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Multisecond ligand dissociation dynamics from
atomistic simulations
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Coarse-graining of fully atomistic molecular dynamics simulations is a long-standing goal in

order to allow the description of processes occurring on biologically relevant timescales. For

example, the prediction of pathways, rates and rate-limiting steps in protein-ligand unbinding

is crucial for modern drug discovery. To achieve the enhanced sampling, we perform

dissipation-corrected targeted molecular dynamics simulations, which yield free energy and

friction profiles of molecular processes under consideration. Subsequently, we use these

fields to perform temperature-boosted Langevin simulations which account for the desired

kinetics occurring on multisecond timescales and beyond. Adopting the dissociation of sol-

vated sodium chloride, trypsin-benzamidine and Hsp90-inhibitor protein-ligand complexes as

test problems, we reproduce rates from molecular dynamics simulation and experiments

within a factor of 2–20, and dissociation constants within a factor of 1–4. Analysis of friction

profiles reveals that binding and unbinding dynamics are mediated by changes of the sur-

rounding hydration shells in all investigated systems.
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C lassical molecular dynamics (MD) simulations in principle
allow us to describe biomolecular processes in atomistic
detail1. Prime examples include the study of protein

complex formation2 and protein–ligand binding and
unbinding3,4, which constitute key steps in biomolecular func-
tion. Apart from structural analysis, the prediction of kinetic
properties has recently become of interest, since optimized ligand
binding and unbinding kinetics have been linked to an improved
drug efficacy5–9. Since these processes typically occur on time-
scales from milliseconds to hours, however, they are out of reach
for unbiased all-atom MD simulations which currently reach
microsecond timescales. To account for rare biomolecular pro-
cesses, a number of enhanced sampling techniques10–18 have
been proposed. These approaches all entail the application of a
bias to the system in order to enforce motion along a usually one-
dimensional reaction coordinate x, such as the protein–ligand
distance.

While the majority of the above methods focuses on the cal-
culation of the stationary free energy profile ΔG(x), several
approaches have recently been suggested that combine
enhanced sampling with a reconstruction of the dynamics of the
process19–21. In this vein, we recently proposed dissipation-
corrected targeted MD (dcTMD), which exerts a pulling force on
the system along reaction coordinate x via a moving distance
constraint22. By combining a Langevin equation analysis with a
cumulant expansion of Jarzynski’s equality23, dcTMD yields both
ΔG(x) and the friction field Γ(x). Reflecting interactions with
degrees of freedom orthogonal to those which define the free
energy, the friction accounts for the dynamical aspects of the
considered process. In this work, we go one step further and use
ΔG(x) and Γ(x) to run Langevin simulations, which describe the
coarse-grained dynamics along the reaction coordinate and reveal
timescales and mechanisms of the considered process. Moreover,
we introduce the concept of “temperature boosting” of the Lan-
gevin equation, which allows us to speed up the calculations by
several orders of magnitude in order to reach biologically relevant
timescales.

Results
Dissipation-corrected targeted molecular dynamics. To set the
stage, we briefly review the working equations of dcTMD derived
in22. TMD as developed by Schlitter et al.24 uses a constraint force
fc that results in a moving distance constraint x= x0+ vct with a
constant velocity vc. The main assumption underlying dcTMD is
that this nonequilibrium process can be described by a memory-
free Langevin equation1,

m€xðtÞ ¼ � dG
dx

� ΓðxÞ _x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTΓðxÞ
p

ξðtÞ þ f cðtÞ; ð1Þ

which contains the Newtonian force −dG/dx, the friction force
�ΓðxÞ _x, as well as a stochastic force with white noise ξ(t), that is
assumed to be of zero mean, 〈ξ〉 = 0, delta-correlated,
hξðtÞξðt0Þi ¼ δðt � t0Þ, and Gaussian distributed. Since the con-
straint force fc imposes a constant velocity on the system ( _x ¼ vc),
the total force m€x vanishes. Performing an ensemble average 〈…〉
of Eq. (1) over many TMD runs, we thus obtain the relation22

ΔGðxÞ ¼ hWðxÞi � vc

Z x

x0

Γðx0Þ dx0: ð2Þ

Here the first term hWðxÞi ¼ R x
x0
hf cðx0Þi dx0 represents the

averaged external work performed on the system, and the second
term corresponds to the dissipated work Wdiss(x) of the process
expressed in terms of the friction Γ(x).

While the friction in principle can be calculated in various
ways25,26, it proves advantageous to invoke Jarzynski’s identity23,

e�ΔGðxÞ=kBT ¼ he�WðxÞ=kBTi, which allows us to calculate Γ(x)
directly from TMD simulations. To circumvent convergence
problems associated with the above exponential average27, we
perform a second-order cumulant expansion which gives Eq. (2)
with WdissðxÞ ¼ δW2ðxÞh i=kBT . Expressing work fluctuations
δW in terms of the fluctuating force δfc, we obtain for the
friction22

ΓðxÞ ¼ 1
kBT

Z tðxÞ

t0

δf cðtÞδf cðt0Þ
� �

dt0; ð3Þ

which is readily evaluated directly from the TMD simulations.
As discussed in ref. 22, the derivation of Langevin Eq. (1)

assumes that the pulling speed vc is slow compared to the
timescale of the bath fluctuations, such that the effect of fc can be
considered as a slow adiabatic change28. This means that the free
energy Eq. (2) and the friction Eq. (3) determined by the
nonequilibrium TMD simulations correspond to their equili-
brium results. As a consequence, we can use ΔG(x) and Γ(x) to
describe the unbiased motion of the system via Langevin Eq. (1)
for fc= 0. Numerical propagation of the unbiased Langevin
equation then accounts for the coarse-grained dynamics of the
system. In this way, calculations of ΔG(x) and Γ(x) as well as
dynamical calculations are based on the same theoretical footing
(i.e., the Langevin equation), and are therefore expected to yield a
consistent estimation of the timescales of the considered process.
Moreover, the exact solution of the Langevin equation allows us
to directly use the computed fields ΔG(x) and Γ(x) and thus to
avoid further approximations29.

The theory developed above rests on two main assumptions.
For one, we have assumed that the Langevin Eq. (1) provides an
appropriate description of nonequilibrium TMD simulations, and
applies as well to the unbiased motion (fc= 0) of the system. This
means that, due to a timescale separation of slow pulling speed
and fast bath fluctuations, the constraint force fc enters this
equation merely as an additive term. Secondly, to ensure rapid
convergence of Jarzynski’s identity, we have invoked a cumulant
expansion to derive the friction coefficient in Eq. (3), which is
valid under the assumption that the distribution of the work is
Gaussian within the ensemble. While this assumption may break
down if the system of interest follows multiple reaction paths, we
have recently shown that we can systematically perform a
separation of dcTMD trajectories according to pathways by a
nonequilibrium principal component analysis of protein–ligand
contacts30. This approach bears similarities with the work of
Tiwary et al. for the construction of path collective variables31.
Alternatively, path separation can be based on geometric
distances between individual trajectories, making use of the
NeighborNet algorithm32. Details on the convergence of the free
energy and friction estimates, the path separation, and the choice
of the pulling velocity are given in the Supplementary Methods
and in Supplementary Figs. 1–4.

T-boosting. The speed-up of Langevin Eq. (1) compared to an
unbiased all-atom MD simulation is due to the drastic coarse
graining of the Langevin model (one instead of 3N degrees of
freedom, N being the number of all atoms). Since the numerical
integration of the Langevin equation typically requires a time step
of a few femtoseconds (see Supplementary Table 1), however, we
still need to propagate Eq. (1) for ≳100 × 1015 steps to sufficiently
sample a process occurring on a timescale of seconds, which is
prohibitive for standard computing resources.

As a further way to speed up calculations, we note that the
temperature T enters Eq. (1) via the stochastic force, indicating
that temperature is the driving force of the Langevin dynamics.
That is, when we consider a process described by a transition rate
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k and increase the temperature from T1 to T2, the corresponding
rates k1 and k2 are related by the Kramers-type expression29

k2 ¼ k1e
�ΔG≠ðβ2�β1Þ; ð4Þ

where ΔG≠ denotes the transition state energy and βi= 1/kBTi is
the inverse temperature. Hence, by increasing the temperature we
also increase the number n of observed transition events
according to n2/n1= k2/k1.

To exploit this relationship for dcTMD, we proceed as follows.
First we employ dcTMD to calculate the Langevin fields ΔG(x)
and Γ(x) at a temperature of interest T1. Using these fields, we
then run a Langevin simulation at some higher temperature T2,
which results in an increased transition rate k2 and number of
events n2. In particular, we choose a temperature high enough to
sample a sufficient number of events (N≳ 100) for some given
simulation length. In the final step, we use Eq. (4) to calculate the
transition rate k1 at the desired temperature T1.

As Eq. (4) arises as a consequence29 of Langevin Eq. (1), the
above described procedure, henceforth termed T-boosting,
involves no further approximations. It exploits the fact that we
calculate fields ΔG(x) and Γ(x) at the same temperature for which
we eventually want to calculate the rate. We wish to stress that
this virtue represents a crucial difference to temperature
accelerated MD33. In the latter method the free energy ΔG(x) is
first calculated at a high temperature and subsequently rescaled to
a desired low temperature, whereupon ΔG(x) in general does
change. T-boosting avoids this, because by using dcTMD we
calculate ΔG(x) right away at the desired temperature. We note in
passing that a Langevin simulation run at T2 using fields obtained
at T1 in general does not reflect the coarse-grained dynamics of
an MD simulation run at T2, but can only be used to recover k1
from k2.

In practice, we perform T-boosting calculations at several
temperatures T2 in increments of 25 K to 50 K and choose the
smallest T2 such that N≳ 100 transitions occur. In the Supporting
Methods we derive an analytic expression of the extrapolation
error as a function of boosting temperatures and achieved
number of transitions, from which the necessary length of the
individual Langevin simulations can be estimated, in order to
achieve a desired extrapolation error. One-dimensional Langevin
simulations require little computational effort (1 ms of simulation
time at a 5 fs time step take ~6 h of wall-clock time on a single
CPU) and are trivial to parallelize in the form of independent
short runs. Hence the extrapolation error due to boosting can
easily be pushed below 10% and is thus negligible in comparison
to systematic errors coming from the dcTMD field estimates. As
shown in Supplementary Table 1, a further increase in efficiency
can be achieved if the considered dynamics is overdamped, which

is the case for both protein–ligand systems. Since overdamped
dynamics neglects the inertia term m€x and therefore does not
depend on the mass m, we may artificially enhance the mass in
the Langevin simulations. For the protein–ligand systems, this
allows us to increase the integration time step from 1 to 10 fs, i.e.,
a speed-up of an order of magnitude.

Ion dissociation of NaCl in water. To illustrate the above
developed theoretical concepts and test the validity of the
underlying approximations, we first consider sodium chloride in
water as a simple yet nontrivial model system. For this system,
detailed dcTMD as well as long unbiased MD simulations are
available22, making it a suitable benchmark system for our
approach. Fig. 1a shows the free energy profiles ΔG(x) along the
interionic distance x, whose first maximum at x ≈ 0.4 nm cor-
responds to the binding-unbinding transition of the two ions.
The second smaller maximum at x ≈ 0.6 nm reflects the tran-
sition from a common to two separate hydration shells34. We
find that results for ΔG(x) obtained from a 1 μs long unbiased
MD trajectory and from dcTMD simulations (1000 × 1 ns runs
with vc= 1 m/s) match perfectly. Since the average work 〈W(x)〉
of the nonequilibrium simulations is seen to significantly over-
estimate the free energy at large distances, the dissipation cor-
rection Wdiss in Eq. (2) is obviously of importance. Fig. 1b shows
the underlying friction profile Γ(x) obtained from dcTMD,
which in part deviates from the lineshape of the free energy.
While we also find a maximum at x ≈ 0.4 nm, the behavior of
Γ(x) is remarkably different for larger distances 0.5 ≲ x ≲ 0.7 nm,
where a region of elevated friction can be found before dropping
to lower values. Interestingly, these features of Γ(x) match well
the changes of the average number of water molecules bridging
both ions34. This indicates that the increased friction in Eq. (3)
is mainly caused by force fluctuations associated with the build-
up of a hydration shell22. For x ≳ 0.8 nm, the friction is constant
within our signal-to-noise resolution. The dynamics of ion
dissociation and association can be described by their mean
waiting times and corresponding rates shown in Fig. 2a and
Table 1. For the chosen force field, ion concentration and
resulting effective simulation box size, the unbiased MD simu-
lation at 293 K yields mean dissociation and association times of
τD= 1/kD= 120 ps and τA ¼ 1= kACð Þ ¼ 850 ps, respectively,
where C denotes a reference concentration (see the Supple-
mentary Methods for details). Using fields ΔG(x) and Γ(x)
obtained from TMD, the numerical integration of Langevin Eq.
(1) for 1 μs results in τD= 420 ps and τA= 3040 ps. While the
dissociation constants KD = kD/kA= 1.5 M from Langevin and
MD simulations match perfectly, we find that the Langevin
predictions overestimate the correct rates by a factor of ~3.4.
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Fig. 1 Dissociation of NaCl in water. a Free energy profiles ΔG(x) along the interionic distance x, obtained from a 1 μs long unbiased MD trajectory at 293 K
(orange line) and 1000 × 1 ns TMD runs (blue line). Error bars are given in Supplementary Fig. 2. Also shown is the average work 〈W(x)〉 calculated from
the TMD simulations (dashed black line). b Friction profile Γ(x) (red) obtained from dcTMD after Gaussian smoothing together with the average number
of water molecules (black), that connect the Na+ and Cl− ions in a common hydration shell34.
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The latter may be caused by various issues. For one, to be of
practical use, the Langevin model was deliberately kept quite
simple. For example, it does not include an explicit solvent
coordinate34,35, but accounts for the complex dynamics of the
solvent merely through the friction field Γ(x). Moreover, we note
that the calculation of Γ(x) via Eq. (3) uses constraints, which
have the effect of increasing the effective friction36. This finding
is supported by calculations using the data-driven Langevin
approach37,38, which estimates friction coefficients based on
unbiased MD simulations that are consistantly smaller than the
ones obtained from dcTMD (Supplementary Fig. 5). Consider-
ing the simplicity of the Langevin model and the approximate
calculation of the friction coefficient by dcTMD, overall we are
content with a factor ~3 deviation of the predicted kinetics.

To illustrate the validity of the T-boosting approach suggested
above, we performed a series of Langevin simulations for eight
temperatures ranging from 290 to 420 K and plotted the resulting
dissociation and association times as a function of the inverse
temperature (Fig. 2a and Table 1). Checking the consistency of
our approach, a fit to Eq. (4) yields transition state free energies
ΔG≠ of 13 and 12 kJ/mol for ion dissociation and association,
respectively, which agree well with barrier heights of the free
energy profile in Fig. 1a. Moreover, dissociation and association
times obtained from the extrapolated T-boosted Langevin
simulations (τD= 370 ps, τA= 3050 ps) agree excellently with
the directly calculated values. This indicates that high-
temperature Langevin simulations can indeed be extrapolated to
obtain low-temperature transition rates.

Trypsin-benzamidine. Let us now consider the prediction of free
energies, friction profiles and kinetics in protein–ligand systems.
The first system we focus on is the inhibitor benzamidine bound
to trypsin39–41, which represents a well-established model pro-
blem to test enhanced sampling techniques21,31,42–45. The slowest
dynamics in this system is found in the unbinding process, which
occurs on a scale of milliseconds39. To capture the kinetics of the
unbinding process, so far Markov state models42,43, metady-
namics31, Brownian dynamics44 and adaptive enhanced sampling
methods21,45 have been employed.

Here we combined dcTMD simulations and a subsequent
nonequilibrium principal component analysis30 to identify the
dominant dissociation pathways of ligands during unbinding
from their host proteins (see Supplementary Methods). Fig. 3
shows TMD snapshots of the structural evolution along this
pathway, its free energy profile ΔG(x), and the associated friction
Γ(x). Starting from the bound state (x1= 0 nm), ΔG(x) exhibits a
single maximum at x2 ≈ 0.46 nm, before it reaches the dissociated
state for x≳ x4= 0.75 nm. In line with the findings of Tiwary
et al.31, the maximum of ΔG(x) reflects the rupture of the
Asp189-benzamidine salt bridge, which represents the most
important contact of the bound ligand. Following right after, the
friction profile Γ(x) reaches its maximum at x3 ≈ 0.54 nm, where
the charged side chain of benzamidine becomes hydrated with
water molecules. Similarly to NaCl, the friction peak coincides
with the increase in the average number of hydrogen bonds
between benzamidine and bulk water. The peak in friction is
slightly shifted to higher x, because the ligand acts as a plug for
the binding site, and first needs to be (at least partially) removed
in order to allow water flowing in. As for the dissociation of NaCl
in water, enhanced friction during unbinding appears to be
directly linked to a rearrangement of the protein–ligand
hydration shell, which is in agreement with recent results from
neutron crystallography41.

To calculate rates kon and koff describing the binding and
unbinding of benzamidine from trypsin, we performed 10 ms long
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Fig. 2 Prediction of binding and unbinding times. Mean binding (red) and
unbinding (blue) times, drawn as a function of the inverse temperature,
obtained from T-boosted Langevin simulations of a solvated NaCl, b the
trypsin-benzamidine complex, and c the Hsp90-inhibitor complex. Dashed
lines represent fits (R2= 0.90−0.99) to Eq. (4), crosses (binding in grey,
unbinding in black) indicate reference results from a unbiased MD
simulation22 and b, c experiment39,48.

Table 1 Predicted binding and unbinding kinetics.

NaCl LE MD22

kA (109 s−1 M−1) 1.6 ± 0.1 5.5 ± 0.3
kD (109 s−1) 2.4 ± 0.1 8.1 ± 0.4
KD (M) 1.5 ± 0.2 1.5 ± 0.2

Trypsin LE Experiment39

kon (106s−1 M−1) 8.7 ± 0.5 29.0
koff (102 s−1) 2.7 ± 0.4 6.0
KD (10−5M) 3.1 ± 0.6 2.1

Hsp90 LE Experiment48

kon (104 s−1 M−1) 9.0 ± 0.8 48.0 ± 2.0
koff (10−3 s−1) 1.6 ± 0.2 34.0 ± 2.0
KD (10−8M) 1.8 ± 0.3 7.1 ± 0.5

Rates resulting from fits in Fig. 2 (using units of molarity M, i.e., mol/l) with fit errors as
indicated59, and reference values from unbiased MD simulations22 and experiment39,48,
respectively. Dissociation constants were calculated from rate constants.
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Langevin simulations along the dominant pathways at thirteen
temperatures ranging from 380–900 K. As shown in Fig. 2b and
Table 1, the resulting rates are well fitted (R2 ≥ 0.90) by the T-
boosting expression in Eq. (4). Representing the resulting number
of transitions as a function of the inverse temperature, we find that
at 380 K only ~9 events happen during a millisecond. That is, to
obtain statistically converged rates at 290 K would require Langevin
simulations at 290 K on a timescale of seconds. Using temperature
boosting with Eq. (4), on the other hand, our high-temperature
millisecond Langevin simulations readily yield converged transi-
tion rates at 290 K (see Fig. 2b and Table 1), that is, kon= 8.7 ×
106 s−1 M−1 and koff= 2.7 × 102 s−1, which underestimate the
experimental values39kon= 2.9 × 107 s−1 M−1 and koff= 6.0 ×
102 s−1 by a factor of 2–3. Similarly, the calculated KD over-
estimates the experimental result39 of KD= 2.1 × 10−5 M by
a factor of ~1.5. As indicated by a recent review3 comparing
numerous computational methods to calculate (un)binding rates of
trypsin-benzamidine, our approach compares quite favorably
regarding accuracy and computational effort.

As the extrapolation error due to T-boosting is negligible (see
Supplementary Methods), the observed error is mainly caused by
the approximate calculation of free energy and friction fields by
dcTMD. In the case of NaCl, we have shown that reliable
estimates of the fields (with errors ≲1 kBT) require an ensemble
of at least 500 simulations (see ref. 22 and Supplementary Fig. 2),
although the means of ΔG and Γ appear to converge already for
~100 trajectories. In a similar vein, by performing a Jackknife
“leave-one-out” analysis46, for trypsin-benzamidine we obtain an
error of ~2 kBT for 150 trajectories (Supplementary Fig. 2).
Interestingly, the error of the main free energy barrier is typically
comparatively small, because the friction and thus variance of W
increase directly after the barrier. As a consequence, the sampling
error of koff is small compared to that of kon and the binding free
energy. We note that if the experimental binding affinity KD is
known, it can be used as a further constraint on the error of the
free energy and friction fields.

Hsp90-inhibitor. The second investigated protein complex is the
N-terminal domain of heat shock protein 90 (Hsp90) bound to a
resorcinol scaffold-based inhibitor (1j in ref. 47). This protein has
recently been established as a test system for investigating the
molecular effects influencing binding kinetics47–50, and the selected
inhibitor unbinds on a scale of half a minute. From the overall
appearance of free energy and friction profiles (Fig. 4), we observe
clear similarities to the case of trypsin-benzamidine. That is, the
main transition barrier is also found at x2 ≈ 0.5 nm, which stems
from the ligand pushing between two helices at this point in order
to escape the binding site. Moreover, the friction peaks at x2 ≈ 0.5
nm, as well, but with an additional shoulder at x3 ≈ 0.8 nm, which
again coincides with changes of the ligand’s hydration shell. The
unbound state is reached after x≳ 1.0 nm. We note that the ligand
is again bound to the protein via a hydrogen bond to an aspartate
(Asp93) and at a position that is open to the bulk water.

To calculate rates kon and koff, we again performed 5ms long
Langevin simulations along the dissociation pathway at fourteen
different temperatures ranging from 700–1350 K. Rate prediction
(see Fig. 2c and Table 1) yields kon= 9.0 × 104 s−1 M−1 and koff=
1.6 × 10−3 s−1, and underestimates the experimental48 values
kon= 4.8 ± 0.2 × 105 s−1 M−1 and koff= 3.4 ± 0.2 × 10−2 s−1 by a
factor of 5–20. The resulting value for KD= 1.8 × 10−8 M under-
estimates the experimental value48 7.1 × 10−8 M by a factor of ~4.
Considering that we attempt to predict unbinding times on a time
scale of half a minute from sub-μs MD simulations, and that a
factor 20 corresponds to a free energy difference of about 3 kBT
(i.e., 15 % of the barrier height in Hsp90), we find this agreement
remarkable for a first principles approach which implies many
uncertainties of the physical model51. We attribute the larger
deviation in comparison to trypsin to issues with the sampling of
the correct unbinding pathways: especially unbinding rates in the
range of minutes to hours fall into the same timescale as slow
conformational dynamics of host proteins48, requiring a sufficient
sampling of the conformational space of the protein as a
prerequisite for dcTMD pulling simulations.
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protein surface in gray, benzamidine as van der Waals spheres, Asp189 and water molecules as sticks. Benzamidine is bound to the protein in a cleft of the
protein surface via a bidental salt bridge to Asp189. dcTMD calculations of b free energy ΔG(x), and c (Gaussian smoothed) friction Γ(x) together with the
mean number of hydrogen bonds between benzamidine and water. Highlighted are the bound state 1, transition state 2, the state with maximal friction 3
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Discussion
Using free energy and friction profiles obtained from dcTMD, we
have shown that T-boosted Langevin simulations yield binding
and unbinding rates which are well comparable to results from
atomistic equilibrium MD and experiments. That is, rates are
underestimated by an order of magnitude or less which, in
comparison to other methods that have been applied to the
trypsin-benzamidne and Hsp90 complexes (see refs. 3,52 for
recent reviews), is within the top accuracy currently achievable.
At the same time, the few other methods that aim at predicting
absolute rates (such as Markov state models42,43 and infrequent
metadynamics31,53) require substantial more MD simulation
time, while dcTMD only requires sub-μs MD runs, that is, at least
an order of magnitude less computational time. As the extra-
polation error due to T-boosting is negligible, the error is mainly
caused by the approximate calculation of free energy and friction
fields by dcTMD. We have shown that friction profiles, which
correspond to the dynamical aspect of ligand binding and
unbinding, may yield additional insight into molecular mechan-
isms of unbinding processes, which are not reflected in the free
energies. Although the three investigated molecular systems differ
significantly, in all cases friction was found to be governed by the
dynamics of solvation shells.

Methods
MD simulations. All simulations employed Gromacs v2018 (ref. 54) in a CPU/
GPU hybrid implementation, using the Amber99SB* force field55,56 and the TIP3P
water model57. For each system, 102–103 dcTMD calculations22 at pulling velocity
vc= 1 m/s were performed to calculate free energy ΔG(x) and friction Γ(x). For the
NaCl-water system, dcTMD as well as unbiased MD simulations were taken from
ref. 22. Trypsin-benzamidin complex simulations are based on the 1.7Å X-ray
crystal structure with PDB ID 3PTB40. Simulation systems of the Hsp90-inhibitor
complex were taken from ref. 47. Detailed information on system preparation,
ligand parameterization, MD simulations and pathway separation can be found in
the Supplementary Methods.

Langevin simulations. Langevin simulations employed the integration scheme by
Bussi and Parrinello58. Details on the performance of this method with respect to
the employed integration time step and system mass can be found in the Sup-
plementary Methods.

Data availability
Simulation data on NaCl, Trypsin-benzamidine, and Hsp90-inhibitor is available from
the authors upon request.

Code availability
Python scripts for dcTMD calculations, the fastpca program package for nonequilibrium
principal component analysis, the data-driven Langevin package, the Langevin
simulation code, and Jupyter notebooks for T-boosting analysis and sampling error
estimation in Langevin simulations are available at our website www.moldyn.uni-
freiburg.de.
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