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Neurologic impairment persisting months after acute severe SARS-CoV-2 infection has been described 
because of several pathogenic mechanisms, including persistent systemic inflammation. The objective 
of this study is to analyze the selective involvement of the different cognitive domains and the 
existence of related biomarkers. Cross-sectional multicentric study of patients who survived severe 
infection with SARS-CoV-2 consecutively recruited between 90 and 120 days after hospital discharge. 
All patients underwent an exhaustive study of cognitive functions as well as plasma determination 
of pro-inflammatory, neurotrophic factors and light-chain neurofilaments. A principal component 
analysis extracted the main independent characteristics of the syndrome. 152 patients were recruited. 
The results of our study preferential involvement of episodic and working memory, executive 
functions, and attention and relatively less affectation of other cortical functions. In addition, anxiety 
and depression pictures are constant in our cohort. Several plasma chemokines concentrations were 
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elevated compared with both, a non-SARS-Cov2 infected cohort of neurological outpatients or a 
control healthy general population. Severe Covid-19 patients can develop an amnesic and dysexecutive 
syndrome with neuropsychiatric manifestations. We do not know if the deficits detected can persist in 
the long term and if this can trigger or accelerate the onset of neurodegenerative diseases.

In December 2019, a new coronavirus emerged as a pathogen in the Chinese city of Wuhan, causing severe acute 
respiratory syndrome (SARS) of high lethality1. SARS-CoV-2 spread rapidly throughout the world, and the WHO 
declared the disease caused by this global virus a pandemic in March 2020. At the time of writing this article, 
more than 304 million people worldwide had been infected with SARS-CoV-2, resulting in the death of more 
than 5.5 million individuals2. Despite the acute consequences of SARS-CoV-2 infection, patients have described 
lingering symptomatology after the infection, a condition now called Long Covid.

Both, neurological impairment and psychiatric symptoms in this disease has been proven, both in the acute 
and subacute phases3–7. There are several mechanisms by which this neurological dysfunction can occurs such 
as direct viral invasion, indirect effects of peripheral inflammation mediated by alteration in blood–brain bar-
rier (BBB) function, peripheral organ dysfunction (lung, kidney, and liver), cerebrovascular endothelial injury8,9 
and others.

Necropsic studies have proven some neuroinvasive capacity of SARS-CoV-27,10,11. This virus may enter the 
brain through three potential mechanisms: transsynaptic spread from the olfactory bulb following intranasal 
exposure, migration across the BBB through endothelial cell infection, and migration following disruption 
of the BBB from resulting inflammation12–14. Pathologic studies have found a high prevalence of SARS-CoV2 
RNA and surface protein structures in olfactory mucosa11. Further evaluation identifying surface proteins of 
SARS-CoV2 through electron microscopy documented that endothelial cells in these regions were the primary 
target of infection11.

Furthermore, the relationship between viral neuroinvasive infections and neurodegenerative diseases (NDDs) 
has been described15–19, with preferent injury to the hippocampus and other regions of the temporal and frontal 
lobes related to cognition20,21

.
Secondly, a loss of function of the BBB can occur in situations of persistent systemic inflammation such as that 

occurring in SARS-Cov2 infection, making possible for immune molecules and cells to enter the CNS22–24. BBB 
dysfunction is pathogenically related to cognitive disorders related to ageing25, and neurodegenerative diseases 
or chronic psychiatric diseases, specially depression26. Interestingly, endothelial cells are key to the functional 
integrity of the BBB, and endothelial injury is a recognized element in the pathophysiology of SARS-CoV-2 
infection11,26.

Third, peripheral tissue injury typical of serious infections, such as severe COVID-19 can generate danger-
associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs), enough for act-
ing on CNS-specific receptors, leading to microglial activation and, ultimately, pyroptosis or neuronal death of 
neuroinflammatory origin27,28. In this sense, the most relevant study on neuropathology of surviving patients 
of COVID-19 infection shows the microglial activation as one of the most important findings, especially in 
the hippocampus and brainstem, with the cognitive consequences that these findings may entail29. Moreover, a 
recent report identified the presence of serum neurofilament light chain, a marker of axonal damage, as a predic-
tor of worse clinical outcomes in acute COVID-19 patients30, supporting the notion of. COVID-19-associated 
neuronal loss.

Finally, some other mechanisms have been suggested to justify brain damage. Some authors defend the 
pathogenic role of anti-SARS-Cov2 antibodies in CSF in the genesis of encephalopathy in the absence of mark-
ers of neuroinflammation31. On the other hand, recently it has been speculated that the role that choroid plexus 
dysfunction secondary to virus infection may play in brain damage32.

Cognitive and neuropsychiatric impairment persisting months after acute SARS-CoV-2 infection has been 
described33–40. A recent meta-analysis analyzed 81 studies on cognitive function in patients surviving COVID-
19 infection showing that a fifth of these individuals exhibited cognitive impairment 12 or more weeks fol-
lowing confirmed infection35. Furthermore, in contradistinction to other persistent symptoms which may be 
self-limiting (e.g., anosmia) cognitive impairment appear to endure and may potentially worsen over time in 
susceptible individuals36. Another very recent systematic review of 39 studies showed that there are cognitive 
impairments in 15%, as well as anxiety (34%) and depression (32%) in patients with post-COVID syndrome. 
Psychiatric symptoms might be related to viral-induced neuroinflammation. In this regard, persisting changes in 
chemokines have been detected in both, mild depression41 and convalescent Covid patients42. Finally, decreased 
quality of life was reported by 57% of these patients37.

Some studies have analyzed the neuropsychological profile of the post-acute phase of COVID-19 infection. 
For example, Zhou et al.38 assessed cognitive function 3 weeks after hospital discharge of 29 patients with COVID-
19, reporting a dysfunction in the sustained attention domain and a correlation between serum C-reactive protein 
(CRP) level and reaction time.

On the other hand, an Italian study on 38 hospitalized patients for SARS-CoV-2 infection in non-intensive 
COVID units showed that 42% had a slowing of cognitive processing speed and about 20% showed long-term 
verbal and spatial memory dysfunctions five months after hospital discharge39. Some studies have shown deficits 
in more specific cognitive domains. So, Impaired executive functions were observed in 33% of severe COVID-19 
patients after hospital discharge in a pioneer French study by Helms et al.40.

However, we lack detailed studies that analyze from a more comprehensive perspective the selective involve-
ment of the different cognitive domains using specifically designed tests, it impacts on quality of life and the 
possible existence of related biomarkers, including chemokines and neurofilaments, which have been involved 
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in both, depression, and cognitive impairment. This is the goal of our study on a hospital cohort of survivors of 
a severe SARS-Cov-2 infection.

Material and methods
Design.  Cross-sectional study of consecutive patients who survived severe infection with SARS-CoV-2; The 
clinical treatment of the patients was performed according to the routine clinical care based on the criteria of the 
attending physician of each patient.

Inclusion criteria. 

•	 At least one positive PCR test (oropharyngeal swab) for SARS-CoV-2 infection.
•	 Respiratory failure with criteria for hospital admission; radiological criteria for lung disease (chest CT scan/X-

ray with bilateral ground-glass opacities).
•	 More than 90 days and less than 120 days since hospital discharge.

Exclusion criteria. 

•	 Cognitive impairment with a global deterioration scale (GDS) score of 4 or higher.
•	 Motor, sensorial, or intellectual disability or illiteracy that prevented performing neuropsychological tests.

Recruitment.  Patients were consecutively recruited from 13 neurology services in Spain during the first 
wave of pandemic through a retrospective review of patients with hospital admission for severe Covid-19. For 
comparison purposes on circulating plasma chemokines and growth factors, plasma samples from two non-
SARS-Cov-2 infected control groups were used. The first group was a cohort of neurological patients (n = 46, 
mean age 71 y.o., SD 10.1, 17 males and 29 females) 60% affected with mild cognitive impairment (Mean MOCA 
score 18.5, SD 7.6). The second control group was a healthy general population from the National ADN biobank 
of Salamanca (n = 40, mean age 52.2 y.o., SD 2.3, 20 males and 20 females). Both groups were recruited for a 
different project and its use was approved by the ethical committee of Regional University Hospital of Málaga 
(RUHM).

Study variables.  Retrospective data collected during admission period. 

•	 Clinical data: Age, sex, length of hospital stays, comorbidities, symptoms related to SARS, neurological 
symptoms during admission and anti-COVID drug treatment.

•	 Analytical data: Complete blood count, serum electrolytes, total protein, C-reactive protein, D-dimer, cre-
atine kinase (CK), lactate dehydrogenase (LDH), transaminases, blood urea nitrogen (BUN), creatinine and 
ferritin.

Data collected during the visit (90–120 days after hospital discharge). 

•	 Neuropsychological study protocol Global Cognition was studied through the Montreal Cognitive Assessment 
(MoCA) for dementia.

Memory was evaluated using the Spanish version of the California Verbal Learning Test (CVLT) also named 
Test de Aprendizaje Verbal España-Complutense (TAVEC) and Free and Cued Selective Reminding Test (FCSRT) 
for verbal episodic memory, Boston Naming Test (BNT) for denomination capacity, Rey Complex Figure Test 
(RCFT) for visuospatial episodic memory, and Digit Retention Test (DRT) of Wechsler Adult Intelligence Scale 
(WAIS) for working memory and memory reserve.

Executive function (RCFT, Trail Making Test Time B (TMT-B) and the Verbal Fluency Test (FAS)) and atten-
tion (TMT-A), were also evaluated.

Psychiatric impairment was evaluated using the State-Trait Anxiety Inventory (STAI) and Beck Depression 
Inventory II (BDI-II) tests.

All tests have been previously standardized for age, sex, and educational level for the Spanish population. Spe-
cifically, FCSRT, BNT, RCFT, FAS, DRT (verbal span) and TMT-A, and B were standardized within the framework 
of the NEURONORMA project43–46. The rest of the tests have been standardized for age, sex and education level 
when possible according with their respective published normative values: TAVEC47, MoCA48, STAI49 and BDI50.

An estimate of quality of life was made with the EuroQol 5D test (EQ-5D), also validated for Spanish 
population51.

Analytical study protocol. 

Basic screening: The same as that collected during admission.
Plasma chemokines and growth factors: MIP-1alpha/CCL3 (Macrophage inflammatory proteine-1-alpha), 
SDF-1 (Stromal cell-derived factor 1), Fractalkine/CX3CL1, Eotaxin 1, BDNF (Brain derived neurotrophic 
factor), VEGF (Vascular Endothelial Growth Factor) and MCP-1/CCL2 (Monocyte Chemotactic Protein-1) 
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levels were determined using the Luminex™ xMAP technology platform. All samples, control groups and 
COVID patients were measured in the same plates for avoiding interassay variability41.
Serum neurofilaments: Light Chain Neurofilament (NFL) levels, recently implicated in prognosis of severe 
COVID-1930, were determined using a digital enzyme immunoassay and the SIMOA HD1 Analyser platform.

Interpretation of the tests.  To reduce the impact of the absence of a cognitive function study prior to 
infection on the correct interpretation of our results, we have used tests with normative values for the Spanish 
population. To categorize each patient individual result in normal or abnormal values we used cut-off points 
stratified by age, sex, and educative level. Abnormal values were defined by ± 1 SD (± 1Z) of the mean for the 
reference group of age, sex, and educational level. This criterion was chosen instead of others, such as ± 1.5 SD, 
to increase the sensitivity of the deviation from the mean when categorizing the test results; we did not intend to 
categorize the results as “healthy” or “pathological” but simply detect deviations from normal state.

See the supplementary material for a list of the tests (Supplementary Table S2) and for an explanation of the 
protocol used for neuropsychological evaluations (Supplementary Box 1).

Statistical study.  All clinical data, laboratory variables and diagnostic tests were entered into a database for 
analysis using statistical software IBM SPSS version 21.0. For numerical data, the normality of the distribution 
of the data was determined by the Kolmogorov–Smirnov and Shapiro Wilk test. Data calculated as percentages 
were analysed using the chi-squared test. For the data expressed as the mean ± standard deviation, Student’s T 
test or the Mann–Whitney/Kruskal Wallis test were used depending on the normality of the sample. In case 
of normality of the distribution, family wise correction tests (Bonferroni) were used. When nonparametric 
Kruskal–Wallis test was used, Dunn’s test correction for multiple comparisons was used for controlling errors.

To determine the main components of our database, principal components analysis (PCA) was used; the 
analysis included quantitative variables of the neuropsychological test as well as age, length of hospital stay, and 
the analytical parameters found to be pathological during hospital admission since were considered interesting 
to define the characteristics of the syndrome. The Bartlett sphericity test and the Kayser–Meyer–Olkin (KMO) 
sample adequacy test were applied to demonstrate the adequacy of this type of analysis for our sample.

Correlations of the isolated components were analysed using Pearson’s R for continuous and normally dis-
tributed data and using Spearman’s rho for nonnormally distributed data.

Last, linear regression analysis of isolated components was performed using the score on the EQ5 quality of 
life scale as the dependent variable.

The missing data were excluded from statistical analysis except in the PCA, in which they were replaced by 
the mean.

Ethical considerations.  This study was approved by the Ethics and Clinical Research Committee of the 
RUHM (PEIBA internal code: 0894-N-20). Each participant or legal representative signed an informed consent 
form after receiving a complete description of the study and being given the opportunity to ask any questions. 
The process of obtaining informed consent adhered to the principles of the Declaration of Helsinki of the World 
Medical Association.

Results
A total of 152 patients infected with SARS-CoV-2 who met all inclusion criteria and none of the exclusion criteria 
were recruited. The group was composed of 46 patients with long-term depressive symptoms, 25 with a history 
of stroke (16 territorial and 9 lacunar), 11 with chronic anxiety symptoms, 6 with Parkinson’s disease, 6 with 
subjective memory failure (with GDS < 4), 3 with Multiple Sclerosis, 3 with non-lesional focal epilepsy, 1 with 
Guillain–Barré syndrome and 11 with another chronic neurologic conditions without dementia. In this sense, 
we must consider that our cohort is composed mainly of patients with neurological or psychiatric vulnerability 
but without cognitive impairment, as required by the inclusion criteria.

The epidemiological data, symptoms during admission and specific treatments received during admission 
are provided in Table S1.

The means for the analytical variables assessed during admission were within the normal range of our labora-
tory, except the following:

•	 D-dimer: mean value, 1266.02 ng/ml (SD: 1969);
•	 Ferritin: mean value, 703.53 mcg/l (SD: 662.22) and;
•	 C-reactive protein (CRP): mean value, 94.49 mg/l (SD: 85.45).

Compared with the values obtained during the study visit (90–120 days after hospital discharge), the ferritin 
values were found in the normal range for our laboratory, while the D-dimer (586.36 ng/ml; SD = 683.75) and 
CRP (6.47 mg/ml; SD = 16.15) values remained slightly elevated, although their values had decreased substantially.

All analytical test results are available as supplementary material to this article (Supplementary Table S3).
Table 1 provides the psychopathological evaluation data and total MoCA test score as well as the scores for 

the 7 subdomains for the sample.
Table 2 provides the results of the cognitive exhaustive evaluation test used for the sample.
Figure 1 provides the data for chemokines and growth factors in general population, mild cognitive impair-

ment control group and COVID patients.
Supplementary Table S4 provides the numerical data for chemokines, growth factors and NFL.
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Table 1.   Results of the psychopathological assessment (BDI, Stai tests) and MoCA test scores in the global 
sample. Abnormal values are considered if they are equal to or less than 1 SD below the value corresponding to 
their standardized group by age, sex and educational level.

N Average direct score (± SD) Maximum score Average scaled score N (%) ≤ 1Z

BDI 135 14.95 (± 10.73) 37 (27.40%)

STAI state 138 23.79 (± 10.98) 49 (35.56%)

STAI trait 138 24.18 (± 11.18) 41 (29.49%)

Global MoCA score 131 21.95 (± 5.70) 30 10.86 (± 8.85) 33 (25.2%)

Visuo-spatial and executive function 129 3.63 (± 1.49) 5

Animal naming 129 2.78 (± 0.53) 3

Attention 129 4.23 (± 1.66) 6

Language 129 2.07 (± 1.10) 3

Abstraction 129 1.33 (± 0.70) 2

Delayed recall 129 1.94 (± 1.69) 5

Orientation 129 5.62 (± 0.92) 6

Table 2.   Complete cognitive evaluation of the cohort.

N Average direct score (± SD) Average scaled score (± SD) Z (± SD) N (%) ≤ 1Z

TAVEC (verbal episodic memory)

TAVEC learning 118 35.91 (± 15.02)  − 0.87 (± 1.54) 49 (41.5%)

TAVEC short-term free memory 118 8.01 (± 5.55)  − 0.30 (± 1.74) 39 (33.3%)

TAVEC recall with short-term keys 118 8.77 (± 3.7)  − 0.55 (± 1.17) 41 (34.7%)

TAVEC long-term free memory 117 7.53 (± 4.2)  − 0.61 (± 1.27) 41 (35.0%)

TAVEC recall with long-term keys 117 8.77 (± 3.87)  − 0.59 (± 1.27) 45 (38.5%)

TAVEC recognition 117 13.36 (± 3.2)  − 0.26 (± 1.60) 24 (20.4%)

BNT (denomination)

BNT 141 12.30 (± 3.13) 0.06 (± 1.37) 24 (17.0%)

RCFT (visuospatial episodic memory/executive function)

RCFT time copy 123 242.11 (± 127.66) 11.67 (± 4.72) 0.56 (± 1.57) 19 (17.4%)

RCFT copy direct score 109 28.73 (± 9.42) 10.46 (± 3.51) 0.15 (± 1.17) 18 (14.7%)

RCFT memory direct score 101 11.29 (± 8.47) 8.26 (± 3.69)  − 0.58 (± 1.23) 40 (39.6%)

TMT (attention/executive function)

TMT time A (attention) 114 94.96 (± 80.83) 7.71 (± 3.7)  − 0.76 (± 1.24) 39 (34.2%)

TMT errors A 108 0.46 (± 1.23)

TMT time B (executive function) 91 182.25 (± 141.33) 8.93 (± 3.15)  − 0.36 (± 1.05) 28 (31.1%)

TMT errors B 87 1.87

PMR as Spanish version of FAS (executive function* and verbal fluency**)

FAS-P 142 10.00 (± 5.27) 8.06 (± 3.40)  − 0.48 (± 1.01) 47 (33.1%)

FAS-M 142 8.49 (± 4.92) 8.56 (± 3.53)  − 0.28 (± 1.07) 38 (26.8%)

FAS-R 142 8.43 (± 4.73) 8.44 (± 4.74)  − 0.16 (± 0.84) 30 (21.1%)

FAS animals 141 13.54 (± 5.69) 7.30 (± 3.12)  − 0.70 (± 0.96) 62 (43.7%)

FAS vegetables 142 14.00 (± 5.27) 8.63 (± 3.32)  − 0.80 (± 1.08) 69 (48.6%)

FAS kitchens 142 12.26 (± 4.45) 9.99 (± 3.61)  − 0.39 (± 1.19) 47 (33.1%)

DRT (WAIS) (working memory/memory reserve)

WAIS direct span 121 4.95 (± 7.54) 8.11 (± 3.64)  − 0.63 (± 1.21) 44 (36.7%)

WAIS reverse span 121 3.25 (± 1.38) 11.32 (± 17.26)  − 0.05 (± 1.15) 32 (26.4%)

FCSRT (verbal episodic memory)

FCSRT free memory 128 19.53 (± 9.07) 9.23 (± 3.54)  − 0.25 (± 1.18) 40 (31.25%)

FCSRT cued memory 127 17.11 (± 7.16) 32 (26.3%)

FCSRT total 127 35.76 (± 11.04) 10.17 (± 4.19) 0.06 (± 1.39) 32 (25.2%)

FCSRT delayed 127 6.74 (± 3.95) 9.10 (± 3.54)  − 0.30 (± 1.28) 39 (30.7%)

FCSRT total delayed 127 11.10 (± 4.77) 9.50 (± 4.92)  − 0.16 (± 1.64) 42 (33.1%)

Quality of life

EQ-5D 141 62.94 (± 21.84)
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For a graphical representation of the cognitive deficits detected in our sample the results are presented as a 
function of the percentage of the maximum score obtained on each test and as the total score (Fig. 2).

Principal components analysis.  To reduce the number of variables, we performed PCA, in which we 
included the following quantitative variables: age, length of stay, pathological analytical variables during admis-
sion (ferritin and D-dimer) and numerical variables corresponding to the cognitive and neuropsychiatric test 
results. Six components capable of explaining 55.34% of the variance were identified. The KMO value was 0.854, 
and the Bartlett sphericity test indicated a significance of < 0.0001, confirming the power and adequacy of the 
analysis.

The rotated components matrix and the explained variance table are provided as Supplementary Material 
(Supplementary Tables S5, S6, respectively). When a variable showed correlation with more than one Component 

Figure 1.   Plasma values of several chemokines and growth factors in control subjects (n = 45), mild cognitive 
impairment patients (MCI, n = 41) and COVID-19 patients (COVID+, n = 128) 3–4 months after hospital 
discharge. Kruskal–Wallis Analysis. *p < 0.01 versus control group. #p < 0.01 versus MCI group. Data in boxplots 
are means and 5–95 confidence intervals.
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was assigned to the one with the highest Factorial load. Factorial loads less than 0.5 were not considered. Finally, 
to choose the number of components we considered the total cumulative variance explained and their coherence 
from the clinical point of view.

After PCA, the following 6 independent components were identified as the cognitive and psychopathological 
areas affected.

Components 1 and 5.  These 2 components are grouped because they integrate variables related to episodic 
memory, that is, memory related to vital events. Component 1 includes some scores of the TAVEC test as well 
as the free memory score of the FCSRT test, which primarily evaluates episodic verbal memory. Furthermore, 
Component 5 includes the other scores for the FCSRT test (cued and delayed recall).

Impairment in episodic verbal memory was observed in 34.7% (for TAVEC short term free memory) to 38.5% 
(for TAVEC Recall with long-term keys) of our patients and constitutes a specific element of this syndrome. 
Additionally, working memory measured through the Digit Retention Test (DRT) (WAIS-IV), was affected in 
26.4–36.7% of the sample. Other types of memory such as semantic memory, explored through the BNT seem 
less affected.

Component 2.  This component includes variables related to global cognitive function and visuo-spatial abili-
ties, such as the overall MoCA score and subdomain scores, except for orientation and animal naming (which 
are integrated in Component 4), and the FCSR direct copy and memory scores, which both measure visuospatial 
and executive function.

Figure 2.   Graphical representation of the profile of the main test used in our study comparing the average vs 
maximum score.
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The mean overall MoCA score in our sample was 21.95 (± 5.70) points. Deficits were identified by low scores 
in delayed recall and, to a lesser extent, in attention, abstraction and language.

Component 3.  Component 3 includes variables related to executive functions and verbal fluency. The impair-
ment of executive functions was substantial in our patients as shown by the scores of the FAS animals (43.7% 
abnormal), FAS vegetables (48.6% abnormal) and FAS kitchen (33.1% abnormal) tests, more related to executive 
functions. We attribute this result to a failure in executive functions reinforcing the idea that frontal lobe dys-
function is frequent in post-Covid19 syndrome.

Component 4.  The component includes variables related to attention, especially TMTs A, and orientation and 
naming (subtests of the MoCA). The scores obtained were abnormal for the 34.2% of the sample for the TMTs A.

Component 6.  Depression and anxiety related variables. The BDI-II scores for our sample correspond to mild 
depression. Overall, 27.4% of patients had a BDI score equal to or greater than 20 points, which indicates a clini-
cal diagnosis of moderate or severe depression52. A total of 35.56% of the total sample had state STAI-State scores 
compatible with state anxiety.

Correlation with quality of life.  A regression analysis of the identified components was performed using 
quality of life as the dependent variable; the results are provided in Supplementary Tables S7–S9). A Durbin-
Watson test value less than 2 ensures that the factors are not autocorrelated. The result of the analysis showed that 
components 2 (global cognition/executive functions) and 6 (impairment of the neuropsychiatric area) explained 
the variable quality of life with high significance.

Plasma concentration of proinflammatory chemokines and growth factors (Fig.  1).  We 
selected five chemokines and two growth factors that have been related to neuroinflammation and cognitive 
impairment/neurodegeneration previously41,53–57. Kruskal–Wallis analysis show that the chemokines SDF-1a 
(H = 7.3. p < 0.001), MCP-1 (H = 14.1 p < 0.01) and Eotaxin-1 (H = 37.5. p < 0.001) were elevated in post-Covid 
patients, as well as the trophic factor BDNF (H = 28.7. p < 0.001), when compared with both control groups. In 
addition, Fractalkine (H = 14.0. p < 0.01), and VEGF-A (H = 11.1. p < 0.01) were elevated when compared only 
with the MCI cohort. MIP1-A was equal among groups (H = 4.9 p = 0.1, nonsignificant). These results suggest 
a pro-inflammatory chronic stated derived of severe COVID-19 disease. Remarkably, the circulating pattern 
of chemokines and growth factors in postcovid patients was found to be different of that of non-infected age-
matched patients attending the neurology department because of subjective memory deficits complaints (MCI 
cohort). Specifically, there were significant differences with higher levels of neuroinflammation markers in post-
Covid patients for all determinations except for MIP-1α.

Correlation with plasma proinflammatory factors and NFL.  To identify plasma markers that could 
potentially be related to the main components of this Syndrome, a bivariate correlation analysis was performed 
using PCA components and the values obtained for each given plasma factor. The results are shown in Table 3.

Correlation with clinical variables.  In any case, some clinical variables during admission were retro-
spectively collected such as length of hospital admission or the presence of clinical data such as fever, dyspnea, 
anorexia, consciousness impairment, seizures, or anosmia. This allowed us to make an analysis of association 
and/or correlation with the results of the neuropsychological study.

There was no correlation of the duration of admission with the global score in the MoCA or with the values 
of the 6 independent components of the PCA when we explored the correlation with the Spearman Test (non-
normal variable).

Table 3.   Bivariate correlation between identified components and chemokine levels. In all cases we expressed 
Spearson’s Rho (p). Significance values are given in italics.

Measured factor N
Component 1 
(episodic memory)

Component 2 (global 
cognition)

Component 3 
(executive functions)

Component 4 
(attention)

Component 5 
(episodic memory)

Component 6 
(depression and 
anxiety disorder)

MIP-1 (CCL3) 106 0.107 (0.276) 0.013 (0.892) 0.048 (0.64)  − 0.061 (0.535)  − 0.060 (0.538) 0.002 (0.983)

SDF-1 (CXCL12) 117 0.028 (0.763)  − 0.053 (0.571) 0.106 (0.254)  − 0.148 (0.112)  − 0.008 (0.931) 0.072 (0.440)

Fractalkine (CX3CL1) 104 0.008 (0.932)  − 0.016 (0.875)  − 0.157 (0.111)  − 0.318 (0.001)  − 0.034 (0.735)  − 0.115 (0.247)

Eotaxine (CCL11) 120 0.032 (0.729)  − 0.032 (0.726)  − 0.226 (0.013)  − 0.064 (0.486)  − 0.060 (0.516) 0.022 (0.814)

BDNF 105 0.117 (0.233) 0.050 (0.611)  − 0.213 (0.029)  − 0.024 (0.806)  − 0.157 (0.109)  − 0.149 (0.129)

VEGF 108 0.050 (0.606) 0.011 (0.910)  − 0.241 (0.012)  − 0.203 (0.035)  − 0.131 (0.178)  − 0.031 (0.754)

MCP-1 (CCL2) 116  − 0.005 (0.960)  − 0.077 (0.412)  − 0.174 (0.062)  − 0.102 (0.277) 0.017 (0.855)  − 0.128 (0.169)

NFL 58  − 0.310 (0.018)  − 0.297 (0.024)  − 0.417 (0.001) 0.101 (0.452)  − 0.049 (0.717)  − 0.079 (0.554)
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The dichotomous clinically related variables mentioned above also showed no correlation through non-
parametric test with the overall MoCA score and with the PCA components except in these cases:

•	 Anorexia was significantly correlated with Component 6 (depression/anxiety; p = 0.005).
•	 Impaired consciousness during admission was significantly correlated with the global MoCA score (p = 0.019), 

Component 2 (p = 0.033), an issue that we consider logical, given that Component 2 includes the overall 
MoCA score and Component 6 (depression/anxiety; p = 0.039).

Discussion
The results of our study show a pattern of cognitive impairment with some peculiarities. Thus, there is pref-
erential involvement of episodic memory, working memory, executive functions, attention, and relatively less 
affectation of information processing speed, denomination, verbal fluency, and other cortical functions such as 
visuo-constructive ability (Table 2, Fig. 2). In addition, the detection of psychiatric affectation such as anxiety 
and depression pictures are constant in our cohort (Table 1). So, we could therefore refer to post-covid syndrome 
as an amnesic and dysexecutive syndrome with impaired attention and affective psychiatric comorbidity. This 
pattern can be typified as suggestive of fronto-subcortical involvement, although further follow up of cases, and 
additional cohort studies are needed to fully determine this assumption.

The results of our PCA allows us to discuss some features in more detail:

1.	 Preferential involvement of episodic memory (represented by Components 1 and 5) in post-Covid syndrome. 
This is a key finding of our study. Traditionally, this type of mnemonic impairment has been related to sub-
cortical cognitive impairment and has been identified in other neuroinflammatory processes of viral origin, 
such as HIV-associated neurocognitive disorders (HANDs)20,58.

2.	 Moderate impairment of global cognition and visuo-spatial functions (Component 2): The scores of the tests 
included in this component was not very deficient. Our patients are preferably included in the spectrum 
of mild cognitive impairment (MCI) with relative respect for purely cortical functions such as visuospatial 
function.

3.	 Relevant impairment of executive functions (Component 3).These findings are consistent with published 
functional impairment data, especially in studies that evaluated brain positron emission tomography with 
fluorodeoxyglucose (FDG-PET) and demonstrated greater impairment in the amygdala, hippocampus, para-
hippocampal region and frontal lobes59–61, areas directly related to memory and executive functions.

4.	 Impairment of attention, orientation, and nomination (Component 4). This finding is commonly described 
in patients with inflammatory-based encephalopathies62,63. The two MoCA subdomains included in this 
component that were less affected: Animal naming and Orientation.

5.	 Relevant impairment of variables related to Depression and Anxiety (Component 6): The results of our study 
show that regardless of its origin, neuropsychiatric impairment is another of the essential elements of the 
syndrome.

PCA is a technique for reducing the dimensionality of datasets, increasing interpretability but at the same 
time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize 
variance. For this reason, the fact that there is an independent dimension (Component 6) that encompasses the 
variables related to the psychiatric state, guarantees that these are variables not correlated with the rest of the 
Components, which encompass variables related to cognitive function.

Cognitive impairment associated with depression is clearly seen in severe depression64. Perhaps in the sub-
group of patients in our cohort in which we found moderate or severe depression (27.4%) this finding could 
influence the results of cognitive function and thus should be interpreted. However, if we consider our entire 
cohort, the degree of depression found is mild (mean score on the BDI-II = 14.95). For this reason, the non-
existence of correlation with cognitive variables is not surprising.

Since, over the course of the pandemic, the general population has been subjected to stressors derived from 
the social and economic impacts of the virus33,65 is difficult to separate the actual contribution of the biological 
factors highlighted in this article from other environmental factors.

Some studies have shown a relationship between severity parameters during the acute phase and cogni-
tive impairment in the medium term66,67. Our series focuses on patients who have suffered severe infection. 
The inclusion criteria established the need to suffer respiratory failure with criteria for hospital admission and 
radiological data for lung disease (chest CT scan/X-ray with bilateral ground-glass opacities). From this point 
of view, the systemic involvement was quite homogeneous in our cohort. This explains that we have not found 
differences between the cognitive impairment of patients based on factors such as length of admission or other 
clinical parameters collected during admission.

Integrating all these results, we can state that the subacute neurological impairment in severe Covid-19 can be 
defined as a global cerebral condition in the spectrum of MCI, characterized by a predominant deterioration of mem-
ory (especially, episodic and working memory), executive functions, attention, and neuropsychiatric impairment.

As we mentioned in the Introduction, several studies have also analyzed the characteristics of the cognitive 
deficit detected in patients who survive infection by SARS-COV235–40. In general, these studies suffer from a lack 
of systematization of the neuropsychological analysis carried out. A systematic review that included 12 studies 
with a total patient sample of near 1000 people show us that patients with recent SARS-CoV-2 infection appears 
to experience global cognitive impairment and selective deficits in memory, attention, and executive function, 
and in particular verbal fluency68. These results are consistent with ours. Nevertheless, the authors of this review 
conclude that novel studies with larger sample and more comprehensive cognitive analysis are needed.
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Our results identify a pattern of subcortical deterioration with similarities to that described in cerebral 
small-vessel diseases with the predominant endothelial injury69,70. There are also semiological parallels with 
neuroinflammation-based encephalopathies63,71,72. Among the plasma factors studied herein, some, such as CRP 
and NFL, are correlated with endothelial injury73.

Although our cohort is quite homogeneous, it could be hypothesized whether there could be different mani-
festations based on the previous existence of a situation of greater cognitive or psychiatric vulnerability. To test 
this possibility, we performed a post-hoc analysis dividing the sample into patients with a history of neurological 
or psychiatric disease versus those who did not. The results showed that there were no differences between these 
subgroups, thus highlighting the homogeneous nature of our results. We present these data as supplementary 
material (Tables S10–S13).

Quality of life was directly correlated with the main components that measure global cognitive function, 
and neuropsychiatric impairment; in the latter case, there was an inverse correlation with high trait anxiety and 
state anxiety scores and depression. We propose that impairment in these domains most determine the quality 
of life of our patients.

Interestingly, the analysis of circulating chemokines and growth factors suggest that 3 months after discharge, 
COVID-19 patients have a persistent neuroinflammatory state. This activation appears to be derived only of the 
infection by SARS-Cov-2, and not being associated to age-associated cognitive impairment, since patients with 
MCI not infected displayed a clearly different set of plasma chemokine concentrations. The contribution of this 
chemokine-based inflammatory state can be linked to the presence of psychiatric disorders, specially depression. 
A recent work41 in mild depression in primary care setting suggested that chemokines such as SDF-1, MCP-1 
and fractalkine are associated to a higher punctuation on the BDI scale, a finding that replicates for those three 
chemokines in our cohort of COVID-19 patients. However, the correlation analysis of the components with 
plasma chemokine proinflammatory factors found few significant correlations. Thus, the exact contribution of 
this pro-inflammatory biomarkers to the clinical phenotype of Long Covid patients remains to be determined, 
but the rapid normalization of these biomarkers after effective interventions against depression suggest that they 
can be used for monitoring affective improvement in COVID-19 patients.

In addition, there was an inverse correlation between NFL levels and the Components related to the measure-
ment of episodic memory (Rho =  − 0.310; p = 0.018), global cognition (Rho =  − 0.297; p = 0.024) and to Executive 
functions (Rho =  − 0.417; p = 0.001). NFL are markers of neuronal destruction whose correlation with global 
cognition has been described in the literature74. Plasma NFL levels could be a robust biomarker of this syndrome, 
and a recent study revealed that the course of its plasma concentrations is useful for determining the severity 
and prognosis of acute SARS-Cov-2 infection demanding hospitalization30.

Vascular Endothelial Growth Factor (VEGF) showed inverse correlation with the variables included in Com-
ponent 4, mainly related to Attention. VEGF has been linked to endothelial dysfunction which, as already men-
tioned, appears to be an element present in SARS-Cov2 infection8 and more specifically, with cognitive decline 
present in some diseases with a large vascular component, such as DM57. This finding reinforces our hypothesis 
that Post-Covid Neurologic Syndrome is intimately related to the typical vascular damage of Covid-19 disease.

In conclusion this Syndrome is a distinct condition that persists for at least 12 weeks after overcoming the 
acute phase of severe SARS-CoV-2 infection. The profile remains stable in different stratified populations based 
on cognitive vulnerability. Last, we identified biomarkers related to the main components of the syndrome. The 
possibility of any of them behaving as a prognostic biomarker and even as possible future therapeutic strategy 
development for Post-Covid Neurologic Syndrome should not be ruled out.

Our study provides a systematization of the neuropsychological battery used that allows us to draw the iden-
tifying characteristics of the cognitive impairment of the post-viral phase of SARS-Cov-2 infection. In a recent 
systematic review by Salamanna et al.75, on the other hand, the authors highlight the absence of studies especially 
directed against vulnerable population with severe Covid-19 infection, so our study fills that gap. Other relevant 
finding in our study is the identification of a circulating pattern of chemokines and growth factors different of 
that of non-infected age-matched patients with MCI. Specifically, there were significant differences with higher 
levels of neuroinflammation markers in post-Covid patients.

The main limitation of our study is the absence of an assessment of cognitive and neuropsychiatric function 
and of plasma markers prior to infection, preventing us from reliably measuring the impact of the infection. To 
minimize the impact of this fact on the interpretation of our results, we have used tests that have normalized 
values for the Spanish population, so that we can consider that the real control group in this study is the own 
general population stratified by age, sex, and educational level.

Another limitation is the absence of neuroradiological data, which may have hidden data referring to struc-
tural lesions (vg ischemic lesions) with influence on the cognitive profile of our patients. Finally, we recognize that 
there has been a variable quota of missing data regarding both neuropsychological assessment and chemokines, 
with the latter especially involved.

Some issues remain to be resolved. First, we do not know whether the deficits detected are transitory or persist 
long term. If long term, it is unknown whether the underlying neuroinflammatory phenomena can trigger NDDs 
in a manner analogous to what probably occurred during the 1918 “Spanish flu” pandemic19.

Data availability
All databases used during the preparation of this article are available to editor or reviewers if required and have 
been incorporated into the DRYAD repertoire (Dryad Home—Publish and Preserve your Data (https://​datad​
ryad.​org/​stash)).

https://datadryad.org/stash
https://datadryad.org/stash
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