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Abstract
Background  Life’s Essential 8 (LE8) for assessing cardiovascular health (CVH) has been demonstrated to be inversely 
associated with osteoporosis (OP). This study aims to create a machine learning (ML) model to assess the clinical 
association value of lifestyle and behavioral factors, assessed by LE8, on OP risk in the United States.

Methods  This cross-sectional analysis utilized data from the National Health and Nutrition Examination Survey 
(NHANES), encompassing participants aged ≧ 50 with comprehensive LE8 and OP information. Initially, the study 
compared the characteristics of participants with OP against those with normal bone health. Linear and nonlinear 
associations of LE8 and OP were analyzed by multifactor logistic regression and restricted cubic spline (RCS). 
Subsequently, LE8 features were integrated into six distinct ML models for OP analysis. Evaluate model performance 
using relevant metrics and curves. The best-performing model was further analyzed using SHapley Additive 
exPlanations (SHAP) to rank and clarify the positives and negatives of the contribution of individual LE8 components.

Results  Among 3,902 participants, 364 (9.33%) were identified as having OP. Conventional regression showed 
that health behaviors (HB) and health factors (HF) in LE8 were negatively and positively correlated with OP, 
respectively, and that total LE8 was nonlinearly associated with OP. Through comparison of the Area Under the 
Curve (AUC), Accuracy, F1-Score, Precision, Recall, Specificity, Receiver Operating Characteristic (ROC), Decision 
Curve Analysis (DCA), and Calibration Curve Analysis (CCA), the optimal performance achieved by the Light Gradient 
Boosting Machine (LightGBM) model incorporating the 20 features. SHAP analysis revealed that the contributions 
of LE8 components were ranked as follows: Body Mass Index (BMI) > sleep health > blood glucose > nicotine 
exposure > blood lipids > blood pressure > Healthy Eating Index-2015 (HEI-2015) > physical activity. Where sleep 
health, blood lipids, and HEI-2015 were the main negative contributors to OP, BMI was the main positive contributor.

Conclusions  The integration of LE8 with a LightGBM model offers a promising strategy for analysing OP in the 
American population, underscoring the potential of ML approaches in enhancing clinical assessments.
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Background
Osteoporosis (OP) is a systemic skeletal disorder, diag-
nosed in men over 50 years old and postmenopausal 
women with a bone mineral density (BMD) T-score ≤ 2.5 
or a history of fragility fractures in specific sites, render-
ing bones more prone to fragility fractures [1]. Epide-
miological data indicate a global OP prevalence of 19.7%, 
with marked variations by country and sex. In developing 
countries, the prevalence is 22.1%, markedly higher than 
the 14.5% observed in developed nations [2]. Among 
individuals over ≧ 50, osteoporosis in women is roughly 
fourfold greater than in males [3]. The spine and hip are 
the most common sites for osteoporotic fractures. Post-
65 years of age, hip fractures manifest in approximately 
one-third of women and one-sixth of men [4]. Statisti-
cally, one-fifth of individuals with hip fractures succumb 
within one year [5]. Due to the aging global population, 
OP poses a substantial challenge to global healthcare.

The pathogenesis of OP is complex, involving the inter-
play of multiple factors. Certain risk factors cannot be 
altered, like age and sex, while others can be modified, 
including blood glucose levels, BMI, smoking, physical 
activity, and psychological status [6, 7]. Preventive strat-
egies can target these modifiable factors, which in turn 
may mitigate the impact of non-modifiable risks. Estab-
lishing association models that incorporate these risk 
factors can enable the prompt identification of patients 
at elevated risk for OP, allowing timely lifestyle interven-
tions for its prevention [6].

Based on a range of lifestyle and behavioral factors, 
the scoring system LE8 was introduced by the Ameri-
can Heart Association as an advanced metric for assess-
ing CVH [8]. The LE8 score encompasses assessments of 
four health behaviors and factors. To date, LE8 has been 
successfully employed in association models for vari-
ous cardiovascular diseases, chronic illnesses, and over-
all as well as cardiovascular mortality [9–11]. Notably, 
an NHANES-based study indicated that LE8 exhibits an 
inverse correlation with OP risk in multivariable regres-
sion analyses [7].

Machine learning (ML) is increasingly employed in 
modeling clinical associations to learn patterns and rela-
tionships within data, thereby forecasting disease onset 
and progression and aiding clinicians in making pre-
cise therapeutic decisions. ML has achieved significant 
advancements in analysing various diseases; for example, 
a study employing ML on the Ansan/Anseong cohort 
successfully predicted OP in an Asian population [6]. 
This research employed data from NHANES to construct 
machine learning models, with the objective of exploring 
the clinical relevance of lifestyle and behavioral factors 
evaluated through LE8 in relation to OP risk within the 
U.S. population. Our objectives are to identify the opti-
mal ML model and to rank the positivity and negativity 

of the individual components of LE8. The insights gained 
may inform targeted strategies for OP management by 
focusing on modifiable risk factors.

Methods
Survey design
The NHANES database was established by the National 
Centre for Health Statistics, and the data from it were 
collected for this cross-sectional study. Started in the 
1960s and ongoing since 1999, NHANES excludes insti-
tutionalized persons, active duty military personnel, 
and nonresidents, drawing a stratified and multistage 
sample of noninstitutionalized civilians of all ages from 
across the U.S. NHANES travels to communities across 
the U.S. via Mobile Examination Centers (MECs) with no 
fixed location to collect data, including questionnaires 
(face-to-face and home interviews) and medical exami-
nations (physical measurements, laboratory tests, and 
imaging). Participants answer questions about health, 
diet, and lifestyle during face-to-face interviews. Some-
times, the investigator also conducts interviews in the 
participant’s home to collect home-related information. 
Medical screening includes participants taking physical 
measurements such as height, weight, and blood pres-
sure at MECs; providing biological samples such as blood 
and urine for laboratory testing; and undergoing imag-
ing tests such as X-rays and ultrasounds to assess health 
status. After obtaining ethical clearance and informed 
consent from the participants, the NHANES prospec-
tively collected data and opened the database to the pub-
lic for further analyses and research on www.cdc.gov/
nchs/nhanes/. After participant inclusion and exclusion, 
a total of 3902 participants proceeded to the final analysis 
(Fig. 1). This cross-sectional study followed the Strength-
ening the Reporting of Observational Studies in Epidemi-
ology reporting guideline [see Additional file 1, Table S1] 
[12].

The sample combined NHANES data from 2005 to 
2010, 2013–2014, and 2017–2018, including participants 
aged 40 years or older with complete LE8 score and OP 
data. Initially, 50,463 participants were included. After 
excluding participants with missing OP data (n = 24,242), 
missing LE8 score data (n = 9,744), under the age of 
50 (n = 6,782), and missing data for partial covariates 
(chronic diseases and diet), a total of 3,902 participants 
proceeded to the final analysis. The data were divided 
into an 80% training set (n = 3,122) and a 20% testing set 
(n = 780). The training set was further partitioned using 
5-fold cross-validation (i.e., 64% for training and 16% 
for validation). Six ML models were built: K-Nearest 
Neighbors (KNN), Random Forest, Decision Tree, Sup-
port Vector Machine (SVM), Logistic Regression, and 
LightGBM. LightGBM was used to assess feature impor-
tance, selecting the top 7, 12, and 17 covariates based 

http://www.cdc.gov/nchs/nhanes/
http://www.cdc.gov/nchs/nhanes/


Page 3 of 15Shi et al. Journal of Health, Population and Nutrition          (2025) 44:180 

on gain values, which were jointly modeled to contain 
15, 20, and 25 features with the 8 components of LE8. 
Lambda_l1 and lambda_l2 regularization parameters 
were incorporated in this study to mitigate overfitting. 
Model performance was evaluated using AUC, Accu-
racy, F1-Score, Precision, Recall, Specificity, ROC curves, 
CCA, and DCA to assess discrimination, calibration, and 

clinical utility, thereby guiding model selection and clini-
cal decision-making. The best-performing model was 
further analyzed using bootstrap to evaluate generaliza-
tion ability, and SHAP to rank the importance of LE8 
components.

Fig. 1  Flow chart of data collection, data preprocessing, and model development
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Assessments of LE8 scores and OP
The LE8 scores include assessments of four HB (diet, 
physical activity, nicotine exposure, and sleep health) 
and four HF (BMI, blood lipids, blood glucose, and 
blood pressure). The HEI-2015 assessed diet scores. This 
research adopted the scoring methodology outlined in 
prior NHANES-associated publications to compute the 
LE8 score, as detailed in the supplementary materials 
[see Additional file 2, Table S2] [13]. Each CVH com-
ponent was assigned a score ranging from 0 to 100. The 
eight component fractions added together and divided by 
8 is the total LE8 score.

Dual-energy x-ray absorptiometry (DXA) scans were 
employed to measure femur (total femur, femoral neck, 
trochanter, intertrochanter, Ward’s triangle) and spine 
(total spine, L1, L2, L3, L4) BMD. According to the 
World Health Organization classification criteria, OP 
was defined as men over 50 and postmenopausal women 
having a BMD T-score ≤ − 2.5 compared to reference 
population (healthy adults aged 20–29 of the same sex) 
[T-score = (Individual BMD - Mean BMD of the refer-
ence population) / BMD standard deviation of the refer-
ence population], or a history of low-trauma fractures of 
certain sites (hip, cone, proximal humerus, pelvis, distal 
forearm) in this age group [1, 14]. In this study, any par-
ticipant with a T-score ≤ − 2.5 at any of the ten sites [see 
Additional file 2, Table S3], or who reported a hip, verte-
bral, or wrist low-trauma fracture from a fall at or below 
standing height when age ≥ 50 on the Osteoporosis Ques-
tionnaire (OSQ), or who had been diagnosed with OP by 
a physician, was classified as having OP.

Collection of baseline features
Based on previous studies and clinical experience, an ini-
tial set of 45 features was selected for the dataset, com-
prising 27 continuous and 18 categorical variables. These 
features were collected from five domains: demographics, 
lifestyle, medical status, dietary conditions, and labora-
tory test indicators.

Pre-processing of machine learning features
After collecting all 45 features, calculating the propor-
tions of missing values and extreme values, and testing 
for normality, the random forest algorithm was employed 
to impute missing values [see Additional file 2, Table S4, 
Table S5, and Table S6]. In participants’ baseline traits 
and multifactor logistic regression, sampling weights 
were incorporated in line with NHANES sampling meth-
odology (sampling weights: WTMEC2YR; cluster identi-
fier: SDMVPSU; stratification variable: SDMVSTRA). To 
prevent multicollinearity, Spearman correlation analy-
sis was performed, and features with correlation coef-
ficients exceeding 0.8 were removed (phosphorus intake 
and waist circumference) [see Additional file 2, Fig. S1]. 

To eliminate the impact of different dimensions on model 
performance, all continuous variables were subjected to 
Min-Max normalization before model training, scaling 
them to the [0,1] range. To address class imbalance, the 
Synthetic Minority Over-sampling Technique (SMOTE) 
was applied to optimize model training [15]. Automated 
hyperparameter tuning was performed via Bayesian grid 
search to determine the parameter tuning range and opti-
mal parameters [see Additional file 2, Table S7 and Table 
S8]. To enhance the robustness of the results, LightGBM 
was used to screen covariates with a feature importance 
gain value > 300, which were then incorporated into mul-
tivariate logistic regression and RCS to evaluate the lin-
ear and non-linear associations between LE8 and OP. 
Due to the odds ratio (OR) of LE8 being too negligible 
to discern in regression analysis, the study utilized LE8 
divided by ten (LE8/10) as a scaled metric instead of the 
original LE8 value.

Statistical analysis
In the section on participants’ baseline traits, continu-
ous variables were presented as median, Q1, Q3, Mann-
Whitney U test to compare differences; categorical 
variables were presented as percentages, chi-square test 
to compare differences. Statistical analyses were con-
ducted in Python 3.8.10 using Scikit-learn, with NumPy 
for numerical computations, Pandas for data handling, 
and Matplotlib for visualization (Fig.  1). Complete code 
was presented in the supplementary material [see Addi-
tional file 3, core]. Statistical significance was set at 
P < 0.05.

Results
Population baseline description
Among 3,902 participants, 364 (9.33%) were diagnosed 
with OP (Table  1). Compared to those without OP, the 
OP group was older, had lower household income and 
educational level, and included a higher proportion of 
females. They also had a greater prevalence of history 
of arthritis, thyroid diseases, cancer, asthma, pulmonary 
emphysema, chronic bronchitis, cardiovascular disease, 
depression, history of hormone use, and family history 
of OP, along with lower calcium, phosphorus, and alco-
hol intake. In laboratory measures, the OP group exhib-
ited higher levels of blood phosphorus, blood 25-OHD, 
blood platelet, alkaline phosphatase (ALP), lactate dehy-
drogenase (LDH), high-density lipoprotein cholesterol 
(HDL-C), and lower levels of hemoglobin, alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), 
creatinine, γ-glutamyl transferase, total bilirubin, uric 
acid.
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Characteristic Normal Osteoporosis P value
N 3538 (90.67%) 364 (9.33%)
Age (year) 56.00 (52.00, 60.00) 61.00 (57.00, 65.00) < 0.001
Gender < 0.001
Male 2248 (59.32%) 41 (7.91%)
Female 1290 (40.68%) 323 (92.09%)
Race 0.677
Non-Hispanic White 1983 (24.40%) 185 (23.02%)
Other Race 1555 (75.60%) 179 (76.98%)
Education level 0.032
≤High school 1701 (39.72%) 189 (45.92%)
> High school 1837 (60.28%) 175 (54.08%)
Marital status 0.072
Married/living with partner 2370 (71.88%) 202 (66.18%)
Without partner 1168 (28.12%) 162 (33.82%)
Family PIR 4.10 (2.16, 5.00) 3.16 (1.62, 5.00) < 0.001
History of disease
Arthritis 1015 (29.53%) 263 (69.19%) < 0.001
Gout 216 (5.09%) 23 (3.97%) 0.408
Thyroid diseases 361 (11.78%) 89 (30.61%) < 0.001
Cancer 325 (11.20%) 68 (21.54%) < 0.001
Asthma 422 (11.79%) 89 (22.72%) < 0.001
Pulmonary emphysema 61 (1.48%) 33 (10.96%) < 0.001
Chronic bronchitis 204 (5.61%) 55 (15.07%) < 0.001
Liver disease 178 (4.79%) 26 (4.42%) 0.694
Kidney disease 107 (2.17%) 18 (3.76%) 0.108
Cardiovascular disease 421 (9.81%) 74 (18.38%) 0.001
Depression 294 (6.43%) 54 (10.95%) 0.004
History of hormone use 170 (5.77%) 60 (16.11%) < 0.001
Family history of osteoporosis 401 (14.89%) 125 (40.55%) < 0.001
Daily milk intake 2250 (65.01%) 229 (63.48%) 0.657
Waist circumference (cm) 101.80 (91.80, 111.70) 96.20 (83.90, 107.70) < 0.001
Calcium intake (mg) 850.50 (616.00, 1202.00) 757.00 (597.50, 1045.50) 0.003
Phosphorus intake (mg) 1311.50 (1006.50, 1702.00) 1080.00 (864.00, 1341.00) < 0.001
Alcohol intake (gm) 0.00 (0.00, 11.15) 0.00 (0.00, 0.00) < 0.001
Caffeine intake (mg) 173.00 (72.00, 302.50) 148.00 (51.00, 254.50) 0.164
Vitamin D intake (mcg) 3.40 (2.20, 5.55) 3.40 (1.95, 5.50) 0.663
Blood calcium (mmol/L) 2.35 (2.30, 2.40) 2.35 (2.30, 2.42) 0.452
Blood phosphorus (mmol/L) 1.20 (1.07, 1.32) 1.26 (1.13, 1.32) < 0.001
Blood 25-OHD (nmol/L) 69.20 (53.50, 85.90) 77.40 (60.80, 94.50) < 0.001
Leucocyte (×103/uL) 6.80 (5.50, 8.20) 6.60 (5.60, 8.20) 0.666
Hemoglobin (g/dL) 14.70 (13.80, 15.60) 13.80 (13.10, 14.50) < 0.001
Blood platelet (103/uL) 241.00 (204.00, 286.00) 261.00 (218.00, 308.00) < 0.001
Alanine aminotransferase ALT ((U/L) 23.00 (18.00, 31.00) 20.00 (15.00, 26.00) < 0.001
Aspartate aminotransferase AST (U/L) 24.00 (20.00, 28.00) 23.00 (19.00, 27.00) 0.007
Albumin (g/L) 42.00 (40.00, 44.00) 42.00 (40.00, 44.00) < 0.001
Alkaline phosphatase (u/L) 70.00 (58.00, 85.00) 74.00 (59.00, 91.00) 0.037
Creatinine (umol/L) 79.56 (68.07, 90.17) 70.72 (61.88, 81.33) < 0.001
Blood urea nitrogen (mmol/L) 5.00 (3.93, 6.07) 5.00 (3.93, 6.07) 0.453
γ-glutamyl transferase (U/L) 23.00 (16.00, 36.00) 19.00 (14.00, 30.00) < 0.001
Lactate dehydrogenase (U/L) 138.00 (122.00, 157.00) 148.00 (127.00, 167.00) < 0.001
Total bilirubin (umol/L) 11.97 (8.55, 15.39) 10.26 (6.84, 11.97) < 0.001
Triglycerides (mmol/L) 1.50 (1.02, 2.23) 1.47 (1.03, 1.98) 0.088
High density lipoprotein (mmol/L) 1.29 (1.06, 1.58) 1.50 (1.16, 1.76) < 0.001

Table 1  Participants’ baseline traits categorized by OP (weighted)
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Association between LE8 and OP
Table 2 illustrates the association between LE8 as a whole 
and as components with OP (Table  2). In the adjusted 
model, HB and sleep health scores therein were signifi-
cantly negatively associated with OP, while HF and BMI, 
blood lipids therein scores were positively associated 
with OP. RCS analysis revealed a non-linear association 
between total LE8 and OP (P-nonlinear = 0.0499) (Fig. 2).

RCS was adjusted by gender, arthritis, age, family his-
tory of osteoporosis, blood urea nitrogen, history of hor-
mone use, vitamin D intake, hemoglobin, blood calcium, 
thyroid disease, and caffeine intake. Akaike Information 
Criterion (AIC) is used to select the optimal number of 
knots.

Developing machine learning models for osteoporosis 
analysis
Using feature importance derived from LightGBM’s gain 
values, the research selected the 8 LE8 components and 
top 7, 12, and 17 features [see Additional file 2, Table 
S9], and applied them to train six ML algorithms on the 
NHANES sample to generate the optimal OP association 
model (Table  3). In 20 features, LightGBM attained the 
optimal Accuracy and Specificity, while Random For-
est attained the optimal F1-Score, Precision, and Recall. 
Logistic Regression of 25 features achieved the highest 
AUC. Using the LightGBM model with 20 features as the 
reference, DeLong’s test showed no significant differences 
in AUC when compared with other models; there were 
also no significant differences in AUC when SMOTE was 

not introduced. The relevant code for DeLong’s test can 
be found in the supplementary material [see Additional 
file 4, DeLong’s test_auc]. After applying SMOTE, the 
averages of various metrics had only small differences, 
with slight improvements in AUC and Accuracy.

The ROC curves indicated that LightGBM of 20 fea-
tures achieved high AUC in the train set (AUC = 0.9632), 
validation set (AUC = 0.9626), and test set (AUC = 0.9167) 
(Fig. 3). Subsequently, 100 iterations of bootstrap resam-
pling were used for internal validation (mean AUC = 0.92) 
(Fig. 4).

DCA was conducted to assess the clinical efficacy 
among the six models using the 20 features in the test 
set (Fig. 5). Across all threshold probability levels, all six 
models provided greater net benefit than the “treat-all” 
or “treat-none” strategies. LightGBM demonstrated the 
highest net benefit across all threshold probabilities.

CCA for the 20 features in the test set was plotted 
(Fig. 6). Among the six models, LightGBM demonstrated 
the closest alignment with the ideal calibration line and 
had the lowest Brier score (Brier = 0.054). LightGBM 
for the vast majority of predicted probabilities tended 
to underestimate the event occurrence probability, only 
overestimated when predicted probabilities were high.

SHAP analysis
SHAP summary plot was performed to evaluate the sig-
nificance ranking of LE8 components in OP association 
(Fig.  7a). The ranked contributions of LE8 components 
to the model were as follows: BMI > sleep health > blood 

Table 2  Association between LE8 scores and osteoporosis (weighted)
OR (95%CI), P value

Independent variable Crude model Adjusted model
LE8 score/10 1.00 (0.99, 1.01), 0.8215 0.99 (0.87, 1.14), 0.9189
Health behaviors score/10 0.95 (0.88, 1.03), 0.2607 0.83 (0.76, 0.91), 0.0003
Health factors score/10 1.05 (0.96, 1.14), 0.2750 1.26 (1.11, 1.43), 0.0015
HEI-2015 score/10 0.99 (0.93, 1.06), 0.8263 0.95 (0.89, 1.03), 0.2409
Physical activity score/10 0.99 (0.94, 1.03), 0.5339 0.97 (0.92, 1.03), 0.3402
Nicotine exposure score/10 1.00 (0.97, 1.03), 0.8890 0.99 (0.94, 1.05), 0.8292
Sleep health score/10 0.92 (0.88, 0.97), 0.0045 0.84 (0.79, 0.91), 0.0001
BMI score/10 1.06 (1.01, 1.12), 0.0342 1.19 (1.12, 1.27), < 0.0001
Blood lipids score/10 1.02 (0.97, 1.06), 0.5015 1.09 (1.01, 1.18), 0.0274
Blood glucose score/10 0.99 (0.93, 1.05), 0.6464 0.95 (0.88, 1.03), 0.2178
Blood pressure score/10 1.00 (0.95, 1.04), 0.8503 0.98 (0.92, 1.04), 0.5579
The adjusted model was adjusted by gender, arthritis, age, family history of osteoporosis, blood urea nitrogen, history of hormone use, vitamin D intake, hemoglobin, 
thyroid disease, caffeine intake, and blood calcium. Health behaviors score/10, health factors score/10, and each LE8 component/10 in the adjusted model added 
adjustments to each other. Significant P values were in bold

Characteristic Normal Osteoporosis P value
Uric acid (umol/L) 333.10 (273.60, 386.60) 291.50 (237.90, 350.90) < 0.001
Globulin (g/L) 28.00 (26.00, 31.00) 28.00 (25.00, 30.00) 0.662
PIR: income-to-poverty ratio. Continuous variables were presented as median, Q1,Q3, Mann-Whitney U test to compare differences; categorical variables were 
presented as percentages, chi-square test to compare differences

Table 1  (continued) 
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glucose > nicotine exposure > blood lipids > blood pres-
sure > HEI-2015 > physical activity. The SHAP waterfall 
plot showed that in the OP analysis, the components of 
LE8 including sleep health (-0.47), blood lipids (-0.25), 
and HEI-2015 (-0.23) scores were the main negative con-
tributors, while the BMI score (+ 0.44) showed a positive 
contribution (Fig.  7b). Meanwhile, age (-1.56), gender 
(+ 1.24), and arthritis (-0.91) ranked among the top three 
features in their contributions to OP. The cumulative 
association level of the 20 features resulted in a final 
analysis range from 0.205 to -1.367. The SHAP force plot 
indicated that sleep health and blood lipids scores in 
LE8 reduced the likelihood of OP, while the BMI score 
increased the likelihood of OP (Fig. 7c). 

Discussion
This study employs traditional regression and ML algo-
rithms to investigate the analytical role of LE8 in OP 
using NHANES data. Traditional regression showed that 
HB and HF were negatively and positively correlated 
with OP, respectively, while total LE8 exhibited a non-
linear association with OP. Among six ML models, Light-
GBM demonstrated superior performance, achieving the 

excellent AUC, Accuracy, F1-Score, Precision, Recall, 
and Specificity when utilizing the 20 features. Its ROC 
curves exhibit good generalizability, and the bootstrap 
results are stable. DCA and CCA exhibited optimal per-
formance. SHAP analysis ranked the contributions of 
LE8 components to the model as follows: BMI > sleep 
health > blood glucose > nicotine exposure > blood lip-
ids > blood pressure > HEI-2015 > physical activity. Sleep 
health, blood lipids, and HEI-2015 scores were the main 
negative contributors to OP, and BMI score was the main 
positive contributor.

This study is, to our knowledge, the first research 
to create and evaluate a ML model to analyse OP 
that includes LE8. Previous studies have increasingly 
employed ML models to explore lifestyle and health fac-
tors related to OP. A cohort study from Ansan/Anseong 
found that eXtreme Gradient Boosting (XGBoost) exhib-
ited strong OP analytical capability (AUC = 0.890), with 
body height and weight ranking high in feature impor-
tance and SHAP analysis [6]. However, OP in this study 
was diagnosed based on ultrasonographic bone density 
of the tibia and radius, without considering a history of 
fragility fractures. Wen-Yu et al. developed an ML model 

Fig. 2  Restricted Cubic Spline analysis between LE8 and OP
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for the Taiwanese population incorporating multiple 
health factors (smoking, blood pressure, glucose, lip-
ids) for OP association, with Random Forest achieving 
the highest AUC among five ML models in both males 
(AUC = 0.843) and females (AUC = 0.811) [16]. How-
ever, the diagnosis of OP is based on the classification of 
DXA results, lacking the original T-score information. 
Compared to previous studies, our study adopts more 
comprehensive OP inclusion criteria (DXA of 10 lum-
bar and femoral sites, history of hip, vertebral, and wrist 
fragility fractures, and self-reported physician-diagnosed 
OP), yielding a more realistic OP prevalence and more 
clinically useful decisions. More importantly, the perfor-
mance of this study (optimal mean AUC = 0.9330) out-
performed the two aforementioned studies. This may be 
attributed to differences in the included features: (1) This 
study used the BMI score to integrate the proportional 
relationship between height and weight, excluding waist 
circumference due to its strong collinearity with the BMI 
score. This better reflects the bidirectional effects of obe-
sity on bone health through mechanical loading, chronic 
inflammation, and hormonal metabolism [17]. (2) LE8 
focuses on lifestyle factors. Unlike the scattered, simplis-
tic, or even unconsidered assessment of dietary and sleep 
health indicators in previous studies, this study included 
HEI-2015 and sleep duration scores, which contain more 
comprehensive information. HEI-2015 quantifies over-
all diet quality by integrating dietary synergistic effects, 

avoiding collinearity issues among single nutrients 
while offering strong clinical interpretability due to its 
direct alignment with the US dietary guidelines. Its data 
dimensionality reduction properties also help improve 
model stability [18]. The sleep duration score captures 
the dose-response relationship between sleep and health, 
enabling more objective evaluation through quantified 
continuous benefits and precisely reflecting the circa-
dian rhythm of growth hormone secretion, providing 
a basis for mechanistic explanations [19]. (3) History of 
arthritis, as an important feature for OP, drives bone loss 
through inflammatory responses, glucocorticoid medi-
cation side effects, and activity limitation leading to dis-
use [20, 21]. These features, which are potential clinical 
variables with significant contributions overlooked in 
previous studies, likely contributed to the superior model 
performance of this study compared to others. This war-
rants further exploration. ML models incorporating LE8 
have also gained traction in recent years. Zhaoqi Yan et 
al. established that elevated CVH levels evaluated by LE8 
forecasted reduced risks of all-cause and cardiovascular 
mortality in NHANES, with biological aging mediating 
the relationship [22]. Peter Graffy et al. used subgraph 
augmented non-negative matrix factorization (SANMF) 
to cluster longitudinal LE8 variables in participants from 
Coronary Artery Risk Development in Young Adults 
(CARDIA) to assess future adverse cardiovascular event 
phenotypes [23].

Table 3  Metrics of the 6 machine learning models in analysing OP
Model AUC P value Accuracy F1-Score Precision Recall Specificity
15 features
KNN 0.8976 ± 0.0216 0.7004 0.9206 ± 0.0125 0.9207 ± 0.0089 0.9230 ± 0.0068 0.9206 ± 0.0125 0.9562 ± 0.0201
Random Forest 0.9127 ± 0.0186 0.7789 0.9334 ± 0.0106 0.9355 ± 0.0097 0.9346 ± 0.0101 0.9388 ± 0.0102 0.9684 ± 0.0153
Decision Tree 0.8685 ± 0.0179 0.5194 0.8833 ± 0.0278 0.8925 ± 0.0168 0.9087 ± 0.0082 0.8833 ± 0.0278 0.9144 ± 0.0416
SVM 0.9189 ± 0.0109 0.9632 0.9230 ± 0.0142 0.9293 ± 0.0106 0.9320 ± 0.0096 0.9279 ± 0.0126 0.9493 ± 0.0211
Logistic Regression 0.9277 ± 0.0116 0.9172 0.9330 ± 0.0136 0.9332 ± 0.0118 0.9343 ± 0.0105 0.9330 ± 0.0136 0.9626 ± 0.0146
LightGBM 0.9165 ± 0.0147 0.8818 0.9347 ± 0.0107 0.9307 ± 0.0125 0.9332 ± 0.0081 0.9311 ± 0.0169 0.9684 ± 0.0152
20 features
KNN 0.8952 ± 0.0189 0.6569 0.9087 ± 0.0172 0.9037 ± 0.0157 0.9123 ± 0.0094 0.8986 ± 0.0228 0.9427 ± 0.0242
Random Forest 0.9152 ± 0.0173 0.8926 0.9379 ± 0.0090 0.9368 ± 0.0097 0.9373 ± 0.0119 0.9417 ± 0.0104 0.9735 ± 0.0069
Decision Tree 0.7995 ± 0.0421 0.2080 0.8606 ± 0.0361 0.8755 ± 0.0264 0.8972 ± 0.0132 0.8606 ± 0.0361 0.8926 ± 0.0388
SVM 0.9168 ± 0.0100 0.9696 0.9238 ± 0.0160 0.9308 ± 0.0112 0.9327 ± 0.0088 0.9296 ± 0.0131 0.9547 ± 0.0229
Logistic Regression 0.9324 ± 0.0088 0.8642 0.9358 ± 0.0077 0.9350 ± 0.0061 0.9353 ± 0.0063 0.9362 ± 0.0072 0.9684 ± 0.0115
LightGBM 0.9213 ± 0.0137 Reference 0.9394 ± 0.0045 0.9340 ± 0.0065 0.9347 ± 0.0060 0.9358 ± 0.0067 0.9770 ± 0.0091
LightGBM (no SMOTE) 0.9170 ± 0.0169 0.9811 0.9390 ± 0.0072 0.9389 ± 0.0109 0.9391 ± 0.0107 0.9405 ± 0.0125 0.9808 ± 0.0069
25 features
KNN 0.8975 ± 0.0216 0.8268 0.9168 ± 0.0098 0.9018 ± 0.0095 0.9112 ± 0.0109 0.8952 ± 0.0093 0.9545 ± 0.0093
Random Forest 0.9218 ± 0.0141 0.9249 0.9360 ± 0.0160 0.9359 ± 0.0113 0.9354 ± 0.0117 0.9388 ± 0.0115 0.9707 ± 0.0183
Decision Tree 0.8016 ± 0.0245 0.0932 0.8952 ± 0.0128 0.8972 ± 0.0117 0.8995 ± 0.0108 0.8952 ± 0.0128 0.9381 ± 0.0097
SVM 0.9265 ± 0.0079 0.8798 0.9274 ± 0.0124 0.9336 ± 0.0103 0.9352 ± 0.0085 0.9326 ± 0.0119 0.9558 ± 0.0162
Logistic Regression 0.9330 ± 0.0095 0.8434 0.9360 ± 0.0077 0.9350 ± 0.0057 0.9350 ± 0.0059 0.9358 ± 0.0062 0.9672 ± 0.0111
LightGBM 0.9221 ± 0.0149 0.9341 0.9385 ± 0.0057 0.9362 ± 0.0055 0.9354 ± 0.0060 0.9400 ± 0.0052 0.9751 ± 0.0126
P values are the results of DeLong’s test of the AUC value of different machine learning models compared with the LightGBM model of 20 features. Bold refers to the 
optimal value under this indicator
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Compared to traditional statistical methods, ML mod-
els offer several advantages in clinical analysis. First, 
they achieve higher accuracy. For instance, in predict-
ing all-cause mortality after transcatheter aortic valve 
implantation, ML models attained a C-statistic of 

0.79, significantly outperforming traditional methods 
(C-statistic = 0.68) [24]. Second, ML can process high-
dimensional data and complex nonlinear relationships, 
capturing intricate data patterns more effectively. In 
traumatic brain injury, ML models integrating multiple 

Fig. 3  ROC curves of 20 features in the train set, validation set, and test set, validation set derived from 5-fold cross-validation. (a) Decision Tree (b) KNN 
(c) LightGBM (d) Logistic Regression (e) Random Forest (f) SVM
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biomarkers and clinical features yielded superior pre-
diction accuracy (Random Survival Forest AUC = 0.80) 
[25]. Additionally, ML models exhibit greater flexibility, 
accommodating various data types and prediction tasks 
while enabling personalized analysis for precision medi-
cine. XGBoost model based on seven simple features 
was applied to develop an online calculator for conve-
nient prediction of depression risk in stroke patients [26]. 
LightGBM is a high-performance, distributed machine 
learning algorithm with strong predictive accuracy, built 
upon the gradient boosting framework. It utilizes a novel 
histogram-based approach for decision tree creation, 
which notably accelerates training processes and opti-
mizes memory usage while preserving robust precision. 
In a prior NHANES investigation focusing on dietary 
antioxidants and cardiovascular-cancer comorbidities, 
LightGBM achieved an AUC of 0.951, surpassing other 
machine learning models [27]. Our research further indi-
cates that the LightGBM model, when integrated with 
LE8, exhibits superior performance in OP analysis.

SHAP analysis revealed that within LE8, sleep health, 
blood lipids, and HEI-2015 scores were the major 

negative contributors to OP, while the BMI score served 
as the primary positive contributor. Yuchen Tang et 
al. conducted a multiple logistic regression analysis on 
NHANES data, showing a positive association between 
LE8 and OP risk in an unadjusted model, which turned 
negative after adjusting for covariates [7]. However, 
their study diagnosed OP solely based on femoral neck 
BMD and conducted only correlation analyses without 
association modeling. Previous research has primar-
ily focused on specific CVH factors associated with OP. 
A meta-analysis found lower OP risk in overweight and 
obese individuals and higher risk in underweight indi-
viduals [28]. Junwei Tian et al. reported that prolonged 
sleep duration in women, postmenopausal women, and 
the elderly, as well as excessively long or short sleep dura-
tion in men, were associated with OP [29]. The Spanish 
Camargo cohort study found that triglycerides (TC), low-
density lipoprotein cholesterol (LDL-C), and LDL-C/
HDL-C were positively associated with lumbar spine 
and hip BMD [30]. Conversely, a study on the Korean 
population showed that TC, HDL-C, and total choles-
terol were negatively associated with BMD [31]. The 

Fig. 4  ROC curves of LightGBM with 20 features in bootstrap
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discrepancies in findings of TC and OP among research 
may be ascribed to variations in nationality and ethnicity. 
A study based on NHANES revealed that higher dietary 
quality evaluated by the HEI-2015 is associated with a 
reduced risk of OP in middle-aged and older adults [18]. 
The above research supported the high contributions of 
HEI-2015, sleep, lipids, and BMI scores to OP associa-
tion in this study. Other studies have identified well-con-
trolled glucose and blood pressure, smoking cessation, 
and appropriate physical activity as protective factors 
against OP [7, 32, 33]. However, these factors contributed 
less to OP association in our model, indicating that spe-
cific risk factors might not exhibit substantial links to dis-
ease analysis.

The association role of LE8 on OP may stem from 
interconnected cardiometabolic-bone crosstalk involv-
ing six key pathways: (1) Endocrine regulation: Adipose-
derived hormones (adiponectin, leptin) and sex steroids 
(estrogen, testosterone) modulated by obesity, dyslipid-
emia, Type 2 Diabetes Mellitus (T2DM), nicotine, and 
physical activity critically regulate bone metabolism [19, 
31, 34–37]. Insulin resistance mediates bone remodel-
ing through Insulin-like Growth Factor 1 (IGF-1) recep-
tor signaling [34]. (2) Inflammation and oxidative stress: 
Hypertension and dyslipidemia elevate pro-inflammatory 
cytokines [Tumor Necrosis Factor alpha (TNF-α), Inter-
leukin-6 (IL-6)] and oxidative stress, exacerbating bone 
resorption and vascular calcification via endothelial 
dysfunction [31, 38]. Exercise counteracts these effects 

through anti-inflammatory modulation [36]. (3) Vascu-
lar injury: Nicotine-induced vasoconstriction, athero-
sclerotic narrowing, and vascular calcification (sharing 
mineralization pathways with bone via bone morphoge-
netic protein, ALP, osteopontin) impair nutrient deliv-
ery to bone tissue [31, 37, 38]. (4) Mechanical loading: 
Moderate BMI and physical activity generate osteogenic 
mechanical stimuli through adipose/muscle-derived 
loading, enhancing bone microstructure and musculo-
skeletal synergy [17, 36]. (5) Dietary nutrition: Caloric/
nutrient adequacy in higher BMI supports mineraliza-
tion, while hypertension/sleep deprivation disrupts 
vitamin D/calcium homeostasis [19, 38, 39]. HEI-2015 
components (whole grains, fruits, vegetables, soy) pro-
vide bone-beneficial nutrients (K, Mn, vitamins B/C/
E/K, ω-3), contrasting with saturated fat’s detrimental 
effects [18]. (6) Pharmacological mechanisms: T2DM/
dyslipidemia medications (thiazides, statins) exhibit 
BMD-enhancing properties, whereas antihypertensives 
(Calcium Channel Blocker, Angiotensin-Converting 
Enzyme Inhibitor) may adversely affect bone metabolism 
[34, 38]. In addition, lipids, nicotine, and physical exer-
cise can directly affect osteoblast and osteoclast activity 
[31, 36, 37]. It is worth noting that while dyslipidemia 
generally impairs bone health, oxysterols from choles-
terol metabolism promote osteogenesis. Hypercholester-
olemia correlates with reduced bone turnover markers 
(β-CrossLaps, Procollagen I N-Terminal Propeptide) and 
elevated BMD [30]. This bidirectional effect explains why 

Fig. 5  DCA of 20 features in the test set
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the blood lipids score showed a positive correlation with 
OP in regression analysis but a negative contribution in 
SHAP analysis. A similar dual impact is observed for the 
BMI score: moderate BMI stimulates osteoblast activity 
through mechanical loading, thereby increasing bone 
mineral density; excessively low BMI is associated with 
insufficient bone mass reserve; conversely, excessively 
high BMI accelerates bone loss via chronic inflammation 
and gonadal axis dysfunction [17]. This likely accounts 
for the positive contribution of the BMI score to OP in 

the SHAP analysis. Also, elevated fracture risk in T2DM 
patients despite higher BMD suggests compromised 
bone quality through microarchitectural deterioration 
and strength reduction [34].

This study presents multiple strengths, with its sam-
ple originating from a nationally representative survey 
that employs a stratified, multistage sampling strategy, 
ensuring broad applicability to the U.S. population. ML, 
compared to traditional analytical models, offers greater 
accuracy and flexibility, effectively handling complex data 

Fig. 6  CCA of the 20 features in the test set
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relationships and large datasets. The inclusion of diverse 
demographic, lifestyle, health, dietary, and laboratory 
variables, along with the validation set and bootstrap, 
enhances the model’s performance and generalizability. 
The OP diagnosis criteria comprehensively encompass 
BMD at 10 skeletal sites, fragility fracture history, and 
clinical diagnosis, yielding conclusions that more closely 
reflect real-world conditions. However, there are certain 
constraints. The study’s cross-sectional design prevents 
causal inference. Second, due to NHANES data con-
straints, the study was unable to evaluate the dynamic 
alterations in LE8 over time with OP risk. Lastly, this 
study is limited to specific national and ethnic groups, 
and due to the current lack of suitable independent exter-
nal datasets, it was unable to conduct rigorous external 
validation. This necessitates further prospective research 
to validate the model’s generalizability across different 
populations and datasets.

Conclusions
The integration of LE8 with LightGBM proves effective in 
OP analysis. This study demonstrates that comprehensive 
improvement of multiple lifestyle and physiological indi-
cators within the LE8 framework is more effective than 
single-factor interventions. Identifying the core LE8 com-
ponents strongly associated with OP provides a basis for 
prioritizing interventions. The complex non-linear asso-
ciations discovered in the study highlight the importance 

of personalized interventions tailored to individual 
thresholds. Additionally, simple indicators such as LE8 
have potential application value in primary care settings 
for screening OP and protecting bone health by promot-
ing overall CVH.
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