
Accelerating the Gillespie Exact Stochastic Simulation
Algorithm Using Hybrid Parallel Execution on Graphics
Processing Units
Ivan Komarov, Roshan M. D’Souza*

Department of Mechanical Engineering, Complex Systems Simulation Lab, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America

Abstract

The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction
kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as
differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the
need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient
variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of
the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a
single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed
synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained
parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic,
which is the bottleneck in computing the GSSA. Our benchmarks show an 8621206performance gain over various state-
of-the-art serial algorithms when simulating different types of models.

Citation: Komarov I, D’Souza RM (2012) Accelerating the Gillespie Exact Stochastic Simulation Algorithm Using Hybrid Parallel Execution on Graphics Processing
Units. PLoS ONE 7(11): e46693. doi:10.1371/journal.pone.0046693

Editor: Maria Schilstra, University of Hertfordshire, United Kingdom

Received June 1, 2012; Accepted September 3, 2012; Published November 9, 2012

Copyright: � 2012 Komarov, D’Souza. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially funded by the National Science Foundation under grants CNS-0968519 and CCF-1013278. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dsouza@uwm.edu

Introduction

Mechanistic modeling of biological systems requires the

simulation of complex sets of interconnected chemical reaction

channels. There are two fundamental approaches to simulating

such systems: deterministic and stochastic. Deterministic ap-

proaches are applicable when the number of molecules of the

reactants is large enough such that the state of the system can be

tracked in terms of the concentrations of the reactants with real

numbers. The time evolution of the system state is governed by a

set of non-linear coupled differential equations. In the case of a low

number of reactant molecules, the deterministic approaches fail

and stochastic approaches that track the actual number of reactant

molecules have to be used. The processes that occur in such bio-

chemical systems can be modelled using the Chemical Master

Equation (CME) [1], which describes the time evolution of the

probability density function (PDF) of the system state. Since

analytical and numerical solutions are challenging, Monte Carlo

schemes that sample instances of the underlying stochastic

processes are used. The Gillespie Stochastic Simulation Algorithm

(GSSA) [2] and its variants [3,4] are the most popular Monte

Carlo schemes that are used to solve the CME.

The exact GSSA and its variants [2,4–8] advance the system

state by executing one reaction at a time. In cases where the

simulations involve whole cells or cell colonies where the total

number of reaction channels can approach 105–106, even

simulation of a single trajectory becomes prohibitively expensive.

Moreover, since a single simulation is just one sample trajectory in

what is essentially a probability distribution, dense sampling

(simulation of 105–106 of trajectories) is needed to generate a dense

dataset to back calculate the time evolution of the PDF. Both of

these issues render the simulation of biologically relevant models

intractable.

The computational intractability of the GSSA has been

addressed in several ways. The approximation approaches such

as the t-Leaping method and its variants [3,9–12] use an

approximation under certain assumptions that allows the ad-

vancement of the system state by several reactions within the given

time step t. Improved algorithms for the exact method such as the

Optimized Direct Method (ODM) [5], the Next Reaction

Method(NRM) [4], the Sorting Direct Method (SDM) [7], and

the Logarithmic Direct Method (LDM) [6] speed up computation

of the altered system state and the search process of the next

reaction to be fired. One of the most interesting algorithms is the

Partial-propensity Stochastic Simulation Algorithm (PSSA) meth-

od which uses propensity factoring and grouping of reactions that

share common reactants into a special data structure to reduce the

amount of computations needed to handle reaction firing [13].

There are two variants of the PSSA algorithm: one is the PSSA-

CR, that uses composition rejection (CR) [14] to select the next

reaction to be fired. The other is the Sorting Partial-propensity

Direct Method (SPDM), which uses the SDM mechanism to

search for the next reaction to be fired.

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e46693

Another approach is through leveraging the power of parallel

computing. Coarse-grained parallelization is used to generate

ensemble averages by running several concurrent trajectories

independently on different computing cores. Such parallelization

has been attempted on clusters [15], multi-core CPUs [16] and on

graphics processing units [17,18]. In coarse-grained parallelization

of the Direct Method on GPUs [17], each GPU thread runs one

realization, i.e., each thread executes the serial algorithm. The

limited size of share memory (user controlled cache) means that

the model size is limited to N+M,63 where N is the number of

reactions and M is the number of reactants for the most efficient

thread configuration. Fine-grained parallelization of the First

Reaction Method (FRM) has been attempted [19]. However, this

implementation is limited by the constant data transfer between

CPU and GPU because both devices are involved in processing.

An interesting alternative is hardware implementation on Field

Programmable Gate Arrays (FPGAs) [20]. However, the limited

size of the programmable hardware limits the size of networks to

less than 104 reactions.

Graphics Processing Units
Graphics Processing Units (GPUs) were initially built to speed

up the rendering of 3-D images for real-time display. GPUs follow

the data-parallel computing model where the same set of

instructions is applied to a large data set whose individual

elements are of the same type. However, the same computing

model is applicable to a wide variety of scientific problems. The

development of direct APIs [21,22] specifically for use in scientific

computing has enabled the acceleration of many such problems

and has led to an entirely new area in high performance

computing commonly known as General Purpose Graphics

Processing Units (GPGPU) [23].

In this paper we will describe the architecture of NVIDIA GPUs

as this implementation is specific to this vendor. The GPU

computing cores are organized into a set of multi-processors. Each

multi-processor contains several serial processors that share

instruction dispatch. There are several types of memories available

(Figure 1). Multi-processors have registers and on-chip memory

that can be configured as a user-controller cache called shared

memory or as an automatic L1 cache. In addition, the latest Fermi

architecture has an L2 cache shared between all multiprocessors.

The device/global memory is off-chip and is equivalent to random

access memory on the CPU. Furthermore, regions in the global

memory can act as read-only texture and as constant memory.

Both of these have an on-chip automatic cache, although the

constant memory cache has a smaller latency. Constant memory is

typically used to store system constants that will be accessed by all

threads. Texture memory can be used to lower the overhead of

irregular global memory access patterns.

NVIDIA has made available an API called compute unified

device architecture (CUDA) [24,25], which provides an abstract

programming model of the GPUs resources with a set of constructs

that describes thread, memory hierarchies, and synchronization

primitives, among other things. The host/CPU controls the

execution of the kernel, which is a parallel program that executes on

the GPU. The basic execution unit on a GPU is a thread. Threads

are grouped into thread blocks (TBs). All threads in a TB are

executed on a single multi-processor and therefore can commu-

nicate by using shared memory. At the hardware level, threads are

grouped into warps. A warp is a grouping of 32 consecutive threads

synchronously executing the same instruction on different cores of

a single multiprocessor on different data pieces indexed by the

thread ID. On the latest GPUs, if threads in a warp access

memory in a contiguous 128 byte segment, it results in coalesced

memory access, i.e., a single memory transaction. Furthermore,

shared memory is mapped to 16 banks and if threads in a half

warp access segments of shared memory that map to the same

bank, bank conflicts will result, which degrades performance. A

very useful set of functions that is available is warp voting functions

that allow checking the status of a computation with respect to all

threads in the warp.

Gillespie Stochastic Simulation Algorithm (GSSA)
The GSSA is a Monte-Carlo simulation of a single trajectory

from the chemical master equation of spatially homogeneous

reacting systems. Consider a reaction system with a list of species S

and a list of possible reaction channels R that describe the

interaction between species. The reactions can be uni-molecular (si

R) (Type 1), bi-molecular (si+sj R) (Type 2), or bi-molecular

where si = sj (Type 3). Given a initial species population s0
i

� �
, the

algorithm proceeds as follows:

1 Set simulation time t = 0, initialize the reactant populations

si½ �~s0
i .

2 For each reaction rl M R, given rate constant kl compute

propensities al as

al~

kl si½ � for Type 1

kl si½ � sj

� �
for Type 2

kl si½ � si½ �{1ð Þ=2 for Type 3

8><
>:

Compute the sum of propensities aR~
PM

l~1 al .

3 Choose the reaction to be fired next rf such that

Xf

l~1

alvz1|aRv

Xf z1

l~1

al

where z1 is a uniform random number in the unit interval.

4 Update species population due to firing reaction rf.

5 Update simulation time tsim as

tsim/tsim{
log z2

aR

where z2 is a uniform random number in the unit interval.

6 Record populations [si] of certain species.

7 If tsim , tf go to step 2.

The Optimized Direct Method maintains a reaction dependency

graph. Since each reaction fired only affects a few other reactions,

the dependency graph significantly reduces the cost of updating

propensities. Instead of computing the total sum of propensities aR at

each update step, it only computes the sum incrementally. The

search for the reaction to be fired, however, is a simple linear search.

Since in general bio-chemical systems only a small fraction of the

reactions are regularly fired, sorting the list of propensities by

magnitude significantly reduces the cost of the linear search.

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e46693

Therefore, ODM uses pre-simulation to sort the list of reactions

based on average propensities over the course of the simulation. The

Logarithmic Direct Method, in addition, maintains partial sums of

propensities to enable a binary search for the reaction to be fired.

The partial sum of propensities has to be re-computed from the point

where the first partial sum has been changed for each reaction

channel that is affected. The Sorting Direct Method (SDM)

continually reorders the list of propensities to reduce search cost.

Both of these methods are marginally better than the ODM, based

on the model being simulated. The Composition Reaction (CR)

method reduces the reaction search process to constant time [14].

The PSSA-CR method is the fastest variant of ODM to date. It uses

propensity factorization to significantly reduce the cost of recom-

puting propensities of the affected reactions. Propensity factoriza-

tion naturally distributes reactions into groups that share reactants

while maintaining group propensity sum. Group propensity sums

speed up the search for the next reaction to be fired. Additionally, the

PSSA-CR method uses the composition rejection method to reduce

search complexity. However, this method has complex update

processes that involve significant amounts of pointer chasing, which

is extremely difficult to parallelize (fine-level parallelization),

especially on data-parallel architectures such as GPUs.

Methods

In this paper, we describe a new variant of the Optimized Direct

Method that is amenable to fine-level parallelization on GPUs. We

present techniques to simultaneously achieve coarse-grained as

well as fine-grained parallelism. We use threads within a warp to

parallelize a single realization (fine-grained parallelization). Several

warps executing simultaneously (coarse-grained parallelization)

enable the simulation of several trajectories concurrently. Our

implementation consists of three main phases. The first phase

computes the index of the reaction to be fired and updates the

state vector. The second phase updates the partial sums of the

reaction blocks. The third phase checks to see if all realizations

have completed their execution and terminates the program.

Finding the index of the reaction to be fired
Finding the index of the reaction to be fired is the most

expensive part as it involves a lot of memory transactions. Our

method speeds up this step by significantly reducing memory

transactions. The key idea is to divide the list of reaction

propensities into blocks. The number of blocks is dependent on

the total number of reactions. The size of the blocks is either a

multiple of 128 or 256 reaction propensities (multiples of warp

size). We keep track of the partial sum of propensities of each of

these blocks through incremental updates. When the simulation

begins, the block partial sums are computed from scratch on the

CPU and uploaded to the GPU. Naturally this is a one time

computation for all realizations. The total sum of propensities aR is

the last entry in the list of block partial sums.

Figure 1. CUDA Computing Model. The basic execution unit is a thread. Threads are grouped into thread blocks. Each thread block is executed
on a single multi-processor. Threads in a thread block can communicate through shared memory which is essentially a user-controlled cache. In the
latest GPUs, shared memory can be configured to act as an L1 cache. Register space can be used to store data local to threads with the fastest access
speed. Spill-over data that does not fit in registers goes to local memory, which is physically stored in the main memory and which is very slow. Main
memory has three components. Global memory is accessible to all threads and is cached through an L2 cache that is shared among all multi-
processors on the latest generation GPUs. Constant memory is typically used to store data that is used by all threads (simulation constants) and that
is automatically cached. Texture memory is read-only memory with automatic cache.
doi:10.1371/journal.pone.0046693.g001

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e46693

We use a 3-level search with increasing granularity, and,

consequently computation cost (Figure 2). We use a warp ballot

(_ballot()) and first find set (_ffs()) functions in this search. The

ballot function _ballot() sets the bits of a 32 bit integer based on the

computed value of a predicate, one bit for each thread in the warp.

The _ffs() function identifies the index or position of the least

significant bit set to one in the 32 bit integer.

At the top level, we eliminate whole blocks through a parallel

search. Given the product z1 6 aR, each thread in the warp

computes the predicate z1|aRvabRi
, where abRi

is the ith

cumulative block sum of reaction propensities. The _ballot()

function then fills a 32 bit integer based on this predicate. Next the

_ffs() function is used to find min
i

z1|aRvabRi
ð Þ~l, which is the

index of the block where the reaction to be fired rf is located

(Figure 2a).

Within a selected block Bl we execute a search on chunks of 128

reactions at a time using warp-level reduction (Figure 2b). The

reduction operation computes the cumulate chunk sum acRi
at the

ith chunk. Each thread in a warp computes the sums of 128/32 = 4

propensities, each offset in memory with a stride of 32. Finally, a

parallel-prefix sum is executed. This is essentially a coarse-level

parallel linear search. Due to efficient use of shared memory and

the opportunities for instruction-level parallelism, this step is very

fast. When the chunk Cj that contains the reaction rf to be fired

next is found, we execute a fined-grained parallel search using a

warp level pre-fix sum on the 128 reaction wide chunk in batches

of 32 reaction propensities (Figure 2c). We first generate the partial

sums of propensities for the 32 reaction propensities using a

parallel pre-fix sum. Next, the _ballot() function is used to fill 32

bits of the integer based on the predicate

a’’Rv

Xk

i~1
ai Dk~1, 2, . . . 32. Finally, _ffs() returns the smallest

index k where the predicate is true. The reaction corresponding to

this index is rf.

Updating
The updating step involves moving the simulation time forward,

updating populations of affected reactants, updating affected

reaction propensities, and finally the updating block partial sums.

We store the stoichiometric matrix in an array of int4 (since each

reaction can have a maximum of two reactants and two products).

Each int4 contains four integer elements. Each integer element

contains the reactant identifier (first 29 bits) and the molecular

change (last 3 bits) (Figure 3). This representation can handle 229

reactants and all possible changes of molecular count (vij M [22,

21, +1, +2]). Note that vij is an element of the stoichiometric

matrix and denotes the change in the molecular count of specie si

when reaction rj is fired. Therefore, given a reaction, it is very easy

to update the molecular count. This is done by using at most four

threads in the warp. When any reaction is fired, at most four

species change molecular counts.

Updating the block partial sums and the propensities is done

simultaneously. We maintain in texture memory a reaction-

reaction dependency graph (Figure 4). This data structure allows

us to read the list of dependent reactions in one step in a coalesced

manner at the cost of being inefficient in memory. Each node in

this graph contains the reaction type (3 bits), reaction index (29

bits), the reaction rate (32 bits), and the indices of reactants (32

bits). The dependent reaction list of each reaction is sorted based

on the location of the reactions in the blocks. An additional integer

array stores the end index for each block in the sorted list of

dependent reaction indices.

For weakly connected reactions where there are on an average

less than 32 (size of the warp) dependent reactions per block, we

Figure 2. Three Level Search for Finding Index f of the Reaction
to be Fired. In Figure 2(a), we use a warp voting function to find the
block Bl in which rf occurs. The cumulative block sums abRk

are
maintained through incremental updates during simulation. In
Figure 2(b), we use reduction and warp voting functions to find the
chunk Cm in block Bl in which rf occurs. Finally in Figure 2(c), we use a
parallel prefix sum and warp voting to find the index of rf in chunk Cm.
doi:10.1371/journal.pone.0046693.g002

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e46693

use one thread per block for processing. For every reaction

belonging to a given block, the thread assigned to the block reads

the old propensity from global memory, computes the new

propensity using the updated molecular count of reactants (this

was done in the previous step), writes the new propensity to

global memory, and finally computes the change in propensity

and stores it in shared memory in an temporary array. The size

of this array is equal to the number of blocks. For strongly

connected systems, where the average number of dependent

reactions is greater than 32, we use the entire warp to process

the dependent reactions in the block. We use a reduction

operation where each thread processes multiple reactions and

sums the change in propensities into a separate array shared

memory (Figure 5). Finally, a parallel prefix sum generates the

total change in block sums for every block. The entries in this

array at this stage are dabR1
, dabR2

, . . . dabRp
. Since a reaction rk

M Bl affects the blocks’ sums of all blocks Bm: m $ l, the block

sum updates are DabR1
, DabR2

, . . .DabRp
, where

DabRk
~
Xk

i~1
dabRi

. We obtain DabRk
by executing a parallel-

pre-fix sum on the array containing dabR1
, dabR2

, . . . dabRp
. Next

we can update all block sums in parallel as:

Figure 3. Stoichiometric Data Structure. The stoichiometric matrix is stored as a linear array. Since each reaction has at most 2 reactants and 2
products, each entry in the array (corresponding to one reaction) has 4 data fields. Each data field has 2 parts. The first is the index of the specie and
the second is the change in the molecular count. The stoichiomteric data structure is common across all runs and therefore only a single copy is
maintained in the global memory on the GPU.
doi:10.1371/journal.pone.0046693.g003

Figure 4. Reaction-Reaction Dependency Graph. Two arrays used to represent the dependency graph for each reaction rj. The first is an array of
indices. The second is the array of dependent reactions sorted by the block in which they occur. The index array is used to indicate the end point for
each block in the dependent reaction array. Each element of the dependent contains the type of the reaction T, the global index of the reaction rm,
the reaction constant km, and the indices of the reactant species sa, sb. The reaction-reaction dependency graph is common across all runs and
therefore only a single copy is maintained in the global memory on the GPU.
doi:10.1371/journal.pone.0046693.g004

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e46693

abRi
~abRi

zDabRk

There is a trade-off between the number of blocks and the effort

required to update block sums. Smaller block sizes imply a faster

search of the index of the reaction to be fired but slower updates

due to the large number of blocks and vice versa. The trade-off is

dependent on the size of the problem as well as the interconnec-

tivity.

Pre-processing input data
In many biological reaction networks, a few reaction channels

dominate the dynamics and are fired more often than others. This

enables the speed of the simulation through clever placement of

data in memory such that the cache utilization is maximized. We

run a pre-simulation using the ODM and record the number of

times a given reaction propensity and the specie’s molecular count

is accessed. We then sort both the array of the reaction

propensities and the array of the species molecular counts, based

on the number of accesses. This places the propensities of most the

frequently fired reactions and their dependent reactions as well as

the related species molecular counts in relative proximity in

memory. Therefore, when a reaction is fired and the data structure

is updated (i.e., molecular counts, block sums, and propensities of

dependent reactions), the required data has a very high probability

of being in cache, thus significantly reducing the memory

transaction overhead.

Results

We have benchmarked the performance of GPU-ODM on

several models, namely, the cyclic chain model (weak dependen-

cies) [5], the colloidal aggregation model (strong dependencies)

[26], and using a randomly generated network (see File S1). We

compared the performance of GPU-ODM with ODM, CR,

SPDM, PSSA-CR. We compiled our code using gcc4.4 with

appropriate optimization flags and executed it on an Intel i7-930

CPU (32 KB L1 cache, 1MB L2 cache (256KB per core), 8MB L3

cache, 52 GFlops) with 6GB of RAM. The operating system was

Windows 7. The GPU part of the code was executed on a

consumer grade NVIDIA 480GTX GPU.

We verified the accuracy of our implementation on a randomly

generated network with 1024 reactions and 1024 species and

tested the accuracy of our implementation against ODM in

StochKit. We executed 10,000 independent trajectories and

averaged the results. Since the time increments at each update

step are different for different trajectories, we used linear

interpolation to compute the molecular counts at predefined time

intervals (0.01s). Figure 6(a) show the average trajectories for a few

randomly selected species. Figure 6(b) shows the residual

percentages at each time step for another set of randomly selected

species. The percentage residual is ,4%.

We conducted three performance tests. The time per update is

computed as:

Tup~
Tt

l|m

where Tup is the time per update, Tt is the total computation time

on the GPU neglecting pre-simulation, l is the number of

realizations, and m is the number of average updates. We ran

5000–10000 realizations with about 10000–50000 updates for

various models. Figure 7a illustrates the time per update for the

cyclic chain model with respect to the number of reactants (which,

in this case, is equal to the number of reactions as well). GPU-

ODM outperforms the best serial implementation (PSSA-CR) [13]

by about 106 for systems that fit our GPU memory. Figure 7b

illustrates the time per update for the colloidal aggregation model.

Our GPU-ODM outperforms SPDM [13] by about 86 for large

systems. The PSSA-CR and SPDM algorithms were written in

C++ and run on a Linux 2.6 workstation with a 2.8 GHz quad-

core Intel Xeon E5462 processor (32 KB L1 cache, 12 MB of L2

cache, 44.8 GFlops) and 8GB of RAM memory. This processor is

comparable to our i7-930, perhaps slightly better for random

memory access with the larger L2 cache. Figure 7c illustrates the

time per update for a random model. The dependencies here are

between the cyclic chain model and the colloidal aggregation

model. GPU-ODM outperforms the CR method by about 266.

We also tested the performance of our implementation with

respect to the number of realizations. As noted before, the GPU

Figure 5. Updating Reaction Block Partial Sums. For sparsely connected systems, we use one thread per block to compute the change in the
sum of propensities dabRi

, within a block Bi. For densely connected systems, the whole thread warp is used. The changes in the partial block sums

DabRi
~
Pi

k~0 dabRk
are found for all i = 1, 2…p in parallel using the parallel-prefix sum. Finally, the block partial propensity sums are updated in

parallel as abRi
~abRi

zDabRi
.

doi:10.1371/journal.pone.0046693.g005

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e46693

delivers lower performance if there is an insufficient number of

realizations due to underutilization of the computing resources.

Figure 8 illustrates the time per update vs. the number of

realizations for both the colloidal aggregation model as well as the

cyclic chain model. Both systems exhibit the same behavior with a

drastic drop in time per update until about 1000 realizations.

Finally, we tested the performance with respect to the number

of reaction blocks. As explained earlier, a larger number of blocks

reduces the complexity of the search process for finding the

reaction to be fired but increases the update complexity.

Therefore, there is a sweet spot where the time is minimum.

The models that we tested were the cyclic chain model (weakly

connected) and the colloidal aggregation model (strongly connect-

ed). We tested two variants of our update algorithm, one with

warp per block and one with thread per block. For the warp per

block, the sweet spot is about 16 reaction blocks (Figure 9(a)). In

the case of the thread block, there is a significant reduction in time

Figure 6. Accuracy Benchmarks. Figure 6(a) shows the time
trajectories of two randomly selected species output from the GPU
and CPU executions. Figure 6(b) shows the percentage residuals of time
trajectories of two other randomly selected species.
doi:10.1371/journal.pone.0046693.g006

Figure 7. Performance Benchmarks. Figure 7(a) list shows the
results for the Colloidal Aggregation Model (the strongly connected

system). For N chemical species, the number reactions is M~
N2

2
. The

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e46693

per update initially with the graph flatening out at about 25

reaction blocks (Figure 9(b)). It is evident that for a small number

of block sizes, the processing time is dominated by the search for

the reaction to be fired. In the case of the cyclic chain model, since

there are only 2 dependencies per reaction, the cost of updating

block partial sums is essentially constant (one 32 element wide

parallel prefix sum). In the case of the warp per block, as the

number of reaction blocks increases, the cost also increases

because there is a parallel prefix sum per block used in the update.

Discussion

We have successfully implemented a hybrid (coarse and fine

grained) parallel implementation of a new exact Gillespie SSA

variant on the GPU. We have verified the correctness of our

implementation by benchmarking against StochKit.

Unlike previous parallel GPU implementations, the size of the

network being simulated is not limited by on-chip shared memory

available to a single thread, but is limited by DRAM, which is

orders of magnitude larger than shared memory. More impor-

tantly, it is easier to increase the amount of DRAM as opposed to

on-chip shared memory. In the near future, when GPU and CPUs

will be fused with GPUs having direct access to the system

DRAM, the network sizes that our implementation will be able to

handle will grow much larger. Given a fixed amount of DRAM,

there is a trade-off between the size of the network being simulated

and the number of trajectories that can be generated simulta-

neously. This also has an impact of utilization. A large network can

consume so much memory so as to limit the number of realizations

to a level where all hardware resources on the GPU cannot be

used.

Gillespie SSA implementations in general are data-bound, i.e., a

majority of the time is spent in moving data between DRAM and

the processor. The order of placement of reaction propensities in

global memory affects the performance of the algorithm. A typical

memory transaction takes about 300 cycles (as opposed to 20

cycles for division) on the GPU. Furthermore, if the location of the

global memory being addressed by each thread is randomly

distributed, as is typically the case with stochastic algorithms such

as the Gillespie SSA, it can result in multiple memory transactions,

thus affecting performance. In our implementation, we have

traded data redundancy for performance. For example, the

reaction dependency graph carries a portion of the stoichiometric

data (reactant indices). Furthermore, if a reaction appears as a

dependent reaction in more than one list, these data are repeated.

A second optimization is by clever placement of data in DRAM to

maximize cache utilization. Our scheme of sorting the reaction

propensities and reactant molecular count lists based on pre-

simulation has the effect of improving performance by about

30%–40%. Since the cost of pre-simulation is done once for all the

realizations, the cost of pre-simulation amortized over thousands

of runs is negligible and is not counted.

A major limitation in our implementation is the reaction-

reaction dependency graph. Large, tightly coupled systems can

overwhelm memory if a simple dependency graph is used. Due to

number of dependent reactions is 3N–7 and therefore scales with the
number of species. Figure 7(b) shows the results for the Cyclic Chain
Model (the weakly connected system). For N chemical species, this
network has M = N reactions. The initial molecular counts of all species
[si] were set to 1. All reaction constants ki were set to 1. These initial
conditions are the same as in [13]. The graphs for PSSA-CR and SPDM
were obtained from [13]. Figure 7(c) shows the results for the randomly
generated system. The size of the dependent reactions list varies for 8–
16 for these systems. Note that running the CR algorithm on all 4 cores
(one realization per core) gives a performance gain ,46over a single
core run. This gain could be expected of all other serial CPU algorithms
as well.
doi:10.1371/journal.pone.0046693.g007

Figure 8. Performance w.r.t. Number of Realizations. Both the
strongly connected and the weakly connected systems show a decrease
in time per update as the number of realizations is increased. This
decrease flattens out, indicating saturation of the GPU computing
power. The strongly connected system here had the number of species
at N = 252 and the weakly connected system had N = 50, 000.
doi:10.1371/journal.pone.0046693.g008

Figure 9. Performance w.r.t. Number of Reaction Blocks.
Figure 9(a) shows the results for a weakly connected system.
Figure 9(b) shows the results for a strongly connected system. Note
that in both instances, the warp per block performance initially
increases with the number of blocks and then decreases. This is because
the warp per block includes a parallel-prefix sum for each reaction block
that can get expensive.
doi:10.1371/journal.pone.0046693.g009

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e46693

the nature of tightly coupled bio-chemical systems, where a

relatively low number of species is involved in a large number of

reactions, a bi-partite graph can significantly reduce the amount of

memory needed to store reaction dependencies. However, a bi-

partite graph necessitates an extra irregular memory indirection

that could greatly affect performance. For typical systems that we

simulated using our implementations, the reaction-reaction

dependency graph’s memory consumption is not a major issue.

We could possibly use a bi-partitie graph to reduce the memory

footprint at the cost of performance.

Finally, we conclude that the performance of any algorithm is

highly dependent on the nature of the system being simulated.

Factors such as system interconnectivity, network size, and relative

dominance of reaction channels in the dynamics all significantly

affect performance. This is the main reason why we see a drastic

performance difference while simulating different systems with the

same algorithm. Overall, our GPU-ODM performs much better

than the state-of-the-art algorithms across the board. Given that

our implementation runs on hardware that has about a 100X

advantage in theoretical computing power, one can clearly see that

in certain instances, our algorithm greatly underutilizes the

available resources.

Supporting Information

File S1 Generating Random Consistent Synthetic Net-
works.

(PDF)

Acknowledgments

The authors would like to acknowledge Dr. Marjorie Peichowski for help

with preparing the manuscript.

Author Contributions

Conceived and designed the experiments: RMD IK. Performed the

experiments: IK. Analyzed the data: RMD. Wrote the paper: RMD.

Software coding: IK.

References

1. van Kampen NG (2007) Stochastic processes in physics and chemistry. North

Holland.

2. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

The Journal of Physical Chemistry 81: 2340–2361.

3. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically

reacting systems. The Journal of Chemical Physics 115: 1716–1733.

4. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical

systems with many species and many channels. J Phys Chem A 104: 1876–1889.

5. Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation

algorithm for chemically reacting systems. Journal of Physical Chemistry 121:

4059–4067.

6. Li H, Petzold L (2006) Logarithmic direct method for discrete stochastic

simulation of chemically reacting systems. Technical report. Available: http://

www.engineering.ucsb.edu/cse/Files/ldm0513.pdf. Accessed on 2012 Apr 24.

7. McCollum JM, Peterson GD, et al (2005) The sorting direct method for

stochastic simulation of biochemical systems with varying reaction execution

behavior. Journal of Comput Biol Chem 30: 39–49.

8. Schulze TP (2002) Kinetic monte carlo simulations with minimum searching.

Physical Review E 65: 036704.

9. Gillespie DT, Petzold L (2003) Improved leap-size selection for accelerated

stochastic simulation. The Journal of Chemical Physics 119: 8229–8234.

10. Rathinam M, Petzold L, Cao Y, Gillespie DT (2003) Stiffness in stochastic

chemically reacting systems: the implicit tau-leaping method. J of Chem Phys

119: 12784–12794.

11. Tian T, Burrage K (2003) Binomial methods for simulating chemical kinetics.

Journal of Chemical Physics 121: 10356–10364.

12. Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modeling in-

vivo reactions. Comp Bio Chem 28: 165–178.

13. Ramaswamy R, Sbalzarini IF (2010) A partial-propensity variant of the

composition-rejection stochastic simulation algorithm for chemical reaction

networks. Journal of Chemical Physics 132: 044102.

14. Slepoy A, Thompson AP, Plimpton SJ (2008) A constant-time kinetic monte

carlo algorithm for simulation of large biochemical reaction networks. Journal of

Chemical Physics 128: 205101.

15. Burrage K, Burrage PM, Hamilton N, Tian T (2006) Compute-intensive
simulations for cellular models. In: Parallel Computing for Bioinformatics and

Computational Biology: Models, Enabling Technologies, and Case Studies,

Hoboken, NJ: Wiley Interscience. 79–119.
16. Tian T, Burrage K (2005) Parallel implementation of stochastic simulation of

large-scale cellular processes. In: Proceedings of the Eighth International
Conference on High-Performance Computing in Asia-Pacific Region (HPCA-

SIA’05). HPCASIA, 621–626.

17. Li H, Petzold L (2009) Efficient parallelization of stochastic simulation algorithm
for chemically reacting systems on the graphics processing unit. The

International Journal of High Performance Computing Applications 24: 107–
116.

18. Klingbeil G, Erban R, Giles M, Maini PK (2011) Stochsimgpu: parallel
stochastic simulation for the systems biology toolbox 2 for matlab. Bioinformatics

27: 1170–1171.

19. Dittamo C, Cangelosi D (2009) Optimized parallel implementation of gillespie’s
first reaction method on graphics processing units. In: International Conference

on Computer Modelling and Simulation, 2009. ICCMS’09. CSSIM, 156–161.
20. Macchiarulo L (2008) A massively parallel implementation of gillespie algorithm

on fpgas. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008.

30th Annual International Conference of the IEEE. IEEE, 1343–1346.
21. Stone JE, Gohara D, Shi S (2010) Opencl: A parallel programming standard for

heterogeneous computing systems. Computing in Science and Engineering 12:
66–73.

22. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming
with cuda. Queue 6: 40–53.

23. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, et al. (2007) A survey

of general-purpose computation on graphics hardware. Computer Graphics
Forum 26: 80–113.

24. Sanders J, Kandrot E (2010) CUDA by example: An introduction to general-
purpose GPU programming. Addison-Wesley Professional.

25. Kirk DB, Hwu WW (2010) Programming massively parallel processors: A hands-

on approach (applications of GPU computing series). Morgan Kaufmann.
26. Meakin P (1988) Models for colloidal aggregation. Annual review of Physicsl

Chemisty 39: 237–267.

Accelerating the Exact GSSA on GPUs

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e46693

