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While segmentation of the cerebellum is an indispensable step in many studies, its contrast is not clear because of the adjacent
cerebrospinal fluid, meninges, and cerebra peduncle. Thus, various cerebellar segmentation methods, such as a deformable model
or a template-based algorithmmight exhibit incorrect segmentation of the venous sinuses and the cerebellar peduncle. In this study,
we propose a fully automated procedure combining cerebellar tissue classification, a template-based approach, and morphological
operations sequentially. The cerebellar region was defined approximately by removing the cerebral region from the brain mask.
Then, the noncerebellar region was trimmed using a morphological operator and the brain-stem atlas was aligned to the individual
brain to define the brain-stem area. The proposed method was validated with the well-known FreeSurfer and ITK-SNAP packages
using the dice similarity index and recall and precision scores. As a result, the proposed method was significantly better than the
other methods for the dice similarity index (0.93, FreeSurfer: 0.92, ITK-SNAP: 0.87) and precision (0.95, FreeSurfer: 0.90, ITK-
SNAP: 0.93). Therefore, it could be said that the proposed method yielded a robust and accurate segmentation result. Moreover,
additional postprocessing with the brain-stem atlas could improve its result.

1. Introduction

It is well known that the human cerebellum is responsible
for controlling the timing of various functional activities
such as motor, balance, language, or distance measures [1–
3]. It also supports cognitive processes such as emotion and
attention [4, 5]. Therefore, cerebellar volume quantification
using magnetic resonance imaging (MRI) has been widely
used to investigate the cause of certain diseases, such as
bipolar or motor disorders, to analyze cerebellar atrophy on
traumatic brain injury, and to aid in the understanding of
brain development with age [6, 7]. The delineation of the
cerebellum is also important because it can be used as the
reference region for intensity normalization of PIB or FDG
PET analysis [8, 9].

Several methods for segmentation of the cerebellum,
ranging from manual to automated, have been suggested
[10, 11]. While manual delineation has been adopted and
accepted as a gold standard, it suffers from inter- and
intrarater variability, since it is tedious and time consuming
[12–14]. Twodistinct automatedmethods have been proposed

to solve these problems: representative-deformable mod-
els and template-based approaches. Various representative-
deformable models, such as active contour [10, 15], gra-
dient vector flow [16], and level set, have been suggested
since they are robust and unaffected by noise. Because the
particular energy function, including intensity difference
and sharpness, generally determines the resultant boundary,
ambiguous boundaries and complex textures might trap the
function. On the other hand, template-based approaches
are based on a nonlinear registration algorithm [17–19] that
computes the transformation from the reference volume to
the target volume. Template-based approaches are the most
widely used methods for brain segmentation, especially for
lobar parcellation, since they have less constrained topology
and can be applied tomultiple segmentations simultaneously.
However, these approaches might present the risk of system-
atic error in anatomical labeling due to the relatively high
variability of individual cerebellar structures.

Recently, it has been suggested that combined conven-
tional segmentation algorithms, such as deformable models
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or template-based methods and tissue classification algo-
rithms, might overcome several limitations of the methods
described in the previous paragraph. Ségonne et al. (2004)
[20] presented a skull-stripping procedure combining the
deformable model approach and a watershed algorithm.
Kim et al. (2012) [21] constructed a deformable parametric
model for the hippocampus from seed features obtained from
multiple templates. Firbank et al. (2008) [22] integrated the
template-based approach with tissue classification for the
segmentation of the hippocampus. Shan et al. (2005) [11]
proposed combining the advantages of both template- and
deformable-model-based approaches, where the cerebellar
template was chosen as a seed for the active contour. These
approaches showed better segmentation results than any sin-
gle method, especially when applied to complex structures.

Although all these approaches exhibit relatively accurate
segmentation results, there are several obstacles to delineat-
ing the cerebellum exactly. For example, the surrounding
structures of the cerebellum, such as the cerebellar peduncle,
brain stem, and venous sinuses, have a similar intensity to
the cerebellum itself. In the case of the venous sinuses, their
boundaries and the cerebellum are divided into the thin
cerebrospinal fluid (CSF). According to partial volume effects
and intensity inhomogeneity, segmentation errors occurred
in several methods [23]. Furthermore, the brain stem is
connected to the cerebellum through the cerebellar peduncle,
and there is no difference in their intensities.

In this study, we propose a fully automated method
for segmentation of the cerebellum that combined tissue
classification, a template-based approach, andmorphological
operations sequentially. The method was validated by com-
paring the results with themanual segmentation results of the
LONI Probabilistic Brain Atlas (LPBA40) dataset [18] using
the dice similarity index and recall and precision measures.
The method was also compared with other popular pack-
ages such as FreeSurfer ([24], http://surfer.nmr.mgh.harvard
.edu/) and ITK-SNAP ([35], http://www.itksnap.org).

2. Methods

2.1. Dataset. The LPBA40 dataset was used for validation of
the proposed method ([18], http://www.loni.usc.edu/atlases/
Atlas Detail.php?atlas id=12). It consists of 40 T1-weighted
brain MRI data (20 males and 20 females, 29.20 ± 6.30
years). The scans were acquired with a three-dimensional
spoiled gradient echo sequence on a GE 1.5 T system as 124
contiguous 1.5mm coronal slices.The acquisition parameters
were repetition time, 10.0–12.5ms; echo time, 4.22–4.5ms;
flip angle, 20∘; field of view, 220mm or 200mm. Experienced
raters parcellated all 40 brain datasets manually into 56
structures, including the cerebellum and brain stem.

2.2. Data Processing. The proposed method for cerebellum
segmentation consists of several consecutive steps (Figure 1).
A preprocessing step includes intensity inhomogeneity cor-
rection, skull stripping, tissue classification, and partial
volume estimation. We removed the cerebral region from
the skull-stripped image to define the cerebellar region
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Cerebral region 
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Figure 1: The flowchart of the proposed cerebellar segmentation
method.

approximately and thresholded its partial volume image to
remove the false positive. Morphological operators were then
applied to eliminate the noise or nonconnected regions.
The brain-stem template was generated by delineating the
regions of brain stem and cerebellar peduncle manually on
the International Consortium for Brain Mapping 152 (ICBM
152) template and alignedwith the individual brain to remove
the brain stem and cerebellar peduncle from the cerebellar
region (Figure 2).

2.2.1. Preprocessing and Extraction of Cerebellar Region.
We corrected the intensity inhomogeneity, which involved
varying the signal intensity slowly over the image caused
by magnetic field inhomogeneity [25]. Skull stripping was
performed using a Brain Extraction Tool (BET) that used a
deformable model fitted to the brain surface using optimiza-
tion parameters [26]. Each brain was transformed separately
into a standardized stereotaxic space, that is, an ICBM 152
template, and resampled on a 1mm3 voxel grid to account
for interindividual differences in absolute brain size [27].
An artificial neural network classifier was applied to identify
gray matter (GM), white matter (WM), and CSF [28].
Partial volume levels and MRI intensity mixing at the tissue
interfaces due to the finite resolution of the imaging device
were estimated and corrected using a trimmed minimum
covariance determinant method [29]. A cortical surface was
extracted automatically from each MR volume using the
Constrained Laplacian-based Automated Segmentation with
Proximities (CLASP) Algorithm to describe the cerebral
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Figure 2: Brain-stem atlas image. The brain-stem atlas was defined manually on the International Consortium for Brain Mapping (ICBM)
152 template.

region without the cerebellum [30].The cerebellar region was
then defined approximately by subtracting the cerebral region
generated by the cortical surface from the skull-stripped
volume. This region was called cerebellar region candidate A
(Figure 3(b)).

2.2.2. Morphological Operation and Template-Based Segmen-
tation. It is important to separate the cerebellar tissue from
nearby structures, such as the venous sinuses, cerebellar
peduncle, and brain stem, which have a similar intensity of
cerebellum. Because a thin CSF region divided the venous
sinuses from the cerebellum, they were hard to be separated
accurately because of the partial volume effect which was
the amount of each tissue type within each voxel. Therefore,
thresholding of the partial CSF volume image followed by
morphological erosion was performed to remove the venous
sinuses from the previously defined cerebellar region candi-
date A. A connected component analysis was then applied
to select the largest region as the true positive cerebellar
region. We defined this region as cerebellar region candidate
B. Finally, morphological dilation restored cerebellar region
candidate B to its original size (Figures 3(c) and 3(d)).

Since the brain stem is connected directly to the cere-
bellum, it was not removed completely in the previous step.
The template-based approach was applied to separate the
brain stem from cerebellar region candidate B. The brain
stem template was delineatedmanually on the ICBM 152 atlas
which was generated by averaging anatomical MRI data of
152 healthy normal adults corrections for overall brain size
and orientation. It was aligned to each subject using nonlinear
registration tomask out the brain stem and cerebellar pedun-
cle from cerebellar region candidate B (Figures 3(e) and 3(f)).
Since noise might have been introduced inadvertently during
the masking of the brain stem and cerebellar peduncle, a
morphological opening operation, a serial combination of
erosion and dilation, was applied to remove any noise from
the final result.

2.3. Validation. FreeSurfer assigns a neuroanatomical label
automatically to each voxel of an individual MRI volume

based on probabilistic information estimated from a man-
ually labeled training set, and ITK-SNAP provides semiau-
tomated segmentation using an active contour algorithm. In
FreeSurfer, the “recon-all” command performed the intensity
normalization, talairach registration, and labeling processes.
In ITK-SNAP, the manually defined cerebellar region on the
ICBM 152 template was registered to each subject using an
affine transform and filled by an active contour algorithm.
Differences between the gold standard and the segmenta-
tion results from FreeSurfer, ITK-SNAP, and the proposed
method were examined with a paired 𝑡-test.

The dice similarity index and precision and recall mea-
sures were used for evaluating the proposed method. The
dice similarity index, one of the most common methods for
evaluating segmentation results, indicates a level of similarity
between the reference and segmented volumes [31]:

Dice Similarity Index =
𝑉
𝑚
∩ 𝑉
𝑎

(𝑉
𝑚
+ 𝑉
𝑎
) /2
, (1)
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𝑚
and 𝑉

𝑎
are the voxel sets segmented as cerebellum

in the manual delineation and each method, respectively.
They range from 0 for sets that have no common elements to 1
for identical sets.The precision is the number of true positives
(i.e., the number of items labeled correctly as belonging to the
positive class) divided by the total number of elements labeled
as belonging to the positive class (i.e., the sumof true positives
and false positives).The recall is defined as the number of true
positives divided by the total number of elements that actually
belong to the positive class (i.e., the sum of true positives and
false negatives) [32]. They are defined as follows:
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A precision score of 1.0 for class 𝑉
𝑚
means that every

item labeled as belonging to class 𝑉
𝑚
belongs to class 𝑉

𝑎
but

says nothing about the number of items from class 𝑉
𝑚
that

are labeled incorrectly. On the other hand, a recall of 1.0
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Figure 3: Snapshot of each step in the proposed segmentation procedure. (a) Individual T1 image. (b) Roughly defined cerebellar region
using skull mask and brainmask. Cerebellar region candidate A. (c) Improvement in defining the cerebellar region via the CSF partial volume
estimation map. (d) Trimming of the cerebellar region using a morphological operator. Cerebellar region candidate B. (e) Removal of brain
stem and cerebellar peduncle using template-based segmentation. (f) Final result.

means that every item from class 𝑉
𝑚
is labeled as belonging

to class 𝑉
𝑎
but says nothing about how many other items are

incorrectly labeled as also belonging to class 𝑉
𝑚
.

3. Result

3.1. Qualitative Evaluation of Similarity and Comparison with
FreeSurfer and ITK-SNAP. Figure 4 shows the segmenta-
tion results from FreeSurfer, ITK-SNAP, and the proposed

method, and their differences from themanual gold standard.
While FreeSurfer and ITK-SNAP exhibited over- or underes-
timated results, the proposed method showed better results,
mainly from the removal of the brain stem. Figure 5 shows
the dice similarity index for each method. The proposed
method showed a significantly higher dice similarity index
(0.932 ± 0.008) than FreeSurfer (0.923 ± 0.009) and ITK-
SNAP (0.867 ± 0.033). This meant that the proposed method
performed better than the othermethods in terms of likeness.
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Proposed method FreeSurfer ITK-SNAP

Figure 4: Comparison of each automatic segmentation method and manual definition. Yellow is an identical result; red is overestimation;
green is underestimation.

We compared the results before and after removing the
brain stem to investigate the effect of the template-based seg-
mentation on the proposedmethod.The dice similarity index
improved significantly after processing, as expected (0.874 ±
0.009 versus 0.932±0.008). For a better understanding, it was
also applied to the results of FreeSurfer and ITK-SNAP. Even
though there was no significant difference, indices for both

methods increased relatively (FreeSurfer: 0.929 ± 0.009; ITK-
SNAP: 0.879 ± 0.033) after removing the brain stem.

3.2. Qualitative Evaluation of Precision and Recall and Com-
parison with FreeSurfer and ITK-SNAP. Figure 6 shows dif-
ferences in the recall and precision values among the three
approaches. FreeSurfer exhibited significantly higher recall
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Figure 5: Box plot of quantitative indices (∗∗𝑝 < 0.001, ∗𝑝 < 0.01, where 𝑝 indicates the statistical significance).

values (0.948±0.023) than ITK-SNAP (0.812±0.056) and the
proposedmethod (0.913±0.023), while the proposedmethod
showed significantly higher precision values (0.953 ± 0.017)
than FreeSurfer (0.900 ± 0.022, 𝑝 < 0.0001) and ITK-SNAP
(0.934 ± 0.037, 𝑝 = 0.004).

When the template-based segmentation of the brain stem
was applied, the recall value decreased but the precision value
increased after removing the brain stem from all the methods
(Table 1).

4. Discussion

In this study, we propose a fully automated framework for
cerebellum segmentation that consists of tissue classification,
cortical surface extraction, template-based segmentation,

Table 1: Precision and recall indices before and after removing the
brain stem.

Recall Precision
Before After Before After

Proposed
method

0.928
(0.0226)

0.913
(0.0234)

0.827
(0.0210)

0.953
(0.0172)∗∗

FreeSurfer 0.948
(0.0225)

0.937
(0.0227)

0.900
(0.0234)

0.922
(0.0230)∗∗

ITK SNAP 0.812
(0.0562)

0.800
(0.0556)

0.934
(0.0366)

0.981
(0.0103)∗∗

∗∗

𝑝 < 0.001, where 𝑝 indicates the statistical significance.

and morphological operations. The segmentation results of
the proposed method were compared with FreeSurfer and
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Figure 6: The box plot of quantitative indices after removing the brain stem and cerebellar peduncle (∗∗𝑝 < 0.001, where 𝑝 indicates the
statistical significance).

ITK-SNAP, which are widely employed in brain segmenta-
tion.TheLPBA40dataset with amanually defined cerebellum
was used as the gold standard for an objective and righteous
validation.

While the segmentation results seemed to show a rela-
tively well-defined boundary for the cerebellum, the robust-
ness and accuracy of each method were demonstrated using
the quantitative evaluations of the dice similarity index,
and recall and precision values. As described in Section 3,
the proposed method showed better performance in the
dice similarity index than FreeSurfer and ITK-SNAP. Most
segmentation errors occurred in the cerebellar peduncle and
venous sinuses, since the intensity of the cerebellar peduncle

was very similar to that of the cerebellar WM. FreeSurfer
tended to fail in removing the cerebellar peduncle and venous
sinuses exactly [10]. This was because the atlas in FreeSurfer
excluded the venous sinuses and it could not distinguish
accurately between the brain stem and cerebellum (Figure 4)
[10, 23, 33, 34]. On the other hand, ITK-SNAP tended to
underestimate the cerebellar surface compared with man-
ual delineation (Figure 4). ITK-SNAP is a semiautomatic
approach using an active contour model where the seed
point is extended to the image boundary. It showed relatively
poor performance in the regions with inaccurate boundaries,
since the propagation of the contour depends on an edge or
curvature [35].
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(a) (b)

(c) (d)

Figure 7: Comparison of the cerebellar segmentation performed with (b) proposed method (c), FreeSurfer, and (d) ITK-SNAP. Incorrect
segmentation of venous sinuses (red circle) could be a problem when using the automated software.

Reliable separation of the brainstem and cerebellar
peduncle from cerebellum is necessary to achieve an accurate
measurement of cerebellar volume [23]. For this reason, we
explored the effect of the brain stem including the cerebellar
peduncle. After applying template-based segmentation for
the brain stem to the results of FreeSurfer and ITK-SNAP, the
cerebellar pedunclewas separatedmore accurately than in the
previous results and the similarity index and precision value
were significantly enhanced (Figure 6 and Table 1). The dif-
ference in the similarity index between the proposed method
and FreeSurfer or ITK-SNAP could be caused by incorrect
discrimination of the cerebellar tissue fromnearby structures,
such as the venous sinuses (Figure 7). To avoid this problem,
we eliminated the nonconnected region using a morphologi-
cal operator and partial volume estimated images. As a result,
our proposed method showed significantly higher indices of
similarity than the other methods, even though they also
removed the brain stem.

In conclusion, we propose a fully automated proce-
dure for cerebellar segmentation including template-based
segmentation and morphological operations. The proposed
method showed accurate segmentation results when com-
pared with manual delineation and removed the cerebellar
peduncle from the cerebellum effectively.
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