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A B S T R A C T   

Exercise is a vital component in maintaining optimal health and serves as a prospective therapeutic intervention 
for various diseases. The human microbiome, comprised of trillions of microorganisms, plays a crucial role in 
overall health. Given the advancements in microbiome research, substantial databases have been created to 
decipher the functionality and mechanisms of the microbiome in health and disease contexts. This review pre-
sents an initial overview of microbiomics development and related databases, followed by an in-depth 
description of the multi-omics technologies for microbiome. It subsequently synthesizes the research pertain-
ing to exercise-induced modifications of the microbiome and diseases that impact the microbiome. Finally, it 
highlights the potential therapeutic implications of an exercise-modulated microbiome in intestinal disease, 
obesity and diabetes, cardiovascular disease, and immune/inflammation-related diseases.   

1. Introduction 

Physical exercise provides numerous benefits for human health, 
including controlling weight, reducing the risk of chronic illnesses, 
enhancing cognitive abilities and improving cardiovascular function 
[1]. Increasing evidence suggests that exercise can protect a variety of 
diseases, including obesity, diabetes, cardiovascular disease, brain dis-
eases, and neoplastic conditions. Regular physical activity and exercise 
training can enhance body weight control and cardiorespiratory fitness 
[1], thereby mitigating the incidence of type 2 diabetes mellitus [2–4]. 
Combining weight loss with aerobic and resistance exercise significantly 
improves functional status in obese older adults [5]. Exercise is crucial 
for attenuating cardiovascular risk factors and events [6,7], and it sus-
tains cardiovascular health by promoting cardiac physiological hyper-
trophy, and inducing beneficial cardiac metabolic adaptations, 
angiogenesis, lymphangiogenesis and systemic responses [8–10]. In 
addition, there has been extensive studies into the relationship between 
physical exercise and mental health, especially in terms of Parkinson’s 

disease, Alzheimer’s disease, and major depressive disorder [11,12]. It 
has been demonstrated that engaging in physical activity could reduce 
cancer risk and restrict tumor growth [13], thereby contributing to 
cancer prevention and treatment [14–17]. Exercise improves human 
health through a variety of processes, including protecting the integrity 
of barriers, promoting repair and regeneration, maintaining local ho-
meostasis and benefiting recycling and turnover [18]. Specifically, ex-
ercise inhibits excessive cytochrome C release from mitochondria to 
protect mitochondrial integrity, repairs DNA strand breaks and lesions 
by upregulating BDNF, activates angiogenesis production and CD4+T 
cell proliferation to promote wound healing, and induces autophagy 
through AMPK-ULK1, FoxO, PGC1α signaling pathways to maintain 
cellular homeostasis [19–22]. As a consequence, improvements are 
observed in muscle function, cardiorespiratory fitness, gut microbiome 
diversity, metabolism, immunosurveillance and mental health [18]. 

The term ‘microbiome’ encompasses the genomes of both the 
microbiota and host, as well as the environmental conditions. These 
conditions include the products of the microbiota and the surrounding 
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environment [23]. The microbiome, consisting of trillions of microor-
ganisms, plays an important role in maintaining human health, 
including maintaining and strengthening the gut barrier, supporting the 
digestive system, promoting metabolism, maintaining immune function, 
and regulating neurocognition [24,25]. The multiple metabolites pro-
duced by the gut microbiota have been extensively investigated as 
mechanisms that influence diseases. Notably, lipopolysaccharide 
(LPS)，peptidoglycan, choline, secondary bile acids and short chain 
fatty acids (SCFAs) are mainly involved in regulating gluconeogenesis, 
insulin resistance, inflammatory cytokine release, cholesterol absorp-
tion, macrophage phenotype reprogramming and blood pressure 
[26–31]. Dysfunctions within the microbiome correlate with many 
diseases ranging from gastrointestinal disorders [32,33], metabolic is-
sues [34–37], cardiovascular conditions [38–40], to 
inflammation-associated diseases [41–43]. Thus, the gut microbiome 
has a significant influence on human health. 

The relationship between the gut microbiome and exercise has been 
elucidated in recent studies [44,45]. The composition of gut microbiome 
differs between those who engage in exercise and those not. Gut 
microbiome in elite athletes or people with moderate exercise tends to 
be more health-oriented and exhibits greater species diversity [45]. In 
those who exercise, there’s a higher prevalence of gut microbes that 
produce beneficial metabolites like SCFAs and secondary bile acids. 
These microbes play a role in resisting chronic inflammation and 
bolstering immunity [44]. The association between gut microbiome and 
exercise is bidirectional. A healthier gut microbiome can enhance ex-
ercise capacity by regulating energy production, skeletal muscle main-
tenance, metabolism, and nutrient sensing pathways such as the mTOR 
and AMPK pathways [46]. Therefore, maintaining a healthy microbiome 
and engaging in regular exercise are pivotal for maintaining optimal 
human health [47,48]. 

In this review, we initially provide an overview of the evolution of 
microbiomics and associated databases, followed by a comprehensive 
description of the multi-omics technologies for microbiome. We then 
summarize the research on exercise-induced modifications of the 
microbiome as well as diseases influencing the microbiome. Finally, we 
discuss the potential therapeutic roles of exercise-induced microbiome 
in intestinal diseases, obesity and diabetes, cardiovascular disease, and 
immune/inflammation-associated diseases. 

2. The evolution of microbiomics and databases 

The study of microbiomics can be traced back to the upsurge of in-
terest in biological systematics in the 1960 s. In 1977, Sanger first 
described the dideoxy chain-termination method for DNA sequencing. 
This method provided a new way to deduce the phylogenetic relation-
ships of organisms. Based on nucleic acid sequences, it allowed for a 
more accurate determination [49]. Building upon this notion, the 
cellular world could be classified into eukaryotes, prokaryotes, and 
archaea based on organisms’ rRNA [50]. The evolutionary relationships 
among different organisms were established in a reliable and quantita-
tive manner based on phylogenetic characteristics. This significantly 
impacted traditional microbial classification rules that were predicated 
on nutritional and morphological characteristics. Therefore, this reliable 
and quantitative understanding of biological evolution should supplant 
traditional vague and ambiguous microbial classification criteria [51]. 
The broad utilization of 16 S and 18 S rRNA as molecular markers for 
prokaryotes and eukaryotes, respectively, markedly propelled the field 
of microbiology. Traditional microbiological research was based on pure 
culture techniques, but a considerable portion of microorganisms in 
nature pose difficulties in culture within laboratory settings [52]. The 
variable regions of 16 S rRNA was targeted as amplicons to systemati-
cally study bacteria, marking a shift in microbiology from culture-based 
methods to culture-independent molecular biology approaches. The 
total DNA in a specific environment could be approached as a collective 
entity and assessed microbial genomics diversity by estimating the 

richness of microbial species based on total DNA. The concept of ‘soil 
metagenome’ was raised subsequently which enabled more compre-
hensive study of microbial diversity from different perspectives [53]. 
Concurrently, in a collaborative project, seven European labs proposed a 
method to isolate, amplify, and sequence 16 S rRNA from fecal samples 
in order to monitor the dynamic changes in gut microbiota in response to 
diet. This technique has had considerable success in subsequent studies, 
demonstrating that the variety of microbiota increases with age [54]. 

The development of microbial genomics-based classification criteria 
and dynamic monitoring techniques has provided a foundation for un-
derstanding microbial diversity. A significant number of oligonucleotide 
probes have also laid groundwork for microbial identification. However, 
to enhance detection resolution, the development of more microbial 
databases and standard genomic libraries is urgently required. Before 
the Human Microbiome Project, there were early attempts to establish 
microbial databases, such as the human oral microbiota database [55]. 
Following the completion of the Human Genome Project, the Earth 
Microbiome Project and the Human Microbiome Project were launched 
successively. The interaction between humans and microbes forms a 
‘superorganism’ that has extensive interactions. To gain a deeper un-
derstanding of human health needs, identify microbial health markers, 
and provide rational dietary recommendations, the Human Microbiome 
Project sequenced microbial populations in five major habitats: the oral 
cavity, nasal cavity, skin, urogenital tract, and gastrointestinal tract 
[56]. The subsequent Integrated Human Microbiome Project viewed as 
the second phase of the Human Microbiome Project, focuses on research 
areas such as pregnancy and preterm birth, inflammatory bowel disease, 
and diabetes with different predisposing factors. It aims to elucidate the 
relationship between microbiota and the host, while providing a 
research framework for microbiome studies [21]. In 2017, the Global 
Microbiome Project was launched with the objective of establishing a 
standardized microbiome database worldwide. One hundred microbi-
ologists from around the world are working to collect and analyze 
microbiome genomic information from various countries and regions 
[57]. To investigate the role and function of the microbiome, the Unified 
Human Gastrointestinal Protein (UHGP) and the Unified Human 
Gastrointestinal Genome (UHGG) microbiome data assemblage and 
reference genome databases were established [58]. 

The development of microbial databases can be seen as a microcosm 
of the broader progression in microbial technology. In a way, it mirrors 
the research necessities in the field of microbiology. Generating micro-
biome data involves several key steps. Researchers first collect micro-
organisms from the environment, animals, or plants. Subsequently, they 
extract DNA, RNA, proteins, or metabolites from these collected mi-
croorganisms. The final stage involves both quantitative and qualitative 
analyses of these extracts [59]. 

Researchers obtain raw data for metagenomics and metatran-
scriptomics by sequencing either genomic DNA or reverse transcribed 
cDNA. This is followed by assembly, mapping, and annotation of the 
captured data [60]. Technologies such as mass spectrometry are utilized 
to identify and analyze proteins or metabolites of microbiota. This aids 
in obtaining data on microbial proteins and metabolomics. By collecting 
and organizing various sets of data, the database has greatly promoted 
the development of multi-omics within the microbiome field. 

Microbiome databases can be categorized into three types based on 
their functionalities. The first kind facilitates the storage, querying, and 
downloading of raw data. Here, researchers curate standardized datasets 
from public repositories or various projects and establish pathways for 
data uploads to support microbiome research. The second database type 
centers around assembly, annotation, and classification, providing 
structured information and reference genomes for microbiome re-
searchers. The third variant directly processes and summarizes micro-
bial data allowing researchers to discern changes in microbial 
abundance across different environments. Collectively, these databases 
all contribute to the advancement of microbiome research. In this re-
view, we have summarized microbiome-related databases or online 

D. Meng et al.                                                                                                                                                                                                                                   



Computational and Structural Biotechnology Journal 21 (2023) 5434–5445

5436

tools in the table (Table 1). 

3. Multi-omics for microbiome 

Multi-omics for microbiome has emerged as a powerful tool for high- 
throughput analysis of intricate microbial communities. This includes 
metagenomics, metatranscriptomics, metaproteomics, metabolomics 
and scRNA-seq for microbiome, providing comprehensive and unprec-
edented insights into the study of microbiome (Fig. 1). 

3.1. Metagenomics 

Metagenomics investigates the genomes of microbiota directly 
extracted from environments. It not only focuses on the genome of in-
dividual microorganisms but also emphasizes the genetic information of 
the entire microbiota. Metagenomics is a powerful method for studying 
the classification and function of the microbiome. 

Broadly speaking, metagenomics includes two main approaches: 
marker-based sequencing and whole-genome sequencing. Marker-based 
sequencing involves the use of markers like 16 S rRNA/rDNA for bac-
teria and archaea, 18 S rRNA/rDNA for eukaryotes, and ITS sequencing 
for fungi. This marker-based sequencing method is also known as 
amplicon sequencing. Amplicon sequencing plays a crucial role in 
studying phylogeny, microbial classification, and changes in composi-
tional abundance. It allows for the rapid analysis of small biomass 
samples, even without concerns about contamination from host DNA 
[61]. 

While amplicon sequencing offers the advantage of quickly assessing 
microbial community structure, it also comes with certain limitations. 
Amplicon sequencing focuses solely on specific gene regions, which 
poses several drawbacks. Due to the omission of a large portion of the 
genetic information, microbial classification may be inaccurate, partic-
ularly in cases involving highly similar sequences within the target gene 
regions. Furthermore, the classification resolution of amplicon 
sequencing is typically restricted to the genus level and is heavily 
influenced by PCR bias [59]. Furthermore, amplicon sequencing has 
significant limitations in the study of microbial functions. It does not 
provide information about the metabolism and functions of microor-
ganisms. Since amplicon sequencing relies on PCR amplification, it may 
result in the loss of some low-abundance microbial sequences. 

Compared to the genus-level resolution of amplicon sequencing 
technology, metagenomic sequencing can also facilitate functional 
analysis of the microbiome. Additionally, metagenomic sequencing 
technology can enhance species resolution to the level of individual 
species or even strains [61]. The diversity of human intestinal archaeal 
viruses was revealed through a comparative analysis of metagenomic 
sequencing and existing archaeal virus sequences [62]. In addition, 
metagenomic sequencing enables the functional annotation of micro-
organisms within various habitats by analyzing functional gene clusters. 
For instance, metagenomics can identify the taxonomy of microbiome, 
and detect antimicrobial resistance and bacteriophages. Thereby, met-
agenomics can enhance our understanding of microbiota [63]. 

However, while metagenomic sequencing offers insights into the 
functions of microorganisms, deducing their functional and metabolic 
potential can be challenging. This sequencing process requires the as-
sembly of short reads, and due to the vast diversity and complexity of 
microorganisms, many of these reads lack a reference genome. There-
fore, the assembly of microorganisms, especially from highly complex 
samples, becomes particularly challenging [59]. Furthermore, given the 
high sensitivity of metagenomic sequencing, sample contamination and 
degradation can profoundly impact the results [61]. Both DNA degra-
dation and contamination can compromise the quality of metagenomic 
data. 

Table 1 
Multi-omics for Microbiome Related Databases or Online Tools.  

Name Website Description 

CRAMdb [145] http://www.ehbio. 
com/CRAMdb 

CRAMdb collects 516 
animals from 475 projects. It 
concentrates on noted 
metagenomics from different 
kinds of animals (exclude 
human). It allows users 
analysis the composition and 
associations of microbiome. 

MGnify [146] https://www.ebi.ac. 
uk/metagenomics 

MGnify provides an 
automate process to manage 
microbiome data. It allows 
users to assemble, infer and 
analysis microbiome data. 
Users can upload their own 
data for the repository 
purpose or request datasets 
in European Nucleotide 
Archive (ENA) for study 
purpose. 

IMG/M [147,148] https://img.jgi.doe. 
gov/m/ 

IMG/M database offers data 
uploading, annotation and 
analysis service. Now, it 
contains more than 200,000 
datasets, 27 T basepairs and 
77B genes of genomes and 
microbiomes information. 

Greengenes2 [149] http://ftp.microbio. 
me/ 
greengenes_release/ 

Greengene is a 16 S rRNA 
and metagenomics database 
and can be used for 
taxonomic annotation. 
Recently, a new version 
Greengene2 has been 
released. 

Greengenes [150] 

Animalmetagenome DB  
[151] 

https://doi.org/ 
10.6084/m9. 
fgshare.19728619 

Animalmetagenome DB 
collected 82,097 
metagenomes from 4 kinds 
of livestock and 540 wildlife. 
The sequencing raw data can 
be downloaded in fgshare. 

MarinemetagenomeDB  
[152] 

https://webapp.ufz. 
de/marmdb/ 

MarinemetagenomeDB 
allow users quickly 
download marine metadata 
which are stored in public 
database STA and MG-RAST. 

ADDAGMA [153] http://addagma. 
omicsbio.info/ 

ADDAGMA collects the 
different kind of livestock’s 
gut metagenomics in other 
public databases. It allows 
users search and download 
microbe-phenotype related 
data. 

HumGut [154] http://arken.nmbu. 
no/~larssn/ 
humgut/ 

HumGut includes the 
microbiome data of healthy 
human guts. 

GMrepo [155,156] https://gmrepo. 
humangut.info 

GMrepo is a manual 
screening humankind 
databases, including 71,642 
samples from 353 studies 
with 132 humankind 
characters. 

gutMEGA [157] http://gutmega. 
omicsbio.info/ 

gutMEGA collects 59,132 
metagenomics cases 
including 776 conditions. 
Users can use advanced 
search function in the 
database to find their 
interesting data. 

TerrestrialmetagenomeDB  
[158] 

https://webapp.ufz. 
de/tmdb/ 

TerrestrialmetagenomeDB 
aims to help researchers to 
search interest land 
metagenomics data easier, 
containing about 15,022 
terrestrial metagenomic data 

(continued on next page) 
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3.2. Metatranscriptomics 

Metatranscriptomics is used to study the RNA sequences of specific 
microbiota， revealing the functions of microbial communities by 
examining the entire microbial transcriptome in a given environment 
[64]. Metatranscriptomics focuses on how external factors affect gene 
expression in microbial communities. For example, in a study where 
eight soil metatranscriptomic samples were taken from areas with stable 
natural temperature gradients, researchers were able to determine if and 
how microbes adjusted their cellular activity and function in response to 
climate changes [65]. Another study demonstrated differences in gut 
microbiota during acute inflammatory responses by measuring the 
metatranscriptome, suggesting that specific microbiota can exist in 
many functional states depending on the immune status of the host [66]. 

Compared to metagenomics, metatranscriptomics provides more 
detailed and dynamic information. For example, it can reveal the mi-
crobial response to environmental shifts (e.g., host immune status), and 
offer insights into the activities and characteristics of non-coding RNAs 
[67]. Metatranscriptomics is an important tool for studying gene 
expression in microbiota, reflecting, to a degree, the functional and 
metabolic potential of microorganisms. However, metatranscriptomics 
captures transient snapshots in dynamic ecosystems and may not fully 
reflect the dynamics of ecosystems. Since low-abundance species tend to 
produce limited mRNA, metatranscriptomics might struggle to detect 
low-abundance mRNA and may display a bias toward microorganisms 
with high transcription rates [59]. Furthermore, microorganisms often 
undergo numerous post-transcriptional and post-translational modifi-
cations when encountering different environmental stresses. Therefore, 
metatranscriptomics may require combined analysis with microbial 
metabolome methods when inferring specific metabolic activities. 

3.3. Metaproteomics 

The concept of ‘metaproteomics’ was first introduced around 2004 
when protein components were extracted from a laboratory-scale acti-
vated sludge system [68]. The metaproteome comprises the entirety of 
proteins expressed by environmental microorganisms at a given moment 
[68]. Metaproteomics enriches data derived from metagenomics and 
metatranscriptomics, offering a more comprehensive insight into the 
biological signatures of microbes. In metaproteomics, researchers do not 
need to account for the influence of dead microorganisms and can 
directly detect functional changes in living microbes. However, due to 
the complexity of metaproteomics, and despite decades of development, 
the field is still in its infancy. Moreover, the results of metaproteome 
analysis can be influenced by the databases used for identification, 
quantification, and functional annotation [69]. Compared to the meta-
genome, metaproteome database resources are relatively limited, not 
encompassing the protein information of all microbial species. Thus, 
database selection presents a big challenge [70]. For secretory proteins, 
sampling can be problematic in metaproteomics, especially when 
reference databases are lacking. It can be tough to distinguish proteins 
from food debris in fecal matter. In addition, identifying distinct pro-
teins is challenging due to the high presence of structural proteins in 
microbial communities. Unlike transcriptomes, which can instanta-
neously reflect microbial states in response to environmental changes, 
the metaproteome can only indicate shifts in microbial community 
functions to a certain degree due to protein modifications and the 
absence of protein subcellular localization data. 

3.4. Metabolomics for microbiome 

The microbial metabolome encompasses all metabolites derived 
from the microbial community, including small molecule compounds 
like glucose, fatty acids, amino acids, and nucleotides. The metabolome 
provides a comprehensive description of an organisms’ metabolic profile 
in vivo, offering insights into the metabolic characteristics and alter-
ations of the organism under various physiological, biochemical, and 
pathological states. It is universally acknowledged that microorganisms 
and hosts exist in a symbiotic state. This symbiosis largely depends on 
the diverse ecological niches within metabolism, wherein microorgan-
isms rely on small molecules supplied by the host for metabolism, with 
their metabolites subsequently reverting back to the host organism [71]. 
However, identifying microbiome-host interactions based on metabo-
lites presents many challenges. Metabolites secreted by microorganisms 
often resemble or are identical to those found within the host. Moreover, 
functional metabolites often need to be secreted outside the microbial 
community to exert biological functions. Therefore, drawing direct 
conclusions from the metabolome about the relationship between mi-
croorganisms and other organisms can be elusive. To address this, re-
searchers frequently employ joint-analysis of host metabolomes (e.g., 

Table 1 (continued ) 

Name Website Description 

from SRA and MG-RAST 
databases. 

HumanmetagenomeDB  
[159] 

https://webapp.ufz. 
de/hmgdb/ 

HumanmetagenomeDB aims 
to help researchers to search 
interest mankind 
metagenomics data easier, 
containing about 69,822 
human metagenomic data 
from SRA and MG-RAST 
databases. 

UNITE [160] https://unite.ut.ee/ UNITE is an online sequence 
databases for fungi, 
including approximatedly 
1,000,000 fungal ITS 
sequences. It regularly 
updates its data by 
exchanging information 
from other databases 

PLSDB [161] https://ccb-microbe. 
cs.uni-saarland.de/ 
plsdb 

PLSDB collect 13,789 
plasmid terms from NCBI 
nucleotide databases. The 
web server can help user’s 
blast and analysis additional 
meta data and plasmids 
information in an interactive 
way. 

FUNGuild [162] http://www. 
funguild.org/ 

FUNGuild is a python-based 
annotation tool for fungal 
community classification. It 
depends on ecological guide 
rather than sequencing 
platform. It contains over 
13,000 fungal taxa in the 
dependent databases. 

PATRIC [163] https://ngdc.cncb. 
ac.cn/ 
databasecommons/ 
database/id/230 

PATRIC is a comprehensive 
database that aims to 
combine bioinformatics and 
analysis methods. It focuses 
on research about important 
pathogens. 

SILVA [164] https://www.arb- 
silva.de/ 

SILVA offers extensive, 
quality-assured, and 
frequently refreshed 
ribosomal RNA (rRNA) 
sequences, including small 
subunit (16 S/18 S, SSU) and 
large subunit (23 S/28 S, 
LSU), for all three domains 
of life (Bacteria, Archaea, 
and Eukarya). 

MG-RAST [165] https://www.mg- 
rast.org/ 

MG-RAST is a database 
focusing on metagenomics. 
It allows users upload or 
download metagenome data. 
Users can also use the open 
source code to classification, 
functional classification and 
comparison.  
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human fecal or plasma metabolome) and metagenomes to study mi-
crobial and host metabolic relationships. Alternatively, they might use 
isotope labeling to confirm a direct metabolic connection between the 
host and microorganism. 

3.5. High-throughput single-cell technology for microbiology 

Although current multi-omics methods for microbiome adequately 
perform species identification and functional analysis of biological 
communities, they often fail in detecting the genetic potential and 
functional diversity of microorganisms at the cellular level. Notably, 
detecting low-abundance microorganisms is especially challenging. 
Single-cell microbial sequencing emerges as a viable solution to these 
challenges [72]. The novel microbial single-cell RNA-seq technology, 
combining microbial analysis with single-cell RNA-seq technology, does 
not treat the microbial community as a homogeneous population. 
Instead, it categorizes microorganisms into functional subgroups based 
on their genetic profiles. The recent evolution of single-cell RNA-seq 
technology has paved the way for its application in microbial pop-
ulations. Technological advancements such as microfluidic 
droplet-based [73] techniques and split-pool barcoding technologies 
[74] have lent critical support to single-cell microbial sequencing. This 
technique has been utilized for higher-resolution biological phenomena, 
including the study of mobile genes between microbes and hosts [75], 
viruses and microorganisms [76], and various cell types [77]. Although 
microbial single-cell RNA-seq has been successfully applied to both the 
environmental and human-related microbiome, several challenges exist. 
For example, the diversity of cell wall structures in complex commu-
nities combined with the instability of low-abundance mRNA pose great 
challenges to the microbial single-cell RNA-seq technology [72]. 

3.6. The computation challenges of multi-omics for microbiome 

The metagenomic analysis framework was established over a decade 

ago, and has been continually refined since then [78–81]. However, in 
recent years, the exponential growth of microbiome data has introduced 
significant computational challenges to microbial multi-omics analysis. 
One primary challenge is the classification and identification of micro-
organisms. Although several methods currently exist for the classifica-
tion of microbial multi-omics—such as marker-based algorithms like 
MetaPhlAn2 [82] and mOTUs2 [83], DNA-based algorithms like meta-
Othello [84] and taxMaps [85], and protein-based algorithms like 
DIAMOND [86], Kaiju [87] and MMseqs2 [88]–their efficacy varies 
across different evaluation metrics [89]. 

4. The impact of big data on exercise-induced microbiome 

Exercise, a vital aspect of lifestyle, renders positive effects on human 
health. Regular and moderate exercise offers benefits for both physical 
and mental health. Large-scale clinical studies indicate that physical 
exercise can decrease the risk of chronic diseases and improve various 
disease outcomes [62,90–94]. Exercise can decrease all-cause mortality 
from cardiovascular disease and cancer [95]. Compared to participants 
who do not engage in vigorous physical activity, those whose vigorous 
physical activity accounts for 50%− 70% of their overall activity 
observed a 17% decrease in all-cause mortality from cardiovascular 
disease and cancer [96]. Moreover, participants who maintain regular 
exercise tend to have a better prognosis [97]. 

The mechanisms underlying the beneficial effects of exercise are 
diverse and complex. For instance, exercise can prompt muscles to 
release factors that promote liver autophagy, offering metabolic ad-
vantages that protect liver function [98]. A surge in exercise-related 
anti-inflammatory factors can be detected in plasma post-exercise. 
These factors were shown to exert a positive effect on learning and 
memory [99]. Additionally, there is evidence indicating that exercise 
can also confer its benefits by regulating the gut microbiome [46,100, 
101]. The composition of the gut microbiome is largely influenced by 
external stresses, such as types of exercise and emotional stress, as well 
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Fig. 1. Multi-omics Techniques for Microbiome and Their Characteristics. Multi-omics techniques for microbiome, including metagenomics (marker-based 
sequencing and whole-genome sequencing), metatranscriptomics, metaproteomics and microbial metabolomics, offer a broad perspective on microbial abundance 
changes, gene expression and metabolic features. In addition, single-cell RNA-seq technique for microbiome provides an in-depth, high-resolution insight into 
microbial behavior at the cellular level. 
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as dietary habits [63,102–104]. 
Exercise-induced changes in the microbiome can enhance an in-

dividual’s exercise capacity through metabolic pathways. For instance, 
post-exercise fecal samples from marathon runners, revealed an increase 
in Veillonella atypica. Inoculating mice with this genus significantly 
enhanced their exercise capacity. Isotope tracing determined that this 
increase in exercise capacity resulted from the bacterium’s unique 
ability to metabolize lactate into propionate [95]. Furthermore, exercise 
can induce adaptive changes in gut microbiota with these changes 
potentially augmenting exercise capability. Notably, professional cy-
clists displayed variations in the abundance of Methanobrevibacter smi-
thii, which is linked to methane, energy, and carbohydrate metabolism, 
compared to amateur cyclists [105]. Moreover, voluntarily exercising 
rats showed alterations in the levels of short-chain fatty acids, n-buty-
rate, and associated microbes compared to sedentary counterparts [94]. 

Exercise-induced variations in the microbiota can benefit individuals 
by metabolizing molecules that are advantageous to health. Analysis of 
public databases on the composition of the gut microbiome in athletes 
revealed a marked increase in the metabolism of short-chain fatty acids. 
Some microbial communities in athletes were capable of metabolizing 
and producing beneficial molecules like vitamin B12, substantiating the 
symbiotic relationship between the host and its gut microbiome [106]. 
Similarly, metagenomic and metabolomic studies found that the athlete 
group had significant enrichment in amino acids, antibiotic biosyn-
thesis, and carbon metabolism pathways, in conjunction with high 
relative content of short-chain fatty acids (SCFAs) such as propionate, 
acetate, and butyrate [107]. 

Although other research reached similar conclusions, it asserted that 
the frequent combination of extreme diets with an athletic lifestyle 
makes it challenging to determine whether the changes in specific 
microbiota are purely exercise-induced or the result of an interplay 
between exercise and extreme diet [108]. 

Exercise-induced changes in microbiota can affect the motivation to 
exercise through the gut-brain axis. Recent discoveries highlight a gut- 
brain metabolic axis pathway, where gut microbes prompt the brain to 
produce more dopamine, thereby enhancing exercise motivation [109]. 
This provides fresh insights and concepts regarding the symbiotic rela-
tionship between gut microbes and the host. 

Clearly, exercise-induced changes in microbiota play a crucial role in 
the benefits of exercise. A wealth of evidence demonstrates that exercise 
can protect individuals from diseases [1–9,11–16]. However, it remains 
to be determined whether the health advantages attributed to exercise 
can be linked directly to changes in the gut microbiota. Nevertheless, 
some current studies suggest a correlation between exercise-induced 
changes in microbiota and protective functions. 

5. The role of big data in disease-related microbiome 

Under normal circumstances, the human gut microbiome maintains 
a relatively balanced state, with a low abundance of components that 
produce harmful metabolites. Diverse factors, including poor diet and 
chronic infections, can lead to imbalances in the gut microbiome [110]. 
Numerous studies, based on big data analysis of human disease samples, 
have shown that disorders in the gut microbiome are associated with the 
onset and progression of several diseases, including neurological disor-
ders, mental illnesses, cardiovascular diseases, gastrointestinal issues, 
autoimmune diseases, metabolism-related conditions, and tumors [32]. 

5.1. Obesity and diabetes 

The worldwide prevalence of obesity and related health complica-
tions is escalating, with overeating identified as a major contributing 
factor. A correlation between food addiction in obese women and gut 
microbiome dysbiosis has been identified [111]. To investigate the gut 
microbiome characteristics of obese women more comprehensively, 
obese patients (OB) and normal weight (NW) women were enrolled. 

Analysis was conducted using various methods including 16 S rRNA 
sequencing, metagenomics sequencing, metatranscriptome sequencing, 
and targeted lipidomics. A highly diverse gut microbiome was revealed 
in NW women, exhibiting a high transcriptional activity. Fecal samples 
from NW women were enriched in secondary bile acids and GABA, both 
of which are critical to gut-brain communication in healthy individuals. 
Conversely, the gut microbiome of OB women was less diverse. There 
was a decreased abundance of the Lachnospiraceae and Ruminococcaceae 
families, known for producing SCFAs and contributing to health main-
tenance. Moreover, there was an increased abundance of the Rumino-
coccus genus, particularly species such as Ruminococcus torques, 
Ruminococcus obeum, and Ruminococcus bromii, all of which are associ-
ated with disease. These findings suggest a detrimental impact on 
gut-brain communication in obese women [112]. 

Growing evidence suggests that gut microbiome significantly im-
pacts the progression of type 2 diabetes. Three microbiome genera, 
Ruminococcus, Fusobacterium, and Blautia, have been identified as having 
a positive correlation with type 2 diabetes. In contrast, five microbiome 
genera, Akkermansia, Bifidobacterium, Faecalibacterium, Bacteroides, and 
Roseburia, show a negative correlation [113]. Specific gut microbiome 
genera influence the digestion and absorption of glucose as well as the 
production of digestive hormones, consequently affecting glucose 
metabolism [114]. Additionally, some gut microbiome species can 
impact the intestinal barrier function, potentially affecting the onset of 
type 2 diabetes [115]. For instance, Bifidobacterium lactis enhances 
glycogen synthesis and glucose absorption, ultimately reducing blood 
glucose levels [116]. Additionally, two bacteria types, Bacteroides vul-
gatus and Bacteroides dorei, have been found to increase the expression of 
genes that preserve intestinal barrier function. This reduces intestinal 
permeability, preventing harmful metabolic products from gut bacteria 
from entering the bloodstream. Furthermore, lipopolysaccharides, once 
they cross the intestinal barrier and enter the bloodstream, can lead to 
chronic inflammation in the body [117]. 

5.2. Cardiovascular diseases 

Cardiovascular disease (CVD) represents a significant threat to 
human health, accounting for approximately 17 million deaths globally 
each year [118]. In the last decade, several clinical studies have revealed 
the profound role of the ‘gut-heart axis’ in various CVDs, signifying the 
association between cardiovascular health and gut microbiota as a 
critical research area. Atherosclerosis (AS), the pathological foundation 
of CVD, lacks effective targeted therapeutic interventions. A significant 
negative correlation between the abundance of Parabacteroides merdae 
and CVD has been found. Transplanting ApoE-/- atherosclerosis mice 
with a human-origin strain of Parabacteroides merdae significantly alle-
viated atherosclerosis symptoms. Subsequent targeted metabolomic 
analysis revealed an increased concentration of branched SCFAs in 
mouse feces and a decrease in fecal and blood branched-chain amino 
acids post-transplantation [119]. In addition, 16 S rRNA sequencing was 
used to analyze the gut microbiome of patients with myocardial 
infarction, unstable angina and stable coronary artery disease. After 
that, specific gut microbiome enrichment and metabolites changes were 
identified and analyzed for their associations with different phenotypes 
and subgroups of coronary artery disease. Changes in the abundance of 
certain gut microbiota, such as Roseburia, Clostridium IV, Klebsiella, and 
Ruminococcaceae, has been identified to affect the development of 
atherosclerosis by regulating the metabolic activity of bile acids and 
aromatic compounds [120]. 

A potential correlation between inflammation levels, metabolic dis-
orders and heart failure (HF) has been suggested [121]. 16 S rRNA 
sequencing was used to determine the gut microbiome of chronic HF 
patients and a significant reduction in microbiome abundance was 
found. In specific, they found a decrease in the abundance of some 
species belongs to the Lachnospiraceae family, which produces butyrate. 
Butyrate has been found to increase the production of regulatory T cells, 
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which plays an anti-inflammatory role in the intestinal mucosa [122, 
123]. The ratio of Firmicutes to Bacteroidetes, a dysbiosis marker of gut 
microbiota, was lower in HF patients with preserved ejection fraction 
(HFpEF) compared to the healthy subjects, although statistical signifi-
cance was not reached using multiple hypothesis testing [124]. 

5.3. Brain diseases 

Numerous studies have demonstrated an association between dys-
regulation in the gut microbiome ecosystem and central nervous system 
disorders, known as the brain-gut-axis. Gut microbiome dysregulation in 
Alzheimer’s disease (AD) patients were investigated through bacterial 
16rRNA sequencing. A reduced abundance of Firmicutes and Actino-
bacteria and an increased abundance of Bacteroidetes at the phylum level 
were observed. Moreover, a decrease in the abundance of specific fam-
ilies belonging to Firmicutes, such as Turicibacteraceae, Ruminococcaceae, 
Clostridiaceae, Peptostreptococcaceae, and Mogibacteriaceae was revealed. 
The abundance of Bifidobacteriaceae belonging to Actinobacteria 
decreased, while the abundance of Rikenellaceae and Bacteroidaceae 
belonging to Bacteroidetes increased. In addition, the bacterial taxa in the 
AD patient’s gut were associated with cerebrospinal fluid biomarkers 
related to AD pathology [125]. 

There is growing evidence suggesting a connection between gut 
microbiome and Parkinson’s disease. Fecal DNA from Parkinson’s dis-
ease (PD) patients and control subjects were analyzed using deep 
shotgun sequencing. Their large-scale metagenome-wide association 
studies, revealed a wide range of gut microbiome dysfunctions in PD 
patients. PD patients exhibited increased levels of Actinomyces oris, 
Bifidobacterium dentium, Lactobacillus fermentum and Streptococcus mu-
tants. Genera associated with SCFAs production, such as Eubacterium, 
Roseburia, Ruminococcus, and Faecalibacterium prausnitzii, were depleted 
[126]. 

5.4. Cancers 

A correlation between the gut microbiome and cancer, as well as the 
modulation of anti-cancer drug efficacy has been indicated. The gut 
microbiome composition of colorectal cancer/normal tissues using 
whole-genome sequencing, PCR reactions, and 16 S rDNA sequence 
analysis was examined. Their findings revealed alterations in the gut 
microbiome of colorectal cancer patients. Fusobacterium was found to be 
enriched in colorectal cancer tissues, while Bacteroidetes and Firmicutes 
were depleted. However, the exact role of Fusobacterium in the patho-
genesis of colorectal cancer is unclear [127]. Chronic inflammation and 
cancer development has been linked to the gut microbiome. Moreover, 
chemotherapy failure is a major reason for colorectal cancer recurrence 
and poor prognosis. The role of the gut microbiome in chemotherapy 
resistance among colorectal cancer patients has been investigated. A 
high abundance of Fusobacterium nucleatum in recurrent colorectal 
cancer tissues after chemotherapy has been observed, suggesting that 
Fusobacterium nucleatum may promote chemoresistance in colorectal 
cancer [128]. 

Overall, the abundance of gut microbiome is balanced in healthy 
individuals. Diseases are contributed to by an imbalance of gut micro-
biome. For a better understanding of beneficial or harmful microbiome, 
we summarized disease-related gut microbiome changes in Table 2. 

6. Therapeutic implications of exercise-induced microbiome 
alterations 

Exercise induces changes in the gut microbiome, thereby regulating 
metabolism and reducing symptoms associated with various diseases. 
Both basic and clinical studies have utilized exercise interventions to 
treat patients or animals with diseases and have investigated the 
mechanisms through various gut microbiome analyses. In addition, fecal 
microbiota transplantation (FMT) involves the transfer of fecal material 

from a healthy donor to an individual’s gastrointestinal tract to directly 
affect and normalize the gut microbiota composition. Previous studies 
and clinical trials have demonstrated the therapeutic effects of FMT in 
various diseases. 

6.1. Intestinal diseases 

A 12-week free running wheel exercise intervention has been con-
ducted in obese mice on a high-fat diet to examine changes in intestinal 
inflammation and components of anti-obesity microbes influenced by 
exercise. Specific enrichments of three components that belong to the 
Clostridiales family, namely, Faecalibacterium prausnitzi, Clostridium spp., 
and Allobaculum spp., has been revealed in the feces of the exercise group 
[129]. In obese mice the duodenum/ileum barrier function was 
impaired, resulting in increased inflammatory cells, inflammatory 
infiltration in the intestinal villi, and elevated expression of 
pro-inflammatory factors such as COX-2. However, exercised mice 
exhibited normal intestinal morphology and significantly reduced in-
flammatory response. Another study also conducted a 12-week free 
running wheel exercise intervention in high-fat diet-induced obese mice. 
Compared to Campbell’s study, they observed that exercise significantly 
improved the changes in gut microbiome composition caused by the 
high-fat diet. Specifically, exercised mice showed increased abundance 
of Bacteroidetes in the intestines, while Firmicutes exhibited a decreasing 
trend [130]. 

6.2. Obesity and diabetes 

In order to determine the beneficial effect of exercise-conditioned 

Table 2 
Observed Variations in Gut Microbiota Abundance in Different Diseases are 
Observed.  

DISEASE Bacteria Abundance 
Changes 

Reference 

Parkinson’s disease Actinomyces oris up [126]  
Bifidobacterium 
dentarius 

up   

Lactobacillus 
fermentum 

up   

Streptococcus mutants up  
Type 2 diabetes Ruminococcus up [113]  

Fusobacterium up   
Blautia up   
Akkermansia down   
Bifidobacterium down   
Faecalibacterium down   
Bacteroides down   
Roseburia down  

Coronary heart 
disease 

Roseburia down [120]  

Klebsiella down   
Ruminococcaceae 
family 

down  

Obesity Ospiraceae family down [112]  
Ruminococcaceae 
family 

down   

Ruminococcus torques up   
Ruminococcus obeum up   
Ruminococcus bromii up  

Heart failure Lachnospiraceae family down [122]  
Firmicutes down [124]  
Bacteroidetes down  

Atherosclerosis Parabacteroides merdae down [119] 
Alzheimer’s disease Bacteroidetes up [125]  

Firmicutes down   
Actinobacteria down   
Bifidobacterium down  

Colorectal cancer Fusobacterium up [127]  
Bacteroidetes down   
Firmicutes down   

D. Meng et al.                                                                                                                                                                                                                                   



Computational and Structural Biotechnology Journal 21 (2023) 5434–5445

5441

FMT on obesity disease, mice were subjected to a high-fat diet, treadmill 
running training, and FMT treatment. It was found that the relative 
abundance of Turicibacter, Sutterella and Prevotella was the highest in the 
fecal bacteria of healthy diet mice. The relative abundance of Odor-
ibacter, AF12, and Helicobacter was the greatest in mice after exercise. 
Transplantation of normal mouse fecal microbiota to obese mice effec-
tively reduced the weight and fat content. Similarly, transplanting fecal 
microbiota from exercised mice to obese mice alleviated gut microbiome 
disorders in obese mice. Odoribacter, Helicobacter and AF12 were the top 
three abundant gut microbiome after receiving FMT from exercised 
mice. Furthermore, FMT from exercised mice to obese mice mitigated 
obesity symptoms, leading to reduced body weight, decreased fat 
deposition in the liver, significantly reduced blood parameters (fasting 
blood glucose, IPGTT, ALT, and LDL), and decreased expression of 
inflammation-related factor Il1a. These findings indicate that the 
beneficial effects of exercise can be transmitted through FMT, providing 
therapeutic benefits for diseases [131]. 

In another study, low-intensity treadmill exercise was performed on 
mice with diabetes and it was found that exercise had a strong effect on 
the microbiota in the cecum of diabetic mice. The abundance of select 
Firmicutes species in caecum increased significantly while Bacteroides/ 
Prevotella spp. decreased [132]. Exercise has been demonstrated as an 
effective intervention for the prevention and treatment of diabetes, 
while the metabolic levels of some patients do not respond to exercise 
intervention. In addition, exercise interventions were performed in pa-
tients with prediabetes and it was found that gut microbiome and its 
metabolites were important factors in determining the improvement of 
glucose homeostasis and insulin sensitivity through exercise. Re-
sponders had an increase in Lanchospiraceae bacterium that produces 
butyrate, an increase in the replication rate of some species belonging to 
Bacteroides genus that produce propionate, a decrease in Alistipes shahii, 
which related to inflammation, and a decreased growth rate of Prevotella 
copri that associated with Branched-Chain Amino Acid (BCAAs) pro-
duction and insulin resistance. In contrast, non-responders had a 
decrease in the Ruminococcus gnavus and an increase in the bacterium 
Alistipes shahii. Finally, it was found that obese mice receiving FMT from 
responders had ameliorated insulin resistance and glucose intolerance. 
Thus, gut microbiome and its metabolites are expected to be biomarkers 
for predicting and assessing the effect of exercise intervention for dia-
betes [133]. 

6.3. Cardiovascular diseases 

Our group found that exercise training provided cardiac protection 
from myocardial infarction (MI) and enhanced the gut microbial rich-
ness in mice post-MI [134]. Exercise-induced improvements in cardiac 
function were associated with a higher abundance of Bacteroidetes and a 
lower abundance of Firmicutes in exercised versus sedentary mice. Mice 
receiving FMT from the exercised group exhibited significantly 
improved heart function compared to those receiving FMT from the 
sedentary group. Additionally, exercise-induced metabolites 3-hydroxy-
phenylacetic acid (3-HPA) and 4-hydroxybenzoic acid (4-HBA) were 
found to be cardioprotective. Our study demonstrates that the beneficial 
effects of exercise training on MI can be transmitted through FMT [134]. 

Regular exercise also helps alleviate hypertension via gut micro-
biome modulation. Various exercise interventions such as endurance 
training, ambulatory resistance training, isometric strength training 
effectively reduced systolic blood pressure [135]. Exercise training was 
performed on spontaneously hypertensive rats (SHR) and associated 
changes in the fecal microbiota and related physiological parameters 
including intestinal inflammation, permeability and pathology, number 
of activated brain microglia and neuroinflammation were analyzed. It 
was found that exercise training contributed to a persistent decrease in 
systolic blood pressure in SHR, linked to increased microbial diversity 
and the enrichment of beneficial bacterial genera, indicating that the 
antihypertensive effects of exercise involve a remodeling of the gut 

microbiota [136]. 

6.4. Immune/inflammation-related diseases 

Strength exercise significantly increased the gut microbial diversity 
and changed the composition of gut microbiome of autoimmune 
encephalomyelitis (EAE) mice, which was characterized by the decrease 
of Firmicutes/Bacteroidetes ratio. FMT experiments showed that strength 
exercise reduced the permeability of intestinal mucosa, alleviated the 
immune response of central nervous system of EAE, and mitigated the 
disease severity and neuropathology of EAE by changing the composi-
tion of gut microbiome [137]. 

Exercise could also reduce joint pain, decrease inflammatory marker 
levels, and lead to higher gut microbiome abundance and increased 
levels of SCFAs and endocannabinoids. Approximately one third of the 
anti-inflammatory effects of SCFAs produced by the gut microbiome are 
attributed to an increase in endocannabinoids while the remainder is 
tied to alternative pathways that regulate the immune system [138]. 

Metabolites produced by beneficial gut microbiomes, which offer 
protective effects against various diseases, greatly broaden the reper-
toire of therapeutic approaches. Previous studies have demonstrated the 
efficacy of the FMT method, presenting a new horizon for the treatment 
of complex diseases. The aforementioned potential therapies are sum-
marized in Fig. 2. 

Exercise has been shown to alleviate disease symptoms and improve 
quality of life and mortality outcomes for patients with various diseases. 
In addition, transplantation of healthy gut microbiome is a viable clin-
ical intervention. The clinical indication of FMT technology is the 
treatment of recurrent diarrhea caused by antibiotic-resistant Clos-
tridium difficile infection [139]. However, transplantation carries a risk 
of transmitting infections to the recipient. Furthermore, the specific 
mechanism by which exercise improves gut microbiome imbalances 
remains unclear. Therefore, the therapeutic potential of athletes’ fecal 
microbiome or post-exercise fecal samples from animals remains a 
subject of ongoing research, primarily in laboratory animal models, and 
has yet to find application in treating human diseases. 

7. Future outlook 

Modifying the community composition of gut microbiota, among 
other human microbial habitats, is perceived as a potential avenue for 
therapeutic interventions aimed at treating diseases related to ecological 
imbalances [48]. However, a fundamental obstacle to clinical trans-
formation lies in the intricate and elusive mechanism of interaction 
between the host and the microorganisms [140]. Thus, the development 
of innovative methods for pure culture and the continual advancement 
of various omics technologies are vital for unraveling the mechanisms of 
host-microbiota interaction [141]. 

In addition, with the ongoing refinement of high-throughput 
sequencing technology will inevitably lead to a decrease in sequencing 
costs. Consequently, microbiome deep sequencing will be available for 
an increased number of microbial samples. This will further provide an 
unprecedented wealth of data for microbiology research. Even though a 
comprehensive high-throughput omics computational framework 
[142], has been established, and new exemplary deep learning algo-
rithms have emerged [143,144], there remains a need for further 
exceptional algorithms tailored to the various requirements of micro-
biome multi-omics integration, microbial-host interactions, microbial 
community functional phylogeny, and microbe-environment 
interactions. 

Current studies suggest that various factors such as diet, exercise, 
medication, and external stress contribute to alterations in the gut 
microbiota. Notably, changes induced by healthy diet and exercise 
promote modifications in intestinal metabolites and provide nutrients to 
beneficial microbiome. Investigating the relationships between exercise- 
related microbiome and hosts relationships will provide new insights for 
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treating gut microbiome-related diseases. 
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