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Mental imagery behaviors of various modalities include visual, auditory, and motor
behaviors. Their alterations are pathologically involved in various psychiatric disorders.
Results of earlier studies suggest that imagery behaviors are correlated with the
modulated activities of the respective modality-specific regions and the additional
activities of supramodal imagery-related regions. Additionally, despite the availability of
complexity analysis in the neuroimaging field, it has not been used for neural decoding
approaches. Therefore, we sought to characterize neural oscillation related to multimodal
imagery through complexity-based neural decoding. For this study, we modified existing
complexity measures to characterize the time evolution of temporal complexity. We took
magnetoencephalography (MEG) data of eight healthy subjects as they performed
multimodal imagery and non-imagery tasks. The MEG data were decomposed into
amplitude and phase of sub-band frequencies by Hilbert–Huang transform.
Subsequently, we calculated the complexity values of each reconstructed time series,
along with raw data and band power for comparison, and applied these results as inputs
to decode visual perception (VP), visual imagery (VI), motor execution (ME), and motor
imagery (MI) functions. Consequently, intra-subject decoding with the complexity yielded
a characteristic sensitivity map for each task with high decoding accuracy. The map is
inverted in the occipital regions between VP and VI and in the central regions between ME
and MI. Additionally, replacement of the labels into two classes as imagery and non-
imagery also yielded better classification performance and characteristic sensitivity with
the complexity. It is particularly interesting that some subjects showed characteristic
sensitivities not only in modality-specific regions, but also in supramodal regions. These
analyses indicate that two-class and four-class classifications each provided better
performance when using complexity than when using raw data or band power as
input. When inter-subject decoding was used with the same model, characteristic
sensitivity maps were also obtained, although their decoding performance was lower.
Results of this study underscore the availability of complexity measures in neural decoding
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approaches and suggest the possibility of a modality-independent imagery-related
mechanism. The use of time evolution of temporal complexity in neural decoding might
extend our knowledge of the neural bases of hierarchical functions in the human brain.
Keywords: expanded multiscale entropy (expMSE), magnetoencephalography (MEG), mental imagery, neural
decoding, multivariate pattern analysis (MVPA), modality specific-regions, supramodal regions, convolutional
neural network (CNN)
INTRODUCTION

In recent years, neural decoding research has progressed along
with the expansion of machine learning (ML). Neural decoding
has also been applied for interpreting mental states (1, 2) and for
treating various psychiatric disorders with neurofeedback (3–12).
With the development of deep learning, decoding performance
improvement is accelerating. One successful method is that of
convolutional neural networks (CNNs), which are categorized as
multivariate pattern analysis (MVPA) and which learn complex
features using small filters to learn local patterns and process them
through multiple layers. Initially, CNN progressed in the image
recognition field, but it has been applied recently in the
neuroimaging field (13, 14). Additionally, growing interest exists
in interpreting trained models (15). This avenue of research is
extremely important for neuroimaging because it helps to
elucidate features that the model uses to distinguish the classes.
However, the neuroimaging devices have their own characteristics.
Among neuroimaging devices, electroencephalography (EEG) and
magnetoencephalography (MEG) directly measure brain activity
with excellent temporal resolution, thereby yielding insight
into temporal dynamics within physiologically relevant
frequency ranges.

However, despite remarkable progress in ML, some room exists
for improving preprocessing before ML. At present, raw data and
band power are used mainly as inputs in E/MEG-based neural
decoding. Comparably to raw data, band power improves decoding
performance by decomposing the frequency information in advance
(14, 16). However, some other analytical methods are useful for
evaluating both normal and pathological brain states. For example,
temporal complexity of single time series have being studied. Neural
oscillations are assumed to be affected by past neuronal processes on
various time scales through feedback loops at multiple hierarchical
levels of cortical processing (17). This history effect has been well
studied as temporal dynamics using multiscale entropy (MSE),
which calculates the sample entropy (SampEn) on multiple time
scales. Actually, MSE has been applied with great benefit to various
neuroimaging devices such as E/MEG and functional magnetic
resonance imaging (fMRI) (18, 19). Moreover, it has contributed to
elucidation of the neural bases of many psychiatric disorders and
conditions, including schizophrenia (20), Alzheimer’s disease (AD)
(21–24), autism spectrum disorder (ASD) (25–27), attention-deficit
hyperactivity disorder (28), and aging (29, 30). One difficulty,
however, is that conventional MSE approaches describe
comprehensive unpredictability in a time series irrespective of
their diverse information. Because the frequency, amplitude, and
phase of E/MEG data are thought to differ in terms of their
g 2
underlying neural functions (31–34), analyzing decomposed
neural signals into frequency, amplitude, and phase might add
other directions for elucidating details of neural functions.
For example, Ghanbari et al. (27) reported that frequency-
decomposed MSE extracts some characteristic features of ASD.
Our earlier study similarly revealed alterations of the amplitude and
phase MSE in AD patients (Furutani et al., submitted). Another
issue is that conventional complexity measures such as SampEn and
approximate entropy (ApEn) compute a single value from a time
series (35). Although these are extremely useful for representing the
time series complexity, clinical data tend to have a small
sample size, making them difficult to use for ML as they are.
Therefore, we propose a new complexity measure: expanded
SampEn (expSampEn). Complexity analyses fundamentally use
information theory to evaluate the bias of the probability
distribution. Subsequently, the expSampEn evaluates the bias of
each time point. In other words, we simply skipped the averaging in
the SampEn and ApEn algorithm and obtained a complexity value
in the form of a time series (see expMSE). Consequently, we used
the expanded MSE (expMSE) of decomposed signals as inputs for
neural decoding.

Mental imagery is a behavior with various modalities, such
as visual, auditory, and motor, that has a multifaceted
association with psychiatric disorders. For example, the mental
imagery capabilities are altered in autism spectrum disorder
(ASD) patients (36), concern-related images are repeated in
patients with post-traumatic stress disorder (PTSD) and social
phobia (37); negative mental imagery causes distress and
strongly affects various psychiatric disorders (38). Mental
imagery has also been used in psychotherapy and
neurofeedback to treat psychiatric disorders (3, 38). Therefore,
it is expected to be important to investigate the neural basis of
mental imagery for the treatment of psychiatric disorders and for
understanding their pathophysiology. The neural mechanisms of
mental imagery have been discussed in terms of modality-
specific regions and supramodal imagery-related regions (39).
Although primary sensorimotor cortices are often active during
mental imagery, their activities might not be fundamentally
important. Reportedly, activities in the primary sensorimotor
cortices during mental imagery are lower than during perception
or execution. They depend on the task intensity of visual imagery
(VI) (38, 40) and motor imagery (MI) (41–44). However, other
modality-specific regions adjacent to primary sensorimotor
cortices, including auditory associative areas (39) and
premotor and supplementary motor areas (39, 42, 45), are
activated during both imagery and non-imagery (i.e. execution
or perception) of each modality. Visual associative areas are
July 2020 | Volume 11 | Article 746
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divided further into several subtypes depending on the type of VI
(39). In addition, although these associative regions are active
during both imagery and non-imagery, the connectivity pattern
among these regions is altered (46). Furthermore, supramodal
imagery-related regions have been reported, including the
prefrontal (PFC) and parietal cortex (3, 38, 39, 41, 42, 45, 47,
48), which are regarded as sending top-down inputs to
the modality-specific areas (38, 46–48). However, only three
reports of the relevant literature describe studies that have
examined the multimodal imagery-related brain activities
directly, all are of fMRI studies of VI and auditory imagery
(AI) (49–51).

In summary, this study’s aims are two-fold: 1) achieve CNN
decoding with the expMSE; and 2) achieve hierarchical task
decoding to examine supramodal and modality-specific neural
oscillations. For this study, we measured MEG in healthy
participants performing hierarchical multimodal tasks (visual/
motor × imagery/non-imagery tasks), calculated the expMSE,
and applied it to CNN decoding.
METHODS

Participants
This study examined eight healthy participants [S0–S7; 4 male,
age 27.1 ± 6.2 years (mean ± SD), 1 left-handed]. All participants
were native Japanese speakers reporting no prior or existing
psychiatric, neurological, or medical illness. Participants were
screened with a structured clinical interview for Diagnostic and
Statistical Manual of Mental Disorders (DSM)-IV-TR (52) to
confirm a lack of history of personal psychiatric illness. All
participants agreed to participate in the study with full
knowledge of the experimental characteristics of the research.
After a complete explanation of the study, written informed
consent was obtained before the start of the experiment. The
ethics committee of Kanazawa University Hospital approved the
study methods and procedures.

Tasks and Procedures
All participants underwent MEG examination while performing
several tasks. To obtain a diverse distribution of brain activity
data, we defined 12 multimodal tasks: visual perception (VP,
observing a grayscale picture of Ichiro Suzuki, a famous baseball
player); visual imagery (VI, imagining the presented picture);
auditory perception (AP, listening to a simple melodic line from
‘Dance of the Four Swans’); auditory imagery (AI, imagining the
presented music); motor execution (ME, moving the right index
finger); motor imagery (MI, imagining the finger motion);
visual imagery 2 (VI2, imagining someone else exercising);
motor imagery 2 (MI2, imagining oneself exercising); auditory
perception 2 (AP2, listening to sounds in consonance), auditory
perception 3 (DL, listening to sounds in dissonance); visual
perception 2 (VP2, observing a color picture of a happy
individual); and visual perception 3 (VP3, observing a color
picture of a sad individual). They completed eight trials × 3
sessions. To acquire a stable index, the tasks were performed
Frontiers in Psychiatry | www.frontiersin.org 3
successively in a fixed order as described above. Each trial
included 6 s of ‘rest’ and 6 s of the ‘task’. Each task was started
and stopped in conjunction with an acoustic stimulus. In each of
the three sessions, a total of eight trials × 12 tasks were
performed. The first session was performed as a practice
session. The second and third sessions were analyzed. Sufficient
breaks were given between the sessions to prevent fatigue. During
each task, the participants opened their eyes and looked at a
display. In addition, the first of the eight trials for each task was
excluded from analyses because there was no pre-task break. The
number of trials for the analyses was 14 (7 trials × 2 sessions)
per task.

MEG Recording
Magnetic fields were measured using a whole-head system for
adults at the Laboratory of Yokogawa Electric Corp. in Japan.
This system (MEGvision PQA160C; Yokogawa Electric Corp.,
Japan) consisted of 160 channels. Magnetic fields were sampled
at 2,000 Hz per channel (bandpass 0.16–500 Hz). The T1-
weighted magnetic resonance imaging (MRI) images were
acquired (Sigma Excite HD 1.5 T; GE Yokogawa). All
participants had pointed spherical lipid markers placed at the
five MEG fiduciary points to enable superposition of the MEG
coordinate system on the MRI. The MRI consisted of 166
sequential slices of 1.2 mm, with resolution of 512 × 512
points in a field of view of 261 × 261 mm. Individual cortex
envelopes were extracted using FreeSurfer 5.1 for cortical
surface-based analysis (number of voxels: 15,000) (53, 54).

Data Preprocessing
Preprocessing of the MEG data presented in this section was
conducted using software [MATLAB; The Mathworks Inc.,
Natick, MA and Brainstorm (55)]. The MEG data were
resampled at 400 Hz with 150 Hz low-pass and 60 and 120 Hz
notch filters. Subsequently, the data were cleaned using a signal-
space projection (SSP) algorithm for the removal of blink and
heartbeat signals. After the magnetic field data were transformed
into a source time series using a weighted minimum norm
estimation (wMNE) algorithm (56–58), they were averaged
within each of the 68 regions of the Desikan–Killiany brain
atlas (59). The source time series were decomposed into
amplitude and phase of sub-band frequencies using ensemble
empirical mode decomposition (EEMD) and Hilbert spectral
analysis (HSA) as reported by Huang et al. (60, 61). We
implemented EEMD with addition of white noise at 0.2
standard deviations of amplitude relative to the original source
time series. Then we calculated an average of 200 ensembles as
the IMF. Figure 1 portrays the relative power spectral densities
of the decomposed time series. Actually, EEMD is an adaptive
method that differs from many other frequency decomposition
methods. Although that feature represents an advantage of the
EEMD, the IMF frequency varies according to the sampling rate
(SR) and low pass filtering (LPF) of the time series. Given the
conditions used for this study (sampling frequencies 400 Hz;
LPF, 150 Hz), the peak frequencies of IMF 1–5 are
approximately >100 Hz, 40 Hz, 20 Hz, 10 Hz, and 4 Hz.
July 2020 | Volume 11 | Article 746

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Furutani et al. Neural Decoding of Imagery Behavior
Therefore, we analyzed IMF 2–4 for the remainder of the
analyses and respectively designated them as gamma, beta, and
alpha bands. These IMFs were processed further using Hilbert
spectral analysis (HSA) and were decomposed into an amplitude
and phase time series.

Inputs
expMSE
To assess the temporal changes of the complexity, we modified
existing complexity measures. ApEn and SampEn are well known to
represent the temporal complexity of the time series. One report of
the literature by Porta et al. (35) proposed local sample entropy
(LSampEn) as a modified version of them. Each of ApEn, SampEn,
and LSampEn represents unpredictability of the value of the (m+1)-
th time point from 1 to m time points. As described by Porta et al.
(35), ApEn, SampEn, and LSampEn differ in the stage of averaging
over time. Consider a time series ={xn, n=1,…,N } when n represents
each time point and N denotes the total length. Define xn as the
current value of x, and x−n = ½xn−m ⋯ xn−1� is the m-dimensional
past values; xn=[xn−m⋯xn ] is the (m+1)-dimensional vector
obtained by concatenating xn to x−n . Define p(xnjx−n) as the
conditional probability that the current value is xn given past
values x−n , and define p(xn) and p(x−n) respectively as the joint
probabilities that (m+1)-dimensional and m-dimensional vectors
described earlier are xn and x−n . Then, ApEn, SampEn, and
LSampEn are represented as shown below.

ApEn = − 〈 log p xnð jx−nÞ 〉 = − 〈 log
p xnð Þ
p x−nð Þ 〉

SampEn = − log
〈 p xnð Þ 〉
〈 p x−nð Þ 〉

LSampEn = − log 〈 p xnð jx−nÞ 〉
Therein, <∙> represents the average over time. They can be

summarized briefly as follows: ApEn represents the entropy
computed at each time point and then averaged; SampEn
represents the average of each probability before computing
Frontiers in Psychiatry | www.frontiersin.org 4
entropy; and LSampEn is a value representing the entropy
after averaging the probability distribution. For the present
study, expSampEn is defined as the time evolution of complexity
without performing averaging over time.

expSampEn  nð Þ  = − log p xnð jx−nÞ
This idea was inspired by the modified version of mutual

information: local mutual information (62). For this study, four
tasks were analyzed (VP, VI, ME, andMI), but all tasks were used
as the index for calculating the expSampEn. We observed the
expSampEn on various time scales (i.e. expMSE) in the same way
as MSE. We used m = 2 and r = 0.2 to calculate the entropy (23).
Considering the frequency of each IMF, five time scale factors
(TSFs) were used (gamma—2, 4, 8, 16, and 32; beta—4, 8, 16, 32,
and 64; alpha—8, 16, 32, 64, and 128). After the expMSE
analysis, the SR was adjusted to 0.64 s for ML.

One important shortcoming of ApEn is that the log contents
often become 0 because the entropy is calculated at each time
point (35). We also compute the entropy at each time point.
Therefore, the expSampEn cannot be calculated at some time
points. We have taken two solutions to this problem. First, we
increased the index size for calculating the complexity. The MEG
data were measured for 20 min at 400 Hz. There were
approximately 500,000 time points in each IMF time series at
each region. As described above, the maximum TSF is 128,
so the minimum index size for the complexity measures
is approximately 4,000 points. This is insufficient for the
complexity measure. Therefore, we concatenated the indices of
all 68 brain regions; then, we coarse-grained it to obtain the index
size of 250,000–500,000 points for each TSF because the large
index size can be computationally intensive. Consequently, the
expSampEn was computed using the standardized index across
regions. Next, we linearly interpolated the time points that
remain uncomputable. The relations between SampEn, ApEn,
and expSampEn are presented in Tables 1–4.

We performed the above calculations for each amplitude and
cosine of phase time series and obtained 68 regions × 3 frequency
bands × 2 components × 5 TSFs decomposed expMSE time
series. We reshaped it into 68 × 30 time series.
FIGURE 1 | Frequency decomposition by ensemble empirical mode decomposition (EEMD): left panel, examples of the decomposed time series; right panel, relative
power spectral densities of the respective IMFs.
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Raw Data and Band Power
To compare the decoding performance, we also used raw data
and band power as inputs. As shown in Figure 1, IMF2 (gamma)
is approximately less than 80 Hz. Therefore, we downsampled
the raw data to 200 Hz. We also computed the band power time
series and then coarse-grained it to SR of 0.64 s to align with the
expMSE. Therefore, we obtained 68 frequency bands × 3 regions
time series.
Frontiers in Psychiatry | www.frontiersin.org 5
Data Cropping
Additionally, we adopted a cropping strategy (13, 63, 64). The
task period is 6 s. Therefore, we obtained nine time points at SR
of 0.64 s. We chose four of these nine points and averaged them
across all combinations, yielding 126 crops (= 9C4) per trial.
Consequently, 12 tasks × 14 trials × 126 crops were obtained
both for the expMSE and the band power time series. However,
134 crops were obtained for the raw data with a sliding 2 s
window (400 time points).

Decoding
CNN decoding in this section was conducted using Keras
2.3.1 (65).

CNN Model
For this study, we adopted a CNN model: a deep neural network
that can learn local patterns in data using convolutional filters.
Although CNN has made remarkable progress, especially in
computer vision tasks, it has also been successful in recent
years for neural decoding (13, 14, 66).

As described earlier, we used some analytic methods for
feature extraction. As reported by Tayeb et al. (14), when using
a priori feature extraction, shallow CNN showed high decoding
accuracy comparable to that of deep CNN. Because we applied
EEMD, HSA and complexity analysis to obtain the inputs, we
adopted a shallow CNN (Figure 2). The inputs of expMSE were
fed into our CNNmodel, which includes two convolution blocks,
followed by a dense softmax classification layer. Each
convolution block includes one convolutional layer, batch
normalization, and a max-pooling layer. An exponential linear
unit (ELU) is used as the activation function. As the optimization
method, we adopted Adam (67), a stochastic optimization
method, together with an early stopping method. Preliminary
experiments showed better decoding performance when using
small pooling filters (data not shown), probably because neural
decoding has less need for shift-invariance, which is one
important benefit of pooling, than image recognition.
Furthermore, Schirrmeister et al. (13) used a large filter as a
spatial filter in the first layer. However, a smaller filter, like that
used in the present study, tended to be more accurate
(Supplementary Table 1). Therefore, we used 5 × 5
convolutional filters. For comparison, decoding was also
performed using raw data and band power as inputs. Also,
equivalent models were used. The input sizes were 68 × 400 and
68× 3. The convolutional filters were 5 × 10 and 5 × 2, respectively,
for raw data and band power.

Cropped Training
As explained in Data Cropping, 126 crops were obtained per trial
(134 crops for raw data). This led to multiple label predictions
per trial. The average of these predictions was used as the final
prediction for the trial during the test phase. During training, we
computed a loss for each prediction.

Intra-Subject and Inter-Subject Decoding
We performed decoding with intra-subject and inter-subject
designs. For intra-subject decoding, 14 trials were divided into
TABLE 2 | Relation between the expMSE and ApEn of the amplitude in all 68
regions in subject S0 (Pearson’s correlation, mean ± SD).

TSF A TSF B TSF C TSF D TSF E

Gamma 0.91 ± 0.06 0.88 ± 0.07 0.78 ± 0.11 0.46 ± 0.24 −0.12 ± 0.29
Beta 0.92 ± 0.04 0.82 ± 0.10 0.34 ± 0.33 −0.28 ± 0.34 −0.57 ± 0.20
Alpha 0.90 ± 0.05 0.65 ± 0.14 −0.18 ± 0.28 −0.66 ± 0.11 −0.63 ± 0.15
The expMSE were averaged over 51.2 s. ApEn were calculated for the same time window.
TSFs A–E are 2, 4, 8, 16, and 32 for gamma, 4, 8, 16, 32, and 64 for beta, 8, 16, 32, 64,
and 128 for alpha.
TSF, time scale factor.
TABLE 3 | Relation between the expMSE and SampEn of the phase in all 68
regions in subject S0 (Pearson’s correlation, mean ± SD).

TSF A TSF B TSF C TSF D TSF E

Gamma 0.57 ± 0.29 0.32 ± 0.23 −0.19 ± 0.25 0.04 ± 0.18 0.07 ± 0.23
Beta 0.56 ± 0.21 0.43 ± 0.17 0.17 ± 0.29 0.08 ± 0.19 0.02 ± 0.18
Alpha 0.83 ± 0.11 0.59 ± 0.24 0.30 ± 0.27 0.07 ± 0.21 0.00 ± 0.19
The expMSE were averaged over 51.2 s. SampEn were calculated for the same time
window. TSFs A–E are 2, 4, 8, 16, and 32 for gamma, 4, 8, 16, 32, and 64 for beta, 8, 16,
32, 64, and 128 for alpha.
TSF, time scale factor.
TABLE 1 | Relation between the expMSE and SampEn of the amplitude in all 68
regions in subject S0 (Pearson’s correlation, mean ± SD).

TSF A TSF B TSF C TSF D TSF E

Gamma 0.86 ± 0.10 0.83 ± 0.11 0.79 ± 0.11 0.75 ± 0.10 0.65 ± 0.12
Beta 0. 83 ± 0.10 0.82 ± 0.10 0.76 ± 0.12 0.66 ± 0.15 0.52 ± 0.20
Alpha 0.84 ± 0.07 0.77 ± 0.09 0.68 ± 0.14 0.50 ± 0.17 0.30 ± 0.22
The expMSE were averaged over 51.2 s. SampEn were calculated for the same time
window. TSFs A–E are 2, 4, 8, 16, and 32 for gamma, 4, 8, 16, 32, and 64 for beta, 8, 16,
32, 64, and 128 for alpha.
TSF, time scale factor.
TABLE 4 | Relation between the expMSE and ApEn of the phase in all 68
regions in subject S0 (Pearson’s correlation, mean ± SD).

TSF A TSF B TSF C TSF D TSF E

Gamma 0.79 ± 0.17 0.47 ± 0.22 −0.14 ± 0.23 0.06 ± 0.19 0.04 ± 0.21
Beta 0.73 ± 0.18 0.51 ± 0.19 0.18 ± 0.24 0.05 ± 0.18 −0.01 ± 0.18
Alpha 0.88 ± 0.09 0.67 ± 0.21 0.30 ± 0.27 0.05 ± 0.21 −0.04 ± 0.17
The expMSE were averaged over 51.2 s. ApEn were calculated for the same time window.
TSFs A–E are 2, 4, 8, 16, and 32 for gamma, 4, 8, 16, 32, and 64 for beta, 8, 16, 32, 64,
and 128 for alpha.
TSF, time scale factor.
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four groups (three or four trials per group). The decoding
performance was examined in 12 combinations of train:
validation:test = 2:1:1. For inter-subject decoding, all 14 trials
of one subject were used as test data. Seven trials of the remaining
subjects were assigned to training and validation data.

Statistics
Differences in decoding performance were examined using
paired t-tests (two-tailed).

Visualization
In addition to identification of the features used for the
classification, we calculated a gradient-based sensitivity map of
the model for each feature map (68, 69). This method has been
studied intensively in the field of image recognition. It is applicable
to neural networks. We applied it to neural decoding. Letting Sc(x)
be the score of the class c computed by the classification layer of
the CNN for an input x, then the final classification class(x) can be
represented as

class xð Þ =   argmaxc   Sc xð Þ
Then, we define a sensitivity map Mc(x) as

Mc xð Þ  =  
∂ Sc xð Þ
∂ x

where ∂Sc(x) represents the derivative of Sc. Therefore, Mc(x)
represents the amount of change in the class score when input x
is perturbed. We used gradients() function from keras.backend.
This gradient of the class score with respect to input x elucidates
which features are influential for the final classification (68–70).
Intuitively, the larger the positive sensitivity feature is, and the
smaller the negative sensitivity feature is, the more likely it is to
be classified as the class. However, two points are noteworthy.
The gradient is a derivative at each input. For that reason, the
sensitivity might vary nonlinearly with the input value.
Furthermore, the relation with other features is considered
by the MVPA approach. Consequently, each sensitivity
map represents the features of interest in each input, but
unlike image recognition, there is less need to consider shift-
invariance. Moreover, the differences between the inputs in each
task are regarded as small. Therefore, the average maps of all
Frontiers in Psychiatry | www.frontiersin.org 6
inputs in each task are shown (Figures 3B, 4B, 5B, 6B and
Supplementary Figures 3 and 5). In intra-subject decoding, we
computed a sensitivity map for each input and standardized it by
dividing it by the standard deviation within each map. The mean
of all the maps in each task was used as the sensitivity map
for each task for each subject (Figures 3B and 5B and
Supplementary Figures 3 and 5). In inter-subject decoding,
we computed the map for each input and standardized it by
dividing it by the standard deviation within each map. The mean
of all inputs in each task was used as the sensitivity map for each
task (Figures 4B and 6B).
RESULTS

Decoding of Multi-Modal Tasks
We first decoded the VP, VI, ME, and MI tasks, i.e., performed
four-class classification. In intra-subject decoding, the expMSE
showed higher performance than raw data and band power (raw,
48.3 ± 5.7%; band power, 68.2 ± 7.7%; expMSE, 79.0 ± 3.0%; p
(band power – raw) < 0.001; p(expMSE – raw) < 0.001; p
(expMSE – band power) = 0.003; Figure 3A). Similarly, in
inter-subject decoding, the expMSE showed higher performance
than band power (band power, 44.0 ± 10.4%; expMSE, 49.1 ±
8.3%; p = 0.048; Figure 4A). Additionally, in both intra-subject
and inter-subject decoding with the expMSE, negative sensitivities
in the gamma and beta band and positive sensitivities in the alpha
band were observed in modality-specific regions (VP, occipital
regions; ME, central regions) in non-imagery tasks (VP and ME,
black filled arrows in Figures 3B and 4B and Supplementary
Figure 3). Inverted sensitivities were observed in imagery tasks (VI
and MI, green filled arrows). Similarly, inverted sensitivities were
found with band power.

Decoding of Modality-Independent
Imagery Behavior
Furthermore, we decoded modality-independent imagery
behavior: we applied two-class classification (imagery vs. non-
imagery). For intra-subject decoding, the expMSE showed higher
performance than band power (raw, 64.6 ± 4.0%; band power,
74.3 ± 8.3%; expMSE, 80.6 ± 7.3%; p(band power – raw) = 0.019;
FIGURE 2 | Convolutional neural network (CNN) architecture for the expMSE, including Input, Conv, Pool, and FC layers. The equivalent model was also used for
the band power, but the input was reduced to 68 × 3. Therefore, only the convolutional filter was reduced to 5 × 2. Conv., convolutional; Pool, = max pooling; FC,
fully connected.
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p(expMSE – raw) < 0.001; p(expMSE – band power) = 0.006;
Figure 5A). For inter-subject decoding, no significant difference
of decoding performance was found between the expMSE and
band power (band power, 62.5 ± 7.7%; expMSE, 66.7 ± 8.9%; p =
0.27; Figure 6A). In both intra-subject and inter-subject
decoding with the expMSE, negative sensitivities in the higher
frequency bands (gamma and beta) and positive sensitivities in
the lower frequency bands (beta and alpha) were observed in
modality-specific regions (VP, occipital regions; ME, central
regions) in the non-imagery tasks (VP and ME, black filled
arrows in Figures 5B and 6B and Supplementary Figure 5).
Inverted sensitivities were observed in the imagery tasks (VI and
MI, green filled arrows). Additionally, negative sensitivities in the
gamma amplitude were observed in the prefrontal regions in the
Frontiers in Psychiatry | www.frontiersin.org 7
imagery tasks (VI and MI, black open arrows in Figures 5B and
6B and Supplementary Figure 5). Inverted sensitivities were
observed in the non-imagery tasks (VP and ME, green open
arrows). Similarly, inverted sensitivities were found with band
power in the modality-specific regions. However, only one
subject (S0) in the intra-subject decoding showed imagery-
related sensitivities in the prefrontal regions with band power
(Supplementary Figure 5).
DISCUSSION

Mental imagery involves modality-specific regions and modality-
independent top-down inputs (38, 42, 47–50, 71). It has a
A

B

FIGURE 3 | Intra-subject decoding of each task. (A) Decoding accuracies compared among raw data, band power and expMSE. Each color corresponds to a
subject; **p < 0.01. (B) Task-related sensitivity maps of the example (subject S4). Upper and lower panels respectively portray maps for the expMSE and band
power (VP, visual perception; VI, visual imagery; ME, motor execution; MI, motor imagery; black arrow, modality-specific sensitivity; green arrow, inverted sensitivity in
the modality-specific regions). At the bottom are details of the horizontal axes: frequency × component (Amp/Phase) × TSF; Amp, amplitude expMSE; Phase, phase
expMSE.
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multifaceted relation to psychiatric disorders related to patient
abilities, symptoms and treatments (3, 36–38, 72). For this study,
we used complexity analysis to examine neural oscillations that
occur during mental imagery. It has been fruitfully applied for
investigating neural oscillations involved in various psychiatric
disorders (18, 20, 21, 23, 24, 26, 27, 73).

Neural Decoding With expMSE
We have proposed expSampEn and expMSE to compute the
complexity at each time point. The proposed measures are
assumed to capture short-time complexity fluctuations. As
shown in Tables 1–4, the conventional temporal complexity
measures (ApEn and SampEn) and the new complexity measure
(expMSE) were correlated significantly with the amplitude and
Frontiers in Psychiatry | www.frontiersin.org 8
on short time scales, suggesting that the standardized index
across all 68 regions worked well, at least on the amplitude
and short time scales.

Subsequently, neural decoding was performed using the
complexity information of region × frequency × component
(amplitude and phase) × time scale. For this study, this
information was reshaped as a two-dimensional map of the 68
regions × 30 oscillatory properties. It was processed by shallow
CNN (Figure 2), similarly to the method reported by Tayeb et al.
(14). In addition, the raw data and band power were used as
inputs for comparison. Similar models were used for them so
that they could be compared under as similar conditions as
possible (see Inputs and Decoding). For intra-subject decoding,
the decoding performance was higher such that the expMSE >
A

B

FIGURE 4 | Inter-subject decoding of each task. (A) Decoding accuracies compared by band power and expMSE. Each color corresponds to a subject used for
test data. *p < 0.05. (B) Task-related sensitivity maps. Upper and lower panels respectively portray maps for the expMSE and band power (VP, visual perception; VI,
visual imagery; ME, motor execution; MI, motor imagery; black arrow, modality-specific sensitivity; green arrow, inverted sensitivity in the modality-specific regions).
At the bottom are details of the horizontal axes: frequency × component (Amp/Phase) × TSF; Amp, amplitude expMSE; Phase, phase expMSE.
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band power > raw data, with significant differences between
conditions, in two classes of imagery and non-imagery and four-
class (VP, VI, ME, and MI) classification (Figures 3A and 5A).
Although the raw data are regarded as having the greatest
amount of information, the data were probably too complex to
be learned in shallow CNN. Frequency decomposition is
regarded as effective for extracting useful features for neural
decoding (74–77). In addition, Tayeb et al. (14), used a model
with two additional layers instead of frequency decomposition.
Although band power extracted frequency information in
advance to make it easier to learn than raw data, the expMSE
has improved decoding performance, probably because of the
Frontiers in Psychiatry | www.frontiersin.org 9
additional time scale information. In other words, the complexity
measure extracted useful features for neural decoding, suggesting
the importance of the time scale information. However, the
inter-subject decoding accuracy was lower than that of intra-
subject decoding, probably because of individual differences
(Figures 4A and 6A). Earlier studies with different tasks also
revealed a decrease in accuracy of approximately 10–20% (78,
79). Therefore, these results seem reasonable. The differences in
the band power and expMSE were also smaller for inter-subject
decoding than for intra-subject decoding. The difference for
four-class classification was found to be significant by a t-test
(p = 0.048) but not by a Wilcoxon signed rank test (p = 0.078).
A

B

FIGURE 5 | Intra-subject decoding of imagery behavior. (A) Decoding accuracies compared among raw data, band power and expMSE. Each color corresponds to
a subject. *p < 0.05 and **p < 0.01. (B) Task-related sensitivity maps of example (subject S0). Upper and lower panels respectively show maps for the expMSE and
band power (VP, visual perception; VI, visual imagery; ME, motor execution; MI, motor imagery; black filled arrow, modality-specific sensitivity; green filled arrow,
inverted sensitivity in the modality-specific regions; black open arrow, modality-independent sensitivity; green open arrow, inverted sensitivity in the modality-
independent regions). At the bottom are details of the horizontal axes: frequency × component (Amp/Phase) × TSF; Amp, amplitude expMSE; Phase, phase
expMSE.
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However, the accuracies exceeded chance levels in all cases
except for one condition (S0 as test data in Figure 6A) in this
study (chance levels were 25% for four-class classification and
50% for two-class classification). Reportedly, the accuracy was
improved along with the increase in the number of participants
providing training data (78). For that reason, future analyses
must be conducted with greater numbers of participants.

Imagery-Related Neural Oscillations
Mental imagery-related brain regions have been discussed in
terms of modality-specific regions and supramodal imagery-
related regions (39). To examine these regions, we drew
sensitivity maps showing the gradient of each feature and the
Frontiers in Psychiatry | www.frontiersin.org 10
class score of each task. This method is used mainly in the field of
image recognition to ascertain which pixels are used for
classification. For this study, we applied this method to neural
decoding and examined which regions and frequencies are the
basis for classification.

We first consider intra-subject decoding with the expMSE.
Practically, in the four-class classification shown in Figure 3B
and Supplementary Figure 3, the characteristic sensitivities in
the modality-specific regions (i.e. the occipital in VP and central
in ME) were observed in VP and ME in many subjects (black
filled arrows), with inverted sensitivities in VI and MI (green
filled arrows). However, the supramodal imagery-related
sensitivities were apparently observed only in S0 and S3 (black
A

B

FIGURE 6 | Inter-subject decoding of imagery behavior. (A) Decoding accuracies compared by band power and expMSE. Each color corresponds to a subject
used for test data. n.s., not significant. (B) Task-related sensitivity maps. Upper and lower panels respectively portray maps for the expMSE and band power: VP,
visual perception; VI, visual imagery; ME, motor execution; MI, motor imagery; black filled arrow, modality-specific sensitivity; green filled arrow, inverted sensitivity in
the modality-specific regions; black open arrow, modality-independent sensitivity; green open arrow, inverted sensitivity in the modality-independent regions. At the
bottom are details of the horizontal axes: frequency × component (Amp/Phase) × TSF; Amp, amplitude expMSE; Phase, phase expMSE.
July 2020 | Volume 11 | Article 746

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Furutani et al. Neural Decoding of Imagery Behavior
and green open arrows). This relation was similar for two-class
classification (Figure 5B and Supplementary Figure 5).
Although many subjects showed characteristic sensitivity in
modality-specific regions (black and green filled arrows), only
three subjects (S0, S1, and S3) appeared to show characteristic
sensitivity in supramodal regions (black and green open arrows).
Regarding both visual (38–40, 49, 50) and motor (39, 41, 42, 44,
45) results, reports of some fMRI studies have described that the
primary sensorimotor cortices are less activated during imagery
than during non-imagery, but the associative areas adjacent to
the primary sensorimotor cortices are similarly activated during
both imagery and non-imagery. Reports of some E/MEG studies
have described that beta band event-related desynchronization
in the motor cortex was exhibited in both ME and MI, but the
response was significantly less intense during MI (43, 45, 80). A
few EEG studies of visual imagery have revealed increased
gamma power in the visual cortex (81) and have demonstrated
usefulness of alpha power for the classification of VP and VI
(82). Reportedly, the bottom-up processes from the primary
visual cortex during VP switch to top-down controls from PFC
during VI (38, 48). Also, the pattern of connectivity among
motor-associative regions is reportedly converted between ME
and MI (46) in fMRI studies. These differences in activity
patterns in modality-specific regions might have helped in
both four-class and two-class classification. For supramodal
regions, some subjects showed characteristic sensitivities only
in the PFC in this study (S0 and S3 in Supplementary Figure 3
and S0, S1, and S3 in Supplementary Figure 5). Although the
PFC and parietal regions have been reported as supramodal
imagery-related regions in many fMRI studies (38, 39, 41–43,
46–51), few E/MEG reports have described the involvement of
supramodal regions in motor imagery (43, 83). The supramodal
regions might have more intra-subject variation or might be
activated for shorter periods of time than the modality-specific
regions. For inter-subject decoding, similar sensitivities in the
modality-specific and supramodal regions were found, but they
indicated more random patterns than intra-subject decoding did
(Figures 4B and 6B). This result suggests that useful features for
classification have not been extracted properly and sufficiently,
probably because of functional (e.g. frequency and time scale)
and spatial differences among subjects. In addition, negative
sensitivities at higher frequencies are commonly found for
modality-specific regions during non-imagery tasks and
for supramodal regions during imagery tasks throughout
all conditions (two-class/four-class classification × intra-/
inter-subject decoding). These observations suggest that low
complexity at higher frequencies represents activation in
the region.

We consider a sensitivity map with band power. In all
conditions, sensitivity maps with band power were similar to
that with expMSE, but few characteristic features were found in
supramodal regions (only S0 in Supplementary Figure 5). This
relative lack of features is probably attributable to the loss of
information about time scale. Negative sensitivity in ME and
positive sensitivity in MI were found in the beta band in the
motor cortex, consistent with earlier studies in which beta
Frontiers in Psychiatry | www.frontiersin.org 11
desynchronization was more significant in ME than in MI (43,
45, 80). Although increased gamma power was reported not only
in VP but also in VI (81), no characteristic sensitivity was found
in the gamma band in the visual cortex (Figures 3 and 4 and
Supplementary Figure 3).

Consequently, the sensitivity maps with the expMSE yielded
imagery-related activity patterns in both modality-specific and
supramodal regions, consistent with results of earlier studies. The
similarity of patterns found in visual and motor modalities suggests
a common mechanism for creating mental imagery of several
modalities. Various psychiatric disorders associated with mental
imagery have also been suggested as related to PFC (84–87). As it
has in the present study, investigating higher brain functions such as
mental imagery might expand our physiological and pathological
understanding of psychiatric disorders and facilitate the search for
their biomarkers. Furthermore, neural decoding might help treat
psychiatric disorders by application of its detailed results to
neuromodulation methods such as neurofeedback (3–12) and
transcranial stimulation (88, 89).

Limitations
An important limitation for consideration in this study is its sample
size. Typically, decoding research involves more than 100 trials per
task (13, 14). For this study, the number of trials per task was
reduced to 14 because the task design included various tasks for
complexity analysis and the decoding of hierarchical behaviors.
However, high decoding performance was obtained in the intra-
subject decoding despite the small sample size (Figures 3 and 5). As
described above, one possible reason for the high performance is
that we used the temporal change of complexity as an input for
decoding.Although hundreds of trials are regarded as reasonable for
MI decoding from EEG and MEG (16), Foldes et al. (90) reported
high decoding performancewith less than 30 training trials forMEG
decoding of ME and the resting state. This result might be mainly
attributable to the design classifying substantially different modality
(i.e. ME and the resting state) and partly because of the high spatial
resolution of MEG compared to that of EEG (16, 90). The present
study also performed MEG decoding of substantially different tasks
(i.e. visual/motor and imagery/non-imagery). They are probably the
reasons why we were able to decode with a small number of trials.
Although this is only a pilot study with a small number of subjects,
our technique seems to be valuable for extending our knowledge of
the neural bases of hierarchical functions in the human brain.
Therefore, further studies with larger sample size will be needed
to warrant our findings.

An important strength of MEG is its high temporal
resolution. Some earlier studies have benefited from the
temporal resolution to examine the time evolution of neural
processes of approximately tens to hundreds of milliseconds (91–
93). Reports of some studies using fMRI have described increases
in the effective connectivity from the supramodal regions to the
visual associative regions during VI (48) and differences in the
effective connectivity among motor-related regions during ME
and during MI (46). These findings suggest that the supramodal
regions are active before the modality-specific region are
activated. Some models that account for the time evolution of
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neural processes might improve the decoding performance and
advance the physiological interpretation.

In interpretation of the trained model, the sensitivity maps of
inter-subject decoding were particularly unclear (Figures 4 and
6). Furthermore, although earlier studies have implicated medial
and superior PFC as involved in modality-independent mental
imagery (49, 71), the sensitivity map in this study was not able to
detect precisely what area in the PFC was related to mental
imagery. These shortcomings might be partly attributable to
individual differences (see Section 4.2), but other influences must
also be considered. Although we have visualized the trained
models with the highest accuracy, accuracy and interpretability do
not always correlate (94, 95). The present study has demonstrated
the improvement of decoding accuracy achieved by using
complexity measure as an input, but when considering its
interpretation, it might be better to apply some constraint to the
interpretability, rather than merely improving the accuracy.

Although MEG recordings were taken during multimodal
visual, auditory and motor tasks, we specifically examined
visual and motor data for decoding because acoustic stimuli
were used as a cue of the start and the end of all tasks: we
considered the effects of the cues. Future efforts must use a
redesigned study to examine common neural oscillations among
more variational modalities.
CONCLUSION

This study compared the decoding performance of inputs of
three types in neural decoding (raw data, band power, and
expMSE) and used these methods to examine modality-specific
and supramodal imagery-related neural oscillations. Results
indicate the usefulness of CNN with the expMSE for neural
decoding and support the possible common imagery-related
mechanism proposed in earlier studies demonstrating that the
modulated activity pattern in the modality-specific regions and
the additional activity in the supramodal imagery-related regions
might be involved in imagery behaviors.
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neurofeedback in emotion regulation: A literature review. Neuroimage (2019)
193:75–92. doi: 10.1016/j.neuroimage.2019.03.011
7. Ferreri F, Bourla A, Peretti CS, Segawa T, Jaafari N, Mouchabac S. How new
technologies can improve prediction, assessment, and intervention in obsessive-
compulsive disorder (e-ocd): Review. J Med Internet Res (2019) 6:e11643.
doi: 10.2196/11643

8. Young KD, Zotev V, Phillips R, Misaki M, Drevets WC, Bodurka J. Amygdala
real-time functional magnetic resonance imaging neurofeedback for major
depressive disorder: A review. Psychiatry Clin Neurosci (2018) 72:466–81.
doi: 10.1111/pcn.12665

9. Dousset C, Kajosch H, Ingels A, Schröder E, Kornreich C, Campanella S.
Preventing relapse in alcohol disorder with EEG-neurofeedback as a
neuromodulation technique: A review and new insights regarding its
appl icat ion. Addict Behav (2020) 106:106391. doi : 10 .1016/
j.addbeh.2020.106391
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