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Abstract

Motivation: Individualized drug response prediction is a fundamental part of personalized medi-

cine for cancer. Great effort has been made to discover biomarkers or to develop machine learning

methods for accurate drug response prediction in cancers. Incorporating prior knowledge of bio-

logical systems into these methods is a promising avenue to improve prediction performance.

High-throughput cell line assays of drug-induced transcriptomic perturbation effects are a prior

knowledge that has not been fully incorporated into a drug response prediction model yet.

Results: We introduce a unified probabilistic approach, Drug Response Variational Autoencoder

(Dr.VAE), that simultaneously models both drug response in terms of viability and transcriptomic

perturbations. Dr.VAE is a deep generative model based on variational autoencoders. Our experi-

mental results showed Dr.VAE to do as well or outperform standard classification methods for 23

out of 26 tested Food and Drug Administration-approved drugs. In a series of ablation experiments

we showed that the observed improvement of Dr.VAE can be credited to the incorporation of drug-

induced perturbation effects with joint modeling of treatment sensitivity.

Availability and implementation: Processed data and software implementation using PyTorch

(Paszke et al., 2017) are available at: https://github.com/rampasek/DrVAE.

Contact: rampasek@cs.toronto.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Personalized drug response prediction promises to improve the ther-

apy response rate in life-threatening diseases, such as cancer. There

are two main impediments that make the task of drug response pre-

diction highly challenging. First, the space of all possible treatments

and their combinations for a given condition is prohibitively large to

be explored exhaustively in clinical settings, drastically limiting the

sample size for many therapies and tissues of interest. Second, cancer

heterogeneity among patients is very high, reducing the statistical

power of biomarker detection. These two conditions make it hard to

characterize the genotype-to-phenotype landscape comprehensively

making it difficult to accurately stratify drug treatment options for a

particular cancer patient. To fulfill the promise of precision medi-

cine, we need predictive models that can take advantage of heteroge-

neous, sparsely sampled data and data generated from pre-clinical

model systems, such as cancer cell lines, to improve our prediction

ability.

In the last decade there have been several public releases of large-

scale drug screens in cancer cell lines. The greatest advantage of cell

lines is their potential for high-throughput experiments as it is pos-

sible to screen cell lines against thousands of chemical compounds,

VC The Author(s) 2019. Published by Oxford University Press. 3743

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(19), 2019, 3743–3751

doi: 10.1093/bioinformatics/btz158

Advance Access Publication Date: 8 March 2019

Original Paper

http://orcid.org/0000-0001-7527-1196
http://orcid.org/0000-0001-9395-8450
http://orcid.org/0000-0002-7684-0079
http://orcid.org/0000-0002-2416-833X
https://github.com/rampasek/DrVAE
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz158#supplementary-data
https://academic.oup.com/


both clinically-approved and experimental. This screening task was

undertaken by several large consortia and pharmaceutical compa-

nies resulting in large, valuable public data resources (Barretina

et al., 2012; Garnett et al., 2012; Haverty et al., 2016; Rees et al.,

2016; Reinhold et al., 2012; Yang et al., 2013). The availability of

these large cancer cell line datasets spurred the development of pre-

dictive models (Azuaje, 2017; Azuaje et al., 2017; Lee et al., 2018;

Papillon-Cavanagh et al., 2013; Safikhani et al., 2017; Tan et al.,

2018; Wang et al., 2017; Zhang et al., 2015, 2018) and computa-

tional challenge-based competitions (Costello et al., 2014; Menden

et al., 2018).

Papillon-Cavanagh et al. (2013) compared five feature selection

approaches combined with linear regression modeling using the

Genomics of Drug Sensitivity (Garnett et al., 2012) dataset as train-

ing set and the Cancer Cell Line Encyclopedia (Barretina et al.,

2012) as independent validation set. They identified univariate and

elastic net as the most robust approaches to develop predictors of

drug response. They further improved their initial results by devel-

oping the minimum Redundancy, Maximum Relevance Ensemble

feature selection (De Jay et al., 2013). Jang et al. (2014), in a large

methods evaluation effort, compared seven standard machine learn-

ing approaches, such as (sparse) linear models, random forest and

support vector machines, for drug response prediction in the same

Genomics of Drug Sensitivity and Cancer Cell Line Encyclopedia

datasets. Their study identified ridge and elastic net regressions as

the best performers. They and several other studies (Costello et al.,

2014; Stetson et al., 2014), evaluated leveraging multi-omic data to

enhance response predictors, generally demonstrating potential for

performance improvement, but identifying gene expression as the

single most informative data modality. Further, significant research

has been done to explore ways to increase predictive power by add-

itionally incorporating chemical features of drug compounds

(Menden et al., 2013; Wang et al., 2017; Zhang et al., 2015, 2018),

or prior knowledge such as drug targets or biological networks

(Azuaje et al., 2017; Lee et al., 2018).

Particularly influential has been the NCI-DREAM drug predic-

tion challenge, presented in Costello et al. (2014). This challenge

had 44 competing methodological submissions, categorized into six

major methodological types. Their post-competition analysis

revealed two particular trends among the most successful methods,

the ability to model non-linear relationships between data and out-

comes, and incorporating prior knowledge such as biological path-

ways. The winner of this challenge incorporated these approaches

together with multi-drug learning by developing Bayesian multitask

multiple kernel learning method (Costello et al., 2014).

Complementary to large-scale cell line viability screens, the

National Institutes of Health Library of Integrated Network-based

Cellular Signatures (NIH LINCS) Connectivity Map (CMap)

(Subramanian et al., 2017) project measured the transcriptional per-

turbations induced by over 20 000 chemical compounds by profiling

1000 landmark genes in a set of 77 human cell lines before and after

short-term drug treatment. These case-control matched experiments

show how the expression of these genes changed in response to drug

treatment at various concentration levels, typically after 6 or 24 h

treatment duration. The set of drug-induced up- and down-

regulation signatures is referred to as a drug perturbation signature

(Smirnov et al., 2015; Subramanian et al., 2017). Combining re-

sponse and perturbation data is expected to ultimately yield a better

and more biologically relevant model of drug response (Niepel et al.,

2017; Subramanian et al., 2017).

Previous work by Niepel et al. (2017) studied transcriptomic per-

turbations of six breast cancer cell lines, from an initial CMap

release, in combination with phenotypic drug response measure-

ments to determine whether cell lines that have similar phenotypic

drug response also share common patterns in drug-induced gene ex-

pression perturbation. Their analysis concluded that this is the case

for some drugs (inhibitors of cell-cycle kinases), but for other drugs

the molecular response was cell-type specific, and for some drug-cell

line combinations a significant transcription perturbation had no

measurable impact on cell growth. These results motivated us to de-

velop a unified method that could identify more complex associa-

tions of molecular perturbations and phenotypic responses that are

potentially unique to a cell line subgroup.

The drug response prediction problem suffers from a high

feature-to-sample ratio, where only a limited number of samples are

available compared to the large number of measured molecular fea-

tures (e.g. gene expression levels for thousands of genes). One way

to alleviate this hindrance is to find a reduced representation of the

original data that captures the essential information needed for the

prediction task. Here, we take the approach of semi-supervised gen-

erative modeling based on variational autoencoders (VAE) (Kingma

and Welling, 2014) that present a way to model complex condition-

al distributions. Way and Greene (2018) have shown that VAE can

extract biologically meaningful representation of cancer transcrip-

tomic profiles, while Dincer et al. (2018) combined a pre-trained

VAE and a separately trained linear model in a drug response predic-

tion method named DeepProfile. Contrary to Dincer et al. (2018)

we aim to jointly learn a latent embedding that improves our ability

to predict drug response (phenotypic outcome), while leveraging the

originally unsupervised (unknown phenotypic outcome) drug per-

turbation experiments to aid in the learning of such embedding.

We introduce Drug Response Variational Autoencoder

(Dr.VAE), a deep generative model to predict drug response from

transcriptomic perturbation signatures. Dr.VAE is a probabilistic

graphical model where each conditional distribution is computed by

a deep neural network. The model jointly learns a drug response pre-

dictor and a generative model of drug perturbation effects in a low-

dimensional latent representation of gene expression. This latent

space is defined by an encoder and decoder, both parametrized by a

neural network, that, respectively, translate to and from this latent

space. The entire model, together with neural networks for approxi-

mate inference, is optimized jointly end-to-end to maximize evi-

dence (marginal likelihood) of the observed training data. An

overview of Dr.VAE is illustrated in Figure 1.

In our results, Dr.VAE significantly outperformed classification

models typically used in the field in more than half of the tested

drugs and performed on par for most of the other drugs. We show

that the achieved improvement of Dr.VAE in drug response predic-

tion is indeed due to the joint modeling of drug response and drug-

induced perturbation effects. This result is further confirmed by

observing that even unsupervised generative modeling of gene ex-

pression and drug-induced perturbations yields a low-dimensional

representation that is better suited for subsequent training of stand-

ard classification models than the original data representation or

representation obtained by principal component analysis (PCA).

2 Materials and methods

2.1 Pharmacogenomics high-throughput cell line

datasets
We harness two principally different types of pharmacogenomics

datasets, both retrieved via PharmacoGx R package (Smirnov et al.,

2015) and PharmacoDB (Smirnov et al., 2018). First is a database of
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sensitivity of cancer cell lines to drug treatment, the Cancer

Therapeutic Response Portal (CTRPv2) (Rees et al., 2016), that pro-

vides relative viability of cell lines at various drug concentration lev-

els for combination of up to 860 cell lines and 481 drug compounds.

Sensitivity of the cell lines to a drug treatment is quantified by the

area above the dose-response curve (AAC), which was recomputed

by PharmacoGx from raw CTRPv2 experimental results. We further

binarized the continuous AAC by the waterfall method (Barretina

et al., 2012; Haibe-Kains et al., 2013), turning the sensitivity predic-

tion task into a discrete classification task.

Secondly, we utilized the NIH LINCS Consortium CMap pro-

ject. The recently extended CMap, termed CMap-L1000v1

(Subramanian et al., 2017), screened perturbation effects of 19 811

drug compounds on gene expression of L1000 landmark genes in up

to 77 cell lines. Experiments in CMap-L1000v1 do not measure the

drug treatment sensitivity, however some of the cell lines were inde-

pendently tested in CTRPv2 as well. We cross-referenced these cell

lines and assigned the corresponding label to their perturbation

measurements.

From the CMap-L1000v1 dataset, we used the level 3 data, i.e.

the quantile normalized gene expression of 978 landmark genes

measured on Luminex based L1000 platform shown to be consistent

with gene expression measured by RNAseq (Safikhani et al., 2016;

Subramanian et al., 2017). From the available set of experimental

conditions, we selected perturbation experiments with duration of

6 h conducted at the most common concentration level for each par-

ticular drug. That is, a concentration level that most cell lines were

measured at for that drug. In case a cell line was not tested at the

chosen concentration, we used the closest tested concentration.

Next, we matched controls (DMSO vehicle) experiments to the drug

perturbation experiments by the batch ID and bead ID, to minimize

batch effects between the cases and controls. Further, we filtered the

selected case-control pairs by correlation (>0.75 Pearson q) to filter

out possibly mislabeled experiments or outliers.

CTRPv2 and CMap-L1000v1 datasets had 973 common genes.

We standardized the expression values to zero mean and unit vari-

ance within each gene. For further homogenization, including batch

effect removal and differences between two incorporated data sour-

ces, we also removed the first principal component (explaining

12.8% of variation) from the pooled dataset.

We selected 26 drugs tested in both CTRPv2 and CMap-

L1000v1 datasets based on two simple criteria: (i) for each selected

drug at least eight distinct cell lines were tested in CMap-L1000v1

perturbation experiments; and (ii) at least 20% of screened cell lines

in CTRPv2 were sensitive to the drug after binarization of dose-

response AAC. The dataset summary is detailed in Supplementary

Table S6.

2.2 Dr.VAE
We present Dr.VAE, a new machine learning model based on a

semi-supervised generative model. Dr.VAE learns a latent embed-

ding of the gene expression. The latent embedding takes advantage

of both cell line viability experiments that measure drug response

outcome directly and, at the same time, the drug-induced transcrip-

tion change, which in our case is modeled as a linear function in this

latent space. This is achieved via joint training of the model on (i)

‘perturbation pairs’ ½x1; x2� of pre-treatment (control) and post-

treatment gene expression (outcome label y is only observed for

some pairs) and (ii) ‘singletons’ of pre-treatment gene expression

with no known post-treatment expression. Most of the outcome y

labeled data are in the latter category. We model the drug perturb-

ation effects with a single step latent time series model, similar to

Deep Kalman Filter (Krishnan et al., 2017) and structured graphical

models with amortized inference (Johnson et al., 2016). The graph-

ical representation of Dr.VAE model is shown in Figure 2.

Formally, Drug Response VAE models a joint distribution

pðx1; x2; z1; z2; z3; yÞ of pre-treatment and post-treatment gene ex-

pression x1; x2, their latent embedding z1; z2, response class y, and

class-independent latent representation of the pre-treatment expres-

sion z3. Factorization of this joint probability distribution is

depicted in Figure 2a (solid edges) and is as follows:

pðx1; x2; z1; z2; z3; yÞ ¼ (1)

pðx1jz1Þ � pðx2jz2Þ � pðz2jz1Þ � pðz1jz3; yÞ � pðz3Þ � pðyÞ

Individual conditional generative distributions pð�Þ of Dr.VAE

take the form of diagonal multivariate Gaussian distributions, while

pðyÞ is a uniform categorical prior over the binary response y and

prior pðz3Þ is a unit Gaussian Nð0; IÞ. The conditional distributions

are parametrized by neural networks with a set of parameters h,

analogously to a VAE (Kingma and Welling, 2014; Rezende et al.,

2014). We want to model all gene expression measurements in a sin-

gle latent space, thus the pre- and post-treatment gene expression

have to be embedded into a common latent space. This is achieved

by sharing the ‘data decoder’ phðxkjzkÞ for both k 2 f1; 2g.
Additionally, we constrain the mean function of the perturbation

phðz2jz1Þ to be a linear function z1 þWz1 þ b. Here, the W and b

are initialized close to zero, such that phðz2jz1Þ starts as an identity

function in the beginning of optimization process.

In order to train and use our model, we need to be able to per-

form efficient inference of the hidden variables from the observed

variables. We turn to stochastic variational inference and introduce

an approximation q to the true posterior. We assume this approxi-

mate posterior q to factorize as shown in Figure 2a (dashed edges).

Akin to generative distributions p introduced above, the variational

distributions are diagonal multivariate Gaussian distributions, with

Fig. 1. An overview of Dr.VAE prediction process. In training, Dr.VAE learns a

drug response classifier jointly with a latent representation of pre-treatment

gene expression and its drug-induced change. To make a prediction, we first

embed the pre-treatment gene expression x1, and then, from this latent repre-

sentation z1 we predict latent representation of post-treatment state z2. Based

on both z1 and z2, a logistic regression classifier predicts the probability of

positive response. Additionally, we can decode the predicted post-treatment

latent representation z2 to the gene expression data space, but this is not

required for drug response classification
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exception of q/ðyjz1; z2Þ, parametrized by neural networks with a

set of parameters /. The ‘data encoder’ q/ðzkjxkÞ, detailed in

Figure 2d, is shared between pre- and post-treatment for the same

reason the data decoder is shared. The classification posterior

q/ðyjz1; z2Þ is a categorical distribution parametrized by a linear

function with soft-max activation over two output units. In our im-

plementation, we use the latent embedding of pre-treatment state

and the predicted perturbation difference ½z1; z2 � z1� instead of

½z1; z2� as the classifier input. We found that this slightly improves

the performance.

Ideally we would want to fit the h and / parameters to maximize

the evidence (marginal likelihood) of the observed data, which is a

difficult task and subject to active research in the area of stochastic

inference. However, following Kingma et al. (2014); Kingma and

Welling (2014) and Louizos et al. (2015) we can derive a lower

bound on the evidence of each set of observed variables. We have

four different sets of observed variables that correspond to four dif-

ferent types of data we want to fit Dr.VAE to. Therefore there are

four different evidence lower bounds for us to optimize:

labeled perturbation pairs LP :
X
LLPðx1;x2; y; h;/Þ (2)

unlabeled perturbation pairs UP :
X
LUPðx1; x2; h;/Þ (3)

labeled pre-treatment singletons LS :
X
LLSðx1; y; h;/Þ (4)

unlabeled pre-treatment singletons US :
X
LUSðx1; h;/Þ: (5)

The sum of these four specific evidence lower bounds, ELBODrVAE,

is the evidence lower bound we need to maximize. Moreover, we

need to explicitly introduce cross-entropy loss of the predictive pos-

terior log q/ðyjz1; z2Þ so that it is trained on labeled data as well.

Analogous to semi-supervised variational autoencoder (SSVAE)

(Kingma et al., 2014), this explicit loss is required since in the

labeled data the random variable y is observed and therefore the

lower bounds LLP and LLS are conditioned on y and do not contrib-

ute to fitting of q/ðyjz1; z2Þ. Using the reparameterization trick

(Kingma and Welling, 2014) it is possible to backpropagate through

the final objective and jointly optimize parameters of all ph and q/

distributions by gradient decent. In our implementation, we com-

pute the parameter updates by Adam (Kingma and Ba, 2015) for

both h and / parameters. Derivation of the final objective function

is presented in Supplementary Material.

Detailed Dr.VAE architecture is shown in Figure 2b–d.

Throughout the model, we used ELU activation function (Clevert

et al., 2015) as the non-linearity of our choice.

2.3 Perturbation variational autoencoder
We specifically denote the part of Dr.VAE that models drug-induced

gene expression perturbations as the Perturbation Variational

Autoencoder (PertVAE). PertVAE is an unsupervised model,

depicted in Figure 2f, which we use to study the contribution of

drug effect modeling on learned latent gene expression representa-

tion. We parameterize the PertVAE the same way as analogous parts

in Dr.VAE. Detailed derivation of PertVAE is presented in

Supplementary Material.

3 Results

We evaluated our drug response prediction method, Dr.VAE, on 26

Food and Drug Administration-approved drug compounds selected

from the intersection of two independent in vitro drug screening

studies: (i) the CTRPv2 (Rees et al., 2016) where viability of up to

855 cell lines was measured in response to drug treatment, and

(ii) drug-induced transcriptomic perturbations, assayed by NIH

(a) (b) (c)

(d) (e) (f)

Fig. 2. Dr.VAE model and its derivatives. (a) Factorization of the generative distribution p (solid edges) and of the approximate posterior q (dashed edges). In case

the post-treatment gene expression x2 is not observed, we use the expected posterior Eq/ðz1 jx1 Þ½phðz2jz1Þ� for z2 instead. (b, c) Hyperparameters of the generative

and inference model, respectively. Node labels show dimensionality of the corresponding random variables, while edge labels show architecture of the

encoders/decoders between the respective random variables. Note, that the ‘data decoder’ phðxk jzk Þ is shared for both k 2 f1; 2g and so is the ‘data encoder’

q/ðzk jxk Þ. (d) Detailed depiction of data-to-latent-space encoder q/ðzk jxk Þ and of the reparameterization trick. (e) Factorization of SSVAE model (Kingma et al.,

2014), we set the hyperparameters of generative and inference distributions equivalently to the analogous distributions in Dr.VAE as shown in (b, c, d).

(f) Factorization of PertVAE model, we set the hyperparameters of generative and inference distributions equivalently to the analogous distributions in Dr.VAE

(b, c, d)
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LINCS Consortium CMap project (CMap-L1000v1) (Subramanian

et al., 2017), in up to 60 different cell lines for the selected set of

drugs.

We compared Dr.VAE to ridge logistic regression (RidgeLR),

random forest (RForest) with 100 trees, and support vector machine

with a radial basis function kernel (SVMrbf) applied directly to gene

expression and also transformed through dimensionality reduction.

We used the implementation of these methods as available in the

scikit-learn library (Pedregosa et al., 2011). For each drug, the best

regularization parameter of RidgeLR was found in cross-validation.

To assess the impact of drug-induced perturbations on the drug re-

sponse prediction task we also compared Dr.VAE to SSVAE

(Kingma et al., 2014) where the focus is on classification using solely

pre-treatment gene expression. SSVAE does not include any infor-

mation of drug-induced transcriptomic perturbations. All evaluated

models were fit independently to each of the 26 drugs, reusing the

same deep learning architecture. We assessed the performance of the

classifiers using the area under the ROC curve (AUROC) and the

precision recall curve (AUPR) (presented in Supplementary

Material).

We generated 100 train-validation-test data splits by performing

repeated 5-fold cross-validation 20-times. The perturbation data from

CMap-L1000v1 were split based on cell line identifiers so that all

measurements pertaining to one cell line were assigned to one fold.

The CTRPv2 sensitivity data were split such that the ratio of

responders/non-responders was approximately equal in each fold, ex-

cept cell lines that are in the intersection of CTRPv2 and CMap-

L1000v1, which were assigned to their corresponding CMap-

L1000v1 folds. The CMap-L1000v1 folds were pooled into training

and validation splits only, as for some drugs the availability of perturb-

ation experiments was limited to only as few as eight cell lines.

Therefore test splits consisted exclusively of data from CTRPv2 that

had no known post-treatment gene expression. This way Dr.VAE is

most fairly evaluated against methods that cannot model perturbation

effects, which is the typical scenario when response prediction has to

be made solely based on pre-treatment features. During training of

Dr.VAE and SSVAE models, a validation fold was used for early stop-

ping and selection of classification loss weight. All compared methods

were trained and evaluated on the same 100 train-validation-test data

splits.

3.1 Drug response prediction from expression of L1000

genes
We jointly trained Dr.VAE on both CTRPv2 cell line sensitivity

dataset and CMap-L1000v1 6 h-long perturbations and compared

the performance to three established baseline classification models.

Each model was trained on the expression of 973 genes that form

the intersection of genes measured by the L1000 platform in CMap

and RNAseq in CTRPv2. For a fair comparison, the baseline classi-

fiers were trained on the very same data splits as Dr.VAE, consisting

of CTRPv2 and CMap pre-treatment (control) experiments.

Following the random variable notation from our Dr.VAE model,

Figures 1 and 2, these data correspond to x1.

Dr.VAE outperforms all three baseline classifiers for at least 14

out of 26 (53.8%) tested drugs, and performs with no statistically

significant difference on nine drugs. On only 3 out of 26 (11.5%)

drugs the baseline models performed better than Dr.VAE, Figures 3

and 4. The presented comparisons are based on one-sided Wilcoxon

Signed-Rank Test (P-value <0.05) over 100 data splits. Detailed

performance of all models applied to each individual drug is pre-

sented in Supplementary Table S1, the corresponding P-values are

Fig. 3. Summarized classification results. (a) AUROC of Dr.VAE and baseline

methods. Shown is average over 26 drugs, each evaluated in 100 train-valid-

ation-test splits. (b) Dr.VAE is comparable or better than any other baseline

for >80% of the drugs (P-value <0.05 Wilcoxon test)

Fig. 4. All to all comparison of tested methods. For each method, there is a

row showing the count of 26 drugs for which this method significantly outper-

forms the other methods corresponding to individual columns. The compari-

son is based on test AUROC performance in 100 train-validation-test splits.

Statistical significance of observed differences in test performance for any

two methods was tested by one-sided Wilcoxon Signed-Rank Test (P-value

<0.05). The heatmap color is normalized within each column, emphasizing

methods that are the best contenders compared to the method correspond-

ing to that column
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shown in Supplementary Table S2. Results in terms of the AUPR fol-

low a similar pattern (Supplementary Material).

For bortezomib, niclosamide, paclitaxel, decitabine and clofara-

bine, cancer drugs with no established univariate biomarkers of re-

sponse, Dr.VAE improved response prediction over every standard

classification method by at least 1% and up to 4.4% of AUROC,

while AUPR improved by at least 0.7% and up to 4.8%. We have

observed the best improvement over RidgeLR for mitomycin and

sirolimus with 5.7 and 3.9% AUROC improvement, respectively.

Sirolimus inhibits the activation of a key regulatory kinase, the

mammalian Target Of Rapamycin (mTOR). As showed in Niepel

et al. (2017), perturbation effects induced by PI3K/Akt/mTOR kin-

ases are typically cell-type specific, which possibly hampers response

prediction for these drugs. In this case, Dr.VAE was able to better

stratify the response classes, improving the response prediction, par-

ticularly over RidgeLR and SVMrbf. Mitomycin, an antibiotic that

causes cross-linking of DNA and inhibition of DNA synthesis, is

used as a chemotherapy drug in the treatment of various malignant

neoplasms. Prediction of sensitivity to mitomycin treatment appears

to benefit from employing non-linear prediction models such as

RForest and SVMrbf. Dr.VAE can model non-linear relationships

and performs on par with the RForest and SVMrbf, considerably

outperforming RidgeLR.

Contrarily, in the case of fluvastatin and bosutinib, Dr.VAE

trails RidgeLR by 1.5 and 0.9% in test AUROC, repsectively.

Fluvastatin belongs to a class of drugs called statins. Statin inhibitors

are used to control hypercholesterolemia but have been indicated to

have a potential as anticancer agents as well. Sensitivity to statins is

highly dependent on strength of a feedback mechanism, the activa-

tion of which has been reported to peak at time points >8 h

post-treatment (Clendening et al., 2010). Modeling of 6 h-long per-

turbations is insufficient in this case and as such Dr.VAE did not im-

prove sensitivity prediction. Reduced performance of Dr.VAE in the

case of bosutinib is likely due to modeling of perturbations at only

the most common drug concentration level. Bosutinib is a tyrosine

kinase inhibitor, used in chronic myelogenous leukemia therapy, pri-

marily targeting Bcr-Abl kinase. Niepel et al. (2017) observed that

such inhibitors of extracellular matrix receptors and receptor tyro-

sine kinases, exhibited considerably more variance in perturbation

signatures with changing drug dose than other drugs. Since we

selected perturbation experiments at only one drug concentration

level, that with largest number of experiments, it is possible that

modeling perturbation effects at only this one concentration level is

not sufficiently informing the treatment sensitivity prediction.

3.2 Perturbation experiments improve drug response

prediction
We investigated the contribution of drug perturbation experiments

to response classification via two ablation studies. First, we com-

pared Dr.VAE to semi-supervised VAE (Kingma et al., 2014).

SSVAE was fit to the pre-treatment gene expression in cell lines

from CMap-L1000v1 and CTRPv2 without observing post-

treatment gene expression and without modeling the drug effects.

Since SSVAE is conceptually a subset of Dr.VAE’s architecture, we

used the same hyperparameters for the corresponding encoders/

decoders as in Dr.VAE, Figure 2e. SSVAE outperforms baseline

methods according to AUROC but is not as good as Dr.VAE.

Dr.VAE achieves significantly better test AUROC than SSVAE on 9

out of 26 (34.6%) drugs (P-value <0.05) with no statistically signifi-

cant difference on 16 drugs (61.5%) and only for one drug (vincris-

tine) SSVAE outperforms Dr.VAE, Figure 3.

To evaluate the contribution of the perturbation function to the

classification performance, we modified each trained Dr.VAE in-

stance by replacing the learned drug perturbation function with an

identity function (denoted as ‘Dr.VAE w/I’) without retraining the

rest of the model. The modified ‘Dr.VAE w/I’ achieves AUROC

close to Dr.VAE, however slightly worse in absolute value over the

26 drugs. For 16 drugs Dr.VAE has significantly better performance

than Dr.VAE w/I and for 10 drugs there was no significant differ-

ence, showing that while functions more complex than identity may

be able to learn from the perturbation data, more drug perturbation

data are required to substantially improve response prediction for

many drugs.

Our results show that Dr.VAE improves drug response classifica-

tion performance thanks to modeling of drug perturbation pairs. As

our second set of experiments show, the learned perturbation func-

tion contributes to better classification. However, most of the

observed improvement appears to stem from more informative la-

tent gene expression representation, that, compared to SSVAE, is

learned by joint modeling of drug perturbations as well as sensitivity

response. The superior performance of Dr.VAE w/I compared to

SSVAE is a testament to that effect.

3.3 The importance of dimensionality reduction
Dr.VAE and SSVAE learn a lower dimensional latent representation

of the data and the classifier jointly. To understand the importance

of the joint optimization, we also explored a learning paradigm

where we first optimize the latent representation in an unsupervised

fashion and only then train a classifier using the already learned

embedding. To this end we performed two sets of experiments.

First, we evaluated dimensionality reduction by PCA. PCA projects

the data into a space given by orthogonal vectors called principal

components that are selected in the order of largest possible variance

they account for in the data. We chose to represent the CTRPv2 and

CMap-L1000v1 pre-treatment gene expression of L1000 genes in

terms of their first 100 principal components that we estimated on

each training data fold. Second, we trained just the perturbation

part of Dr.VAE, which we denote as PertVAE, to assess dimension-

ality reduction using a deep generative model. PertVAE is an un-

supervised model that does not model drug response outcomes.

Instead it learns to model drug perturbation effects from the

perturbation pairs, Figure 2f. We then used the mean of the

100-dimensional latent embedding z1 of the pre-treatment gene ex-

pression as the reduced representation for subsequent fitting of

standard classifiers.

Both PCA and PertVAE were fit on each training data fold and

the learned projections then applied to test data fold. We used the

same 100 train-validation-test splits as in the previous experiments,

thus the classification test results can be mutually compared by

Wilcoxon Signed-Rank Test with the above mentioned Dr.VAE and

multiple baseline results, Figures 3b and 4. In terms of mean

AUROC, Figure 3a, and mean AUPR, Supplementary Figure S1, all

three standard classifiers perform better when fit on the PertVAE

embedding z1 than when fit on the PCA projection onto the first

100 principal components. In the case of both of these reduced rep-

resentations, notable is the improvement of the RidgeLR classifier

that performs better than when trained directly on expression of the

L1000 genes. These two methods, together with SVMrbf trained on

the PertVAE z1 embedding, achieve the most competitive results,

nearly equal to SSVAE. However, our Dr.VAE model that combines

PertVAE and a drug response classifier in an end-to-end fashion

delivers the best overall classification performance, accomplishing
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statistically better or equivalent AUROC for at least 21 out of 26

drugs (80.8%) than any other evaluated method.

3.4 Modeling of drug perturbation effects
We have shown that Dr.VAE can distill useful information from

drug perturbation experiments to improve cell line response classifi-

cation. We seek to investigate how well Dr.VAE model can predict

the actual post-treatment gene expression levels. In the following set

of experiments we assessed how well Dr.VAE can predict the post-

treatment expression in the latent space, corresponding to random

variable z2, as well as in the gene space, which corresponds to x2.

Particularly, we computed the expected root mean square error

(RMSE) of Dr.VAE predictions over z2 and x2 when computed from

pre-treatment x1 compared to the expected embedding z2 computed

from post-treatment x2 and the true observed x2, respectively.

Furthermore, we compared how the RMSE of Dr.VAE predictions

improved over the ‘Dr.VAE w/I’ baseline model where we replaced

the learned perturbation function by an identity function (as intro-

duced previously). On training data, Dr.VAE predicted the mean of

z2 with RMSE 10.5% lower compared to Dr.VAE w/I, yet on valid-

ation data it was 9.6% worse on average across all 26 drugs. This

result shows that Dr.VAE, while being primarily optimized for drug

response classification, learns to partially model drug perturbation

effects, but on average, suffers from data limitations and overfitting.

To elucidate the connection between Dr.VAE performance and lim-

itations of available perturbation experiments, we computed the correl-

ation of Dr.VAE z2 prediction improvement over Dr.VAE w/I across

the set of 26 drugs with three data statistics: (i) effect-to-replicate vari-

ance ratio (ERVR) in CMap-L1000v1 perturbation experiments, (ii)

number of unique cell lines tested for a given drug in CMap-L1000v1

and (iii) the product of the previous two. The computed Pearson corre-

lations are shown in Table 1. The ability of Dr.VAE to generalize from

the training to validation set correlates with both the strength of the

perturbation signal in the data (quantified as ERVR) and the dataset

size, yet the strongest is correlation with the product of these two varia-

bles, q ¼ 0:814 (P-value 4:35� 10�7). The computation of ERVR

measure is described in Supplementary Material.

For prediction of post-treatment gene expression x2 we observed

an analogous conclusion to prediction of its latent representation z2.

The detailed results are shown in Supplementary Table S7. We con-

clude that there are presently data limitations (number and noise/

signal resolution of drug perturbation experiments) for generalizable

post-treatment gene expression prediction yet, as shown above, we

can still distill information that improves drug response

classification.

Lastly, we investigated whether there is a correlation between

classification performance improvement of Dr.VAE over SSVAE,

which does not model perturbation effects, and the ability of

Dr.VAE to generalize post-treatment gene expression prediction to

validation set. We found weak correlation between the classification

improvement in terms of both AUROC (Pearson q ¼ 0:293; P-value

0.147), and AUPR (Pearson q ¼ 0:199; P-value 0.329). These results

suggest that Dr.VAE tends to improve over SSVAE for the drugs

Dr.VAE manages to model the transcriptomic perturbations induced

by the drug compound.

4 Discussion

We developed Dr.VAE, the first unified machine learning method

for drug response prediction that enables semi-supervised learning

and successfully leverages prior information in the form of drug-

induced transcriptomic perturbations. Our approach follows several

previously identified trends for improved drug response prediction

(Costello et al., 2014), as we can model non-linearities in the data

and incorporate prior knowledge.

Typical discriminative feedforward neural networks do not fare

well in drug response prediction, most likely because of the

data limitation (number of features versus number of samples).

We showed that joint generative modeling of drug response and per-

turbation effects alleviates this to a significant extent, possibly acting

as an effective regularization and robust feature extraction that does

not overfit the way discriminative neural networks do.

We tested 26 Food and Drug Administration-approved drug com-

pounds for which both perturbation and drug response experimental

data were available. Our experiments showed that for those drugs

that have sufficient data to capture the variation and effect on gene ex-

pression, incorporating those effects yields a significant improvement

over logistic regression, random forest and support vector machines.

Dr.VAE significantly outperformed these models in more than half of

the tested drugs and performed on par in other cases. Through a series

of experiments, we showed that the observed improvement of

Dr.VAE in drug response prediction can be credited to its joint model-

ing of both response and drug-induced perturbation effects.

Our study has several potential limitations. First, we considered

only the gene expression modality, as it has been consistently shown

to provide the most predictive power in multiple previous studies on

drug response (Costello et al., 2014; Jang et al., 2014). There is

accumulating evidence, however, that multi-omic predictors that

additionally integrate methylation, copy number variation, muta-

tional status or proteomic data can achieve improved prediction per-

formance. It is relatively straightforward to extend Dr.VAE, thanks

to the stochastic variational inference approach we adopted.

Categorical or Poisson likelihood functions can be used to model

discrete (mutational status) or count (CNVs) data types, respective-

ly, in addition to the Gaussian likelihood we used to model continu-

ous gene expression. We caution however, that inclusion of

additional features accentuates the already unfavorable ratio of the

number of features to the number of available training examples,

which could prove, and indeed has been, problematic for any

method, including ours.

Table 1. The ability of Dr.VAE to model post-treatment gene ex-

pression correlates with signal/noise ratio and quantity of perturb-

ation experiments

D RMSE

evaluated on

dataset property correlated to q P-value

z2 Effect/rep. variance ratio (ERVR) 0.66 2:4� 10�4

x2 ERVR 0.72 4:0� 10�5

z2 Num. unique CLs in CMap (NCL) 0.71 4:2� 10�5

x2 NCL 0.52 6:4� 10�3

z2 ERVR * NCL 0.81 4:4� 10�7

x2 ERVR * NCL 0.73 2:6� 10�5

x2 Dr.VAE-SSVAE [AUROC] 0.29 0.15

x2 Dr.VAE-SSVAE [AUPR] 0.20 0.33

Note: We computed D RMSE improvement of Dr.VAE in post-treatment ex-

pression prediction over Dr.VAE w/I, averaged over validation data splits, and

correlated it to overall CMap-L1000v1 dataset statistics. The Pearson correl-

ation was computed for prediction D improvement of both post-treatment gene

expression x2 and its latent representation z2. Additionally we include correl-

ation with difference in Dr.VAE and SSVAE classification performance.
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Second, we modeled CMap-L1000v1 perturbations after 6 h of

treatment duration at the most common concentration level for each

drug. That allowed us to pool the largest possible number of experi-

ments tested under consistent experimental settings. It can be argued

that 6 h is too short for many feedback regulatory mechanisms to

manifest themselves and as such these experiments alone do not pro-

vide complete picture of the transcriptomic response. Notably, drug-

cell line viability assays are typically done with longer treatment dur-

ation, such as 72 h. This is the case for a statin inhibitor fluvastatin,

as we observed in out experiments. Thus we also trained our Dr.VAE

with 24 h perturbation experiments, however, potentially because of

the limited number of such experiments, this did not improve our pre-

diction performance. A potential future improvement to our method

could be an extension which leverages all available perturbation

experiments of various durations and drug concentrations.

Every conditional distribution that Dr.VAE is composed of is

parameterized by a neural network. The ability to adjust hyperpara-

meters to match complexity of the data makes Dr.VAE a very flex-

ible model. Since we opted for simplicity, most of our neural

networks have one hidden layer, while the classification posterior

and perturbation function are linear. As more data become available

we will be able to take full advantage of the new methodological

developments in the generative deep learning field, further improv-

ing the performance of Dr.VAE and other drug response prediction

models. However so far our attempts to use deeper networks or util-

ize normalizing flows to approximate posteriors by more complex

distributions (Kingma et al., 2016; Rezende and Mohamed, 2015)

have not significantly improved the performance to justify the added

complexity.

5 Conclusion

In conclusion, we have demonstrated deep generative modeling to

be a promising methodological approach for method development

in the field of drug response prediction. In particular, this approach

has two major benefits. First, the flexibility of this paradigm allowed

us to integrate transcriptional perturbation effects into the drug re-

sponse prediction framework in a unique way. Second, all condi-

tional distributions that form our Dr.VAE model, as well as

variational posteriors used for approximate inference in Dr.VAE,

are parametrized by neural networks that can model complex non-

linear relationships. We have shown that both aspects compounded

in our Dr.VAE, which outperformed the most used methods in the

field for the majority of the evaluated drug compounds.
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