it is useful for studying neurore-
habilitation for diseases such as stroke that require motor learning.

2  | MATERIAL AND METHODS

2.1 | Participants

Thirty-three healthy volunteers (age: 21.82 ± 5.73, male/female: 
12/21)	participated	in	this	study.	All	participants	were	right-handed,	
which was confirmed using the Edinburgh Handedness Inventory 
Test	(Oldfield,	1971).	All	participants	presented	with	normal	or	cor-
rected-to-normal vision. General exclusion criteria included a his-
tory or family history of epileptic seizures, brain-related injury, other 
neurological	or	psychiatric	disorders,	and	pregnancy.	All	participants	
were naive with respect to the precise purpose of the study and 
never received transcranial electrical stimulation before. In accord-
ance with the Declaration of Helsinki, we explained the purpose and 
possible consequences of this study to all participants and obtained 
their informed consent before the study commenced. This study was 
conducted with the approval of the Oita University Medical School 
Ethical	Review	Boards	(Approved	number	1184-T1).

10 Hz tACS 20 Hz tACS Sham tACS p-Value

Age 21.4 ± 4.6 22.5 ± 8.5 21.6 ± 3.3 .904

Gender [males 
(females)]

5 (6) 3(8) 4(7) .697

Handedness (%) 98.9 ± 3.5 100 ± 0 91.2 ± 25.0 .439

Mean ± SD

p < .05

Note: One-way analysis of variance indicated no significant differences among the groups.

TA B L E  1   Characteristics of 
participants in experimental groups
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2.2 | Experimental setup and paradigm

Using a between-subjects design, participants were randomly as-
signed	 to	10	Hz	 tACS	 (n =	 11),	20	Hz	 tACS	 (n = 11), or the sham 
(n =	11)	group.	All	participants	were	blinded	to	the	stimulation	pa-
rameters. Detailed information on each stimulation group is shown 
in Table 1.

2.3 | Visuomotor learning tasks

To	examine	whether	 tACS	facilitates	motor	 learning,	a	visuomotor	
learning task based on a previous study (Huber, Ghilardi, Massimini, 
& Tononi, 2004) was applied. In the present study, the following two 
types of center-out reaching tasks were performed before and after 
tACS;	a	baseline	task	(preadaptation	task;	before	tACS)	and	a	train-
ing	 task	 (adaptation	 task;	after	 tACS).	 In	each	 task,	 subjects	sat	 in	
front of a desk. There was a monitor displaying the target, and the 
movement of the cursor and a lever-type controller (Extreme 3D Pro 
Joystick;	Logicool	Co	Ltd.)	was	provided	on	the	desk.	A	circle	target	
was displayed randomly at any one of five locations that uniformly 

spanned a circle of around the central starting point. The partici-
pants kept the pointer in the central starting point for 2,000 ms. The 
participants were instructed to move the pointer in time with the 
beeping sound which was the onset cue. On hearing the cue, the sub-
ject moved the pointer toward the target as quickly as possible and 
within the shortest possible distance within 2,500 ms (Figure 1a). In 
the preadaptation task, the direction of the cursor movement was 
the same as that of the hand movement. In the adaptation task, un-
beknown to the participants, the direction of the cursor movement 
was rotated 30° clockwise or counterclockwise from the direction of 
the hand movement (Figure 1b). Representative example data from 
the preadaptation task and adaptation task are shown in Figure 1c. 
The angular transformation was counterbalanced in each group.

2.4 | EEG measurements

EEG measurements were recorded using active electrodes (Polymate 
Mini	AP108;	Miyuki	Giken	Co.,	Ltd).	Eight	electrodes	(F3,	F4,	C3,	Cz,	
C4, P3, Pz, and P4) were placed according to the International 10–20 
system, and the electrode impedance did not exceed 20 kΩ. EEG 

F I G U R E  1  Experimental	setting	and	paradigm.	(a)	A	circular	target	was	displayed	randomly	at	any	one	of	five	locations	that	uniformly	
spanned a circle around the central starting point. Participants were instructed to control a lever-type controller to reach the target with the 
cursor. (b) In the preadaptation task, the direction of the cursor movement was the same as that of the hand movement. In the adaptation 
task, the direction of the cursor movement was rotated 30° clockwise or counterclockwise from the direction of the hand movement. 
The dot line indicates the cursor path, while the solid line indicates the hand path. (c) Representative data in the preadaptation task and 
adaptation task. In the adaptation task, the hand path was gradually corrected as participants learned the directional error. (d) The angle 
between the direct line from the start position to target position (dashed line) and the line representing the direction movement at the peak 
outward velocity (dotted line) was calculated and defined as the directional error
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electrodes	were	composed	of	a	sintered	Ag	and	AgCl	material.	The	
ground electrode was located on the forehead, and the reference 
was mounted on the left earlobe. The active electrode was attached 
directly on the scalp with an EEG conductive paste.

EEG data were sampled at a rate of 500Hz. To reduce the con-
tamination of eye movement artifacts, participants were instructed 
to fix their eyes on the display without unnecessary eye movement. 
EEG was recorded for 15 min during each task. In other words, no 
EEG	was	recorded	during	the	10	min	while	receiving	tACS	at	each	
frequency (Figure 2a). Therefore, the active electrode (C3) was re-
moved before attaching the sponge electrode, and the electrode 
was reattached after stimulation. Saline solution that was not nec-
essary was removed before attaching the active electrode. If neces-
sary, the active electrode was fixed with paste after polishing with a 
pretreatment agent. The measurement was started after confirming 
that the impedance was 20 Ω or less.

2.5 | tACS sessions

The	 participants	 received	 tACS	 between	 the	 preadaptation	 and	
adaptation tasks, which was delivered with a battery-driven con-
stant current stimulator (DC stimulator plus, NeuroConn, Ilmenau, 
DEU) through a pair of saline-soaked sponge electrodes (5 × 7 cm). 
Participants were seated in a comfortable chair with their eyes 
closed	during	the	tACS	or	sham	stimulation.	The	electrode	positions	
were decided in accordance with the International 10–20 system. 
According	to	previous	studies	(Antal	et	al.,	2008;	Pollok	et	al.,	2015;	
Sugata et al., 2018), the target electrode was located on C3, and the 
other	electrode	placed	over	the	right	orbital.	After	removing	the	EEG	
C3	electrodes,	 tACS	electrodes	were	 fixated	using	 a	Velcro	band.	
Stimulation	was	applied	for	10	min	with	1	mA	(peak-to-peak	ampli-
tude). Impedance values were maintained below 10 kΩ. The setup 
for the sham stimulation group was the same, with the exception 

F I G U R E  2   (a) The time course of the 
visuomotor learning task and the EEG 
measurement is shown. Directional errors 
were compared following three patterns 
among the three groups; † (Δ PB8-PB1); 
‡ (ΔAB1-PB8);	and	§	(Δ	AB8-AB1).	TACS	
was applied between the preadaptation 
task and the adaptation task. (b) Grand 
averaged time–frequency plot in the 
adaptation tasks for all participants. 
Representative C3 electrode data are 
shown. The average values of the event-
related neural oscillatory activities in the 
alpha (white box) and beta bans (gray 
box), based on the 250- to 1,000-ms 
poststimulus window, were compared 
before	and	after	tACS.	The	black	dashed	
line represents the onset cue of the 
movement
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that	 no	 current	 passed	 through	 the	 electrode.	 Among	 all	 partici-
pants,	7	 in	10	Hz	tACS	and	9	 in	20	Hz	tACS	recognized	the	phos-
phenes. No other side effects were perceived and all participants 
underwent stimulation.

2.6 | Behavioral analyses

First, in order to calculate the directional error angle, the peak veloc-
ity for the hand path from the initial hand position to the position 
of the target was calculated for each trial. Second, the directional 
error was extracted by determining the angle between the direct line 
from the start to target position and the line representing the direc-
tion of movement at the peak outward velocity (Figure 1d) (Huber 
et al., 2004).

We defined a series of five different target trials as one epoch. 
Within each epoch, the order of the five target trials was random-
ized and the entire task consisted of 40 epochs (200 trials). Epochs 
were divided into 8 blocks, and the peak velocity and angular error 
were averaged for each block in the preadaptation task (preadapta-
tion block1-8: PB1-PB8) and adaptation task (adaptation block1-8: 
AB1-AB8),	respectively.

2.7 | EEG data analyses

EEG data were analyzed using Brainstorm software (Tadel, Baillet, 
Mosher,	 Pantazis,	 &	 Leahy,	 2011).	 An	 off-line	 band-pass	 filter	 be-
tween 0. 1 and 100 Hz with a notch at 60 Hz was performed to 
eliminate environmental noise. Electromyography-contaminated tri-
als were visually detected and manually eliminated. The beep sounds 
indicating go cue were defined as 0 ms. The time window of an epoch 
was	defined	as	−1,500	to	2,500	ms.	Therefore,	one	trial	in	the	EEG	
analysis was regarded as one trial of visuomotor learning task analy-
sis.	A	total	of	200	trials	were	analyzed	and	divided	into	8	blocks	as	
well	as	tasks.	For	examining	the	effect	of	tACS	on	oscillatory	neural	
activities, time–frequency analysis was applied to active electrodes 
for determining the oscillatory neural activities, as shown in previous 
studies (Pollok et al., 2014; Sugata et al., 2018). Event-related oscil-
latory neural activities were calculated as two-dimensional (latency 
by frequency) representations of the mean change in spectral power 
(in	dB)	relative	to	baseline,	which	ranged	from	−1,000	to	0	ms	before	
the onset of the stimulus. The period of interest ranged from 0 to 
2,000 ms after stimulus onset. Each epoch was subjected to short-
time Fourier analysis using the fast Fourier transform. Then, aver-
aged power of oscillatory neural activity was calculated in the alpha 
band (9–11 Hz) and beta band (19–21 Hz) based on a 250–1,000 ms 
post-stimulus window (Figure 2b). These frequency bands were ex-
tracted	to	demonstrate	the	effect	of	tACS	on	oscillatory	neural	ac-
tivity.	Thus,	each	frequency	band	was	defined	as	tACS	stimulation	
frequency ± 1 Hz.

2.8 | Statistical analyses

Statistical analyses were performed using SPSS (version 25) and 
MATLAB	(R2017a).	First,	in	order	to	show	whether	the	participants	
in each group had similar motor skills, differences in the directional 
error and peak velocity between PB1 and PB8 were compared among 
the	 stimulation	 groups	 by	 one-way	 analysis	 of	 variance	 (ANOVA).	
Next,	to	examine	the	effect	of	tACS	on	immediate	changes	in	motor	
function, differences in the directional error and peak velocity be-
tween	PB8	and	AB1	were	compared	among	the	stimulation	groups.	
Finally, differences in the directional error and peak velocity be-
tween	AB1	and	AB8	were	compared	among	the	stimulation	groups	
to	 confirm	 the	 effect	 of	 tACS	on	 the	 improvement	 of	 visuomotor	
learning (Figure 2a) (Krause et al., 2016; Pollok et al., 2015; Sugata 
et al., 2018). Furthermore, oscillatory neural activities before and 
after	tACS	were	examined	from	eight	EEG	channels	to	demonstrate	
the	effect	of	tACS.	As	shown	in	a	previous	study	(Antal	et	al.,	2008),	
three-way	ANOVA	of	time, channel, and stimulation was applied to 
the EEG data. The Bonferroni correction was used for post hoc anal-
ysis	in	ANOVA.	The	significance	level	for	all	statistical	tests	was	set	
to p < .05.

3  | RESULTS

3.1 | Directional error in the preadaptation task and 
adaptation task

We first examined changes in the directional error before and after 
tACS.	Our	results	showed	significant	differences	between	PB8	and	
AB1	among	the	three	groups	(F2,30 = 5.756, p = .008, η2p = 0.277). 
In order to further investigate these differences, a multiple compari-
son with Bonferroni correction was performed. Our results dem-
onstrated significant differences between the 10 and 20 Hz groups 
(p = .031) and between the 10 Hz and sham groups (p = .012) but not 
between the 20 Hz and sham groups (p = 1.000) (Figure 3a middle). 
No significant differences in directional error between PB1 and PB8 
(F2,30 = 0.199, p = .821, η2p =	0.013)	(Figure	3a	left)	and	AB1	and	AB8	
(F2,30 = 3.265, p = .052, η2p = 0.179) were observed among the three 
groups (Figure 3a right).

3.2 | Peak velocity in the preadaptation task and 
adaptation task

Peak velocity was compared among the three groups before and 
after	tACS.	Differences	in	the	peak	velocity	between	PB1	and	PB8	
(F2,30 = 1.544, p = .230, η2p =	0.024)	(Figure	3b	left),	PB8	and	AB1	
(F2,30 = 0.829, p = .446, η2p =	0.018)	(Figure	3b	middle),	and	AB1	and	
AB8	(F2,30 = 0.167, p = .847, η2p = 0.016) showed no significant dif-
ferences (Figure 3b right).
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3.3 | Oscillatory neural activities before and 
after tACS

In order to examine the potential relationship between oscillatory 
neural	activity	and	behavioral	aspects	after	tACS,	oscillatory	neural	
activities were calculated in eight EEG channels and compared be-
fore	and	after	tACS.

In	 the	 alpha	 band,	 three-way	 ANOVA	 with	 the	 factors	 time 
(PB8	vs.	AB1),	stimulation (10 Hz vs. 20 Hz vs. sham), and channels 
(F3, F4, C3, Cz, C4, P3, Pz, and P4) revealed a significant main ef-
fect of time (F1,30 = 3.385, p = .035, η2p = 0.014) but not stimulation 
(F2,30 = 0.067, p = .977, η2p = 0.0001) and channels (F7,30 = 1.212, 
p = .295, η2p = 0.018), stimulation × time (F2,30 = 2.351, p = .072, 
η2p = 0.015), stimulation × channel (F14,30 = 0.341, p = .991, 
η2p = 0.011), channel × time (F7,30 = 0.573, p = .778, η2p = 0.008), and 
stimulation × time × channel interactions (F14,30 = 0.073, p = 1.000, 
η2p = 0.002) (Table 2).

In	the	beta	band,	three-way	ANOVA	with	the	factors	time (PB8 
vs.	AB1),	stimulation (10 Hz vs. 20 Hz vs. sham), and channels (F3, F4, 
C3, Cz, C4, P3, Pz, P4) revealed a significant main effect of stimula-
tion (F2,30 = 3.995, p = .019, η2p = 0.016) and channels (F7,30 = 3.261, 
p = .002, η2p = 0.045) but not stimulation × time (F2,30 = 2.104, 
p = .123, η2p = 0.009), stimulation × channel (F14,30 = 0.184, p = 1.000, 
η2p = 0.005), channel × time (F7,30 = 0.382, p = .913, η2p = 0.006) and 
stimulation × time × channel interactions (F14,30 = 0.072, p = 1.000, 
η2p = 0.002) (Table 2).

4  | DISCUSSION

In	 the	 present	 study,	 initial	 angular	 error	 correction	 in	 PB8-AB1	
during the visuomotor learning tasks was significantly facilitated 
after	10	Hz	tACS	compared	with	that	after	sham	and	20	Hz	tACS.	

Conversely, there were no significant differences in angular error 
correction	among	the	three	groups	at	the	AB8.	Furthermore,	there	
were no significant differences in peak velocity among the three 
groups in each block.

Recent studies demonstrated the potential for 10 Hz stimu-
lation to enhance motor performance under both online (Pollok 
et al., 2015) and off-line (Wach et al., 2013a) conditions. For in-
stance,	Pollok	et	al	reported	that	10	Hz	tACS	facilitates	the	retrieval	
of	newly	learned	motor	performance	(Pollok	et	al.,	2015),	and	Antal	
et	al.	 (2008)	reported	that	10	Hz	tACS	facilitates	sequential	motor	
learning.	Conversely,	 researchers	 reported	 that	20	Hz	 tACS	 facili-
tates motor function and stabilizes learned motor performance 
under online (Pollok et al., 2015) and off-line (Krause et al., 2016) 
conditions.	Twenty	Hz	tACS	was	also	reported	to	slow	down	move-
ment velocity (Pogosyan, Gaynor, Eusebio, & Brown, 2009; Wach 
et al., 2013a). Collectively, these results suggest that 10 and 20 Hz 
tACS	 facilitate	motor	performance,	while	20	Hz	 tACS	additionally	
stabilizes motor function during both online and off-line conditions. 
In	addition	to	the	above	studies,	several	aftereffects	of	10	Hz	tACS	
with regard to behavioral aspects were recently reported (Krause 
et al., 2016; Wach et al., 2013a). For example, sustained behav-
ioral	 changes	 were	 reported	 at	 30	 min	 after	 10	 Hz	 tACS	 (Wach	
et	al.,	2013a).	Furthermore,	Fresnoza	et	al	reported	that	tACS	at	indi-
vidual	alpha	frequencies	(IAF)	induces	robust	behavioral	aftereffects	
(Fresnoza et al., 2018).

As	 for	 oscillatory	 neural	 profiles,	 several	 studies	 demon-
strated the neural profiles for low-frequency components such as 
alpha and beta bands (Klostermann et al., 2007; Neuper, Wörtz, & 
Pfurtscheller,	2006;	Rektor,	Sochůrková,	&	Bocková,	2006),	and	they	
showed that these frequencies exhibit a functional diversity in cor-
tico-basal networks that are simultaneously activated during senso-
rimotor processing (Klostermann et al., 2007). For example, alpha 
oscillation has been shown to influence both visual and sensorimotor 

F I G U R E  3   (a) Δ directional error in 
each block. Error bars indicate standard 
deviations (SD).	A	significant	difference	
was	obtained	between	AB1	and	BP8	
among the three groups (p < .01). Multiple 
comparison with Bonferroni correction 
showed the significant differences 
between 10 and 20 Hz (p < .05) and 
between 10Hz and sham (p < .05). (b) 
Differences in peak velocity each block 
showed no significant differences among 
the three groups. Error bars indicate SD
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systems (Foxe et al., 1998; Rihs et al., 2007; Sugata et al., 2014; 
Yanagisawa et al., 2012; Zhuang et al., 1997), while beta oscillation 
facilitates motor function and motor learning (Boonstra et al., 2007; 
Houweling et al., 2008; Sugata et al., 2014). In the present study, 
10	Hz	 tACS,	but	not	20	Hz	 tACS,	was	effective	 for	 initial	 angular	
error correction. Considering that the alpha band is related to visuo-
motor function, the initial angular error correction observed in the 
present	study	may	reflect	the	aftereffect	of	10	Hz	tACS	on	motor	
learning in the initial stage of the visuomotor learning tasks.

However, in this study, there was no significant difference in an-
gular	 error	 correction	between	 the	 three	 groups	 in	AB8,	whereas	
previous	studies	reported	aftereffects	of	alpha	tACS	on	motor	learn-
ing	(Krause	et	al.,	2016;	Wach	et	al.,	2013a).	In	particular,	tACS	at	IAF	
has been reported to induce robust behavioral aftereffects (Fresnoza 
et	al.,	2018).	Since	the	present	study	applied	tACS	at	fixed	frequen-
cies such as 10 and 20 Hz, but not individual frequency, we may not 
have	obtained	the	robust	aftereffect	of	tACS	on	motor	 learning	 in	
AB8.	Furthermore,	the	visuomotor	learning	tasks	used	in	the	pres-
ent study would be considered higher-order motor learning, which 
requires proprioceptive and visual feedback to control movements, 
a process more relevant to the development and learning of a new 
sport or a musical instrument (Manuel, Guggisberg, Thézé, Turri, & 
Schnider,	2018).	This	suggests	that	the	aftereffect	of	tACS	at	fixed	
frequency, that is 10 Hz, may not be sufficient to further correct 
the angular error or overcome the ceiling effect in the visuomotor 

learning tasks. Thus, the angular error correction immediately after 
tACS	may	reflect	the	facilitation	of	 initial	motor	 learning	by	10	Hz	
tACS.	 These	 results	 support	 the	 notion	 that	 initial	motor	 learning	
can	be	 facilitated	even	when	10	Hz	 tACS	 is	applied	under	off-line	
conditions.

In contrast, there were no significant differences in angular error 
correction	 and	 peak	 velocity	 among	 three	 groups	 in	 20	Hz	 tACS.	
Twenty	Hz	tACS	was	reported	to	facilitate	motor	function,	stabilize	
learned motor performance (Krause et al., 2016; Pollok et al., 2015), 
and slow down movement velocity (Pogosyan et al., 2009; Wach 
et al., 2013a). Furthermore, Sugata et al. (2018) reported that motor 
learning	 capacity	 was	 modulated	 at	 10	 Hz	 tACS	 compared	 with	
20	Hz	tACS.	Considering	these	reports,	10	Hz	tACS	may	facilitate	
motor	learning	more	than	20	Hz	tACS.	Therefore,	there	may	not	be	
significant	difference	in	20	Hz	tACS.

In the present study, we also investigated the aftereffects of 
tACS	 on	 oscillatory	 neural	 activities	 after	 tACS.	 However,	 there	
were no significant differences in oscillatory neural activities before 
and	after	tACS	among	the	three	groups.

Recently,	 researchers	suggested	 that	online	 tACS	effects	are	
associated with the entrainment of neural oscillation, whereas 
off-line	 tACS	 effects	 are	 related	 to	 plastic	 changes	 such	 as	
the long-term-potentiation driven changes of synaptic weight 
(Herrmann et al., 2013; Veniero, Vossen, Gross, & Thut, 2015; 
Vossen, Gross, & Thut, 2015; Zaehle, Rach, & Herrmann, 2010). 
Accordingly,	 the	 aftereffects	 of	 tACS	 are	 likely	 due	 to	 synaptic	
plasticity, not to entrainment. In fact, many studies recently re-
ported	 the	 aftereffects	 of	 off-line	 tACS	 on	 neurophysiological	
profiles	(Antal	et	al.,	2008;	Krause	et	al.,	2016;	Sugata	et	al.,	2018;	
Wach	et	al.,	2013b).	Indeed,	the	aftereffect	of	alpha	tACS	at	IAF	
has been demonstrated to persist for at least 30 min in the alpha 
band (Kasten et al., 2016). In addition, persistent cortical excit-
ability	 was	 reported	 after	 tACS	 at	 IAF	 (Fresnoza	 et	 al.,	 2018).	
However, while some studies reported robust aftereffects of alpha 
tACS	on	oscillatory	neural	activities	(Kasten	et	al.,	2016;	Neuling,	
Rach, & Herrmann, 2013; Zaehle et al., 2010), several studies re-
ported	weak	alpha-tACS	aftereffects	 (Antal	et	al.,	2008;	Fekete,	
Nikolaev, De Knijf, Zharikova, & van Leeuwen, 2018; Stecher & 
Herrmann, 2018). For instance, Helfrich et al reported that power 
changes	of	 alpha	 frequency	after	10	Hz	 tACS	persisted	 for	only	
1	min	(Helfrich	et	al.,	2014),	and	Antal	et	al.	 (2008)	reported	be-
havioral	effects	during	10	Hz	tACS	but	no	neurophysiological	ef-
fects	after	10	Hz	tACS.	Furthermore,	an	animal	study	using	tACS	
reported no neurophysiological aftereffects (Reato et al., 2013). 
Collectively,	 these	 results	 imply	 that	 aftereffects	 of	 alpha	 tACS	
on	 neurophysiological	 profiles	 may	 be	 induced	 by	 IAF	 stimu-
lation rather than fixed 10 Hz stimulation. In the present study, 
we applied not individual alpha- and beta-band frequencies but 
fixed stimulation frequencies, such as 10 and 20 Hz, and no sig-
nificant differences in oscillatory neural activity were observed 
among the three groups. Given that robust neurophysiological 
aftereffects	 are	 induced	 by	 tACS	 at	 IAF	 rather	 than	 fixed	 alpha	
tACS	(Fresnoza	et	al.,	2018;	Reato	et	al.,	2013;	Rektor	et	al.,	2006),	

TA B L E  2  The	result	of	three-way	ANOVA	of	EEG

df F value p-Value η2p

Alpha	band

Stim 2 0.067 .977 0.0001

Time 1 3.385 .035* 0.014

Channel 7 1.212 .295 0.018

Stim × Time 2 2.351 .072 0.015

Stim × Channel 14 0.341 .991 0.011

Channel × Time 7 0.573 .778 0.008

Stim × Channel × Time 14 0.073 1.000 0.002

Beta band

Stim 2 3.995 .019* 0.016

Time 1 0.243 .622 0.001

Channel 7 3.261 .002* 0.045

Stim × Time 2 2.104 .123 0.009

Stim × Channel 14 0.184 1.000 0.005

Channel × Time 7 0.382 .913 0.006

Stim × Channel × Time 14 0.072 1.000 0.002

Note: Independent variables: preadaptation block (PB8) and adaptation 
block	(AB1)	(Time), condition of current stimulation (10 Hz, 20 Hz, 
sham) (Stim), and EEG channels (eight channels: F3, F4, C3, Cz, C4, P3, 
Pz, P4) (Channel); dependent variable: FFT power in a given frequency 
band.	The	three-way	ANOVA	revealed	no	significant	interactions	
between current conditions, time, and channels at any of the different 
frequencies applied. The asterisk indicates significant p-values (p < .05).
*p < .05 
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neurophysiological aftereffects by fixed frequency stimulation in 
the present study may have been insufficient to generate changes 
in oscillatory neural activity. Thus, the no significant changes in 
oscillatory	 neural	 activities	 before	 and	 after	 tACS	 observed	 in	
the present study may be due to the stimulation frequency in the 
alpha	range.	In	other	words,	tACS	at	IAF	may	result	in	more	robust	
behavioral and neurophysiological changes and may show further 
motor learning effects. Considering that oscillatory neural activity 
in	the	alpha	band	tended	to	be	modulated	by	10	Hz	tACS	(p = .072 
(stimulation × time)), the neurophysiological aftereffects of alpha 
tACS	 on	 visuomotor	 learning	may	 be	 clarified	 by	 increasing	 the	
number of participants even when fixed 10 Hz frequency is ap-
plied to stimulation.

In	contrast,	several	studies	have	focused	on	the	effect	of	tACS	in	
patients with neurological disease. For example, stimulating chronic 
stroke	with	online	beta	tACS	improved	the	classification	accuracy	of	
the neurofeedback interventions compared with before stimulation 
(Naros	&	Gharabaghi,	2017).	Furthermore,	20	Hz	tACS	attenuated	
beta band cortico-muscular coupling during isometric contraction 
and amplitude variability during finger tapping in patients with 
Parkinson's	disease	(Krause	et	al.,	2014).	However,	10	Hz	tACS	had	
no effect. These differences may be due to the differences in task 
or	stimulation	parameters	and	disease	specificity.	Thus,	10	Hz	tACS	
can be effective for patients who need visuomotor learning such as 
those experiencing stroke. These series of results suggest that it is 
useful in the study of neurorehabilitation for diseases such as stroke 
that require motor learning.

The present study has several limitations. First, although a pre-
vious	 study	 showing	 the	 aftereffects	 of	 tACS	 on	 oscillatory	 neu-
ral activity and motor function used multichannel MEG (Sugata 
et al., 2018; Wach et al., 2013b), we recorded from only eight EEG 
channels.	Therefore,	we	cannot	rule	out	the	possibility	that	tACS-in-
duced oscillatory neural activity could not be detected due to its 
low	spatial	resolution.	In	addition,	the	sample	size	was	small.	A	sam-
ple size of more than 20 subjects has been recently recommended 
(Cohen, 2017). Thus, the statistical power of the present study may 
be	weak.	The	neurophysiological	aftereffects	of	10	Hz	tACS	on	vi-
suomotor learning may be clarified by increasing the number of par-
ticipants.	Second,	a	 recent	study	 reported	 that	 tACS	effects	were	
caused not by direct transcranial stimulation to cortical neurons but 
by synchronized cortical activities induced by percutaneous stimu-
lation	of	the	peripheral	nerves	of	the	skin	(Asamoah,	Khatoun,	&	Mc	
Laughlin, 2019). However, we did not evaluate changes in the periph-
eral	nerves	after	tACS.	Thus,	we	cannot	speculate	on	the	effects	of	
tACS	on	oscillatory	neural	activity	via	percutaneous	stimulation	of	
the peripheral nerves of the skin. Third, electromyography-contam-
inated trails were visually detected and manually eliminated; how-
ever, vertical electrooculography was not performed in this study. 
Thus, we could not rule out the possibility that eye-blink artifacts 
contaminated the EEG results. To further address these problems, 
further research is warranted.

5  | CONCLUSIONS

In this study, we investigated the effect of off-line 10 and 20 Hz 
tACS	 on	 visuomotor	 learning	 tasks.	 Angular	 error	 correction	 was	
significantly	 facilitated	 immediately	 after	 10	 Hz	 tACS.	 However,	
there were no significant differences in oscillatory neural activities 
before	and	after	tACS	in	each	group.	This	result	suggests	the	initial	
motor	 learning	can	be	facilitated	by	10	Hz	tACS	even	when	10	Hz	
tACS	 is	 applied	under	off-line	 conditions.	Conversely,	 neurophysi-
ological aftereffects by fixed frequency stimulation in the present 
study might have been insufficient to generate changes in oscillatory 
neural activity.
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