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Researchers agree that children start solving additions by 
counting procedures (e.g., Bagnoud, Dewi, Castel, et al., 
2021; Baroody, 1987; Carpenter & Moser, 1984; Groen 
& Parkman, 1972). However, the way counting strategies 
evolve with practice is still a matter of debate (see 
Baroody, 2018; Chen & Campbell, 2018; Thevenot & 
Barrouillet, 2020, for reviews). Two theoretical views 
can be contrasted. According to retrieval models, the 
counting strategies used during childhood are gradually 
replaced by memory retrieval during the course of devel-
opment. In adulthood, retrieval is therefore the dominant 
strategy for all additions involving two single-digit num-
bers (e.g., Ashcraft, 1982, 1992; Campbell, 1995; 
Campbell & Oliphant, 1992; Chen & Campbell, 2018; 
Siegler, 1996). In opposition to this widely accepted tra-
ditional view, Baroody (1983, 1984, 1994) argued that 
simple arithmetic problems could be solved by automated 
procedures in the form of rules and heuristics. This idea 
that procedures are still used by experts for very simple 
addition problems has been taken up recently within the 
automated counting procedure theory (e.g., Barrouillet & 

Thevenot, 2013; Fayol & Thevenot, 2012; Mathieu et al., 
2016; Uittenhove et al., 2016), according to which the 
development of strategy in arithmetic could consist in an 
acceleration of counting procedures until automatization 
(Thevenot et al., 2016).

Support for the shift from counting to retrieval in the 
course of learning has been provided by the instance the-
ory of automatization (Logan, 1988). This theory was 
developed to account for the acquisition of cognitive skills 
that can be first learnt by algorithm-based procedures. 
With each instance of learning, a single memory trace 
associating the stimuli and the response would be created 
and then stored in long-term memory. Whereas the proba-
bility of using algorithm-based procedures is constant in 
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the course of learning, the probability that memory 
retrieval is used depends on the number of traces in long-
term memory. Therefore, with repeated practice, more and 
more traces will be created and, at some point, the proba-
bility of using memory will be higher than of using algo-
rithm. This point corresponds to the shift from 
procedural-based to memory-based performance, or, in 
mental addition, from counting to retrieval.

In this framework, the shift from counting to retrieval in 
mental arithmetic has been studied using the alphabet–
arithmetic paradigm, which was conceived to mimic the 
way children learn additions. In this paradigm, a number 
addend is added to a letter augend, resulting in a letter 
answer. For example, A + 5 = F because F is 5 letters away 
from A. In their seminal work based on a training experi-
ment, Logan and Klapp (1991) asked adults to learn 40 
alphabet–arithmetic problems, consisted of 10 letters 
paired with addends 2, 3, 4, and 5. Half of the participants 
learnt the first 10 letters of the alphabet (i.e., A to J) and the 
other half the second 10 letters (i.e., K to T). After the 
training phase, which lasted 12 days, participants had to 
work with the other set of letters on the 13th day. Logan 
and Klapp concluded that the shift of strategy has occurred, 
because the slope of solution times as a function of addend 
(hereafter: addend slope) was significant in Session 1, 
implying the use of counting, but was not significant in 
Session 12, suggesting the use of memory retrieval (see 
also, e.g., Chen et al., 2020; Compton & Logan, 1991; 
Zbrodoff, 1995, 1999). Furthermore, the addend slope dur-
ing the transfer phase on Day 13 was again significant, 
implying that there was no transfer and indicating the item 
specificity of alphabet–arithmetic learning.

However, these classical findings have recently been 
put into question by Thevenot et al. (2020) who argued 
that the non-significant addend slope at the end of Logan 
and Klapp’s (1991) training experiment was due uniquely 
to the decrease in solution times for problems with the 
largest addend in the study set. Thevenot et al. showed that 
when these problems were excluded from the analysis, the 
addend slope was significant until the end of training. This 
decrease in solution times for problems with the largest 
addend was observed only in a minority of participants 
that the authors called the breakers (i.e., 6 out of 19 in 
Experiment 1 and 7 out of 21 in Experiment 2). For partici-
pants who did not show the discontinuity in solution times, 
the addend slope remained significant for all addends until 
the end of the training experiment. This constitutes a chal-
lenge for the theory of instance automatization (e.g., 
Logan, 1988) because if the slope is not null at the end of 
training, the possibility that its reduction and the decrease 
in solution times during practice are caused by an accelera-
tion of counting procedures cannot be discarded.

Nevertheless, most alphabet–arithmetic studies (e.g., 
Compton & Logan, 1991; Logan & Klapp, 1991; Thevenot 
et al., 2020; Zbrodoff, 1995, 1999) were based on a verifi-
cation task. This can be problematic because counting or 

memory retrieval could be bypassed in a verification task 
by the use of plausibility judgements (Reder, 1982). In 
mental arithmetic, such judgements involve the evaluation 
of the equation as a whole without exact calculations (e.g., 
Zbrodoff & Logan, 1990). This includes the situations 
where the proposed answer deviates largely from the cor-
rect answer (e.g., Ashcraft & Battaglia, 1978; de 
Rammelaere et al., 2001; Zbrodoff & Logan, 1990), when 
the parity of the proposed answer differs from the parity of 
the expected result, for example, 4 + 2 = 7, can be easily 
judged as incorrect because the sum of two even numbers 
should be an even number (Krueger, 1986; Krueger & 
Hallford, 1984; Lemaire & Fayol, 1995; Lemaire & Reder, 
1999; Masse & Lemaire, 2001), when the proposed answer 
to a multiplication problem involving 5 does not contain 0 
or 5 (Lemaire & Reder, 1999; Masse & Lemaire, 2001), or 
when the equation is familiar, for example, 3 × 4 = 12 can 
be easily judged as correct because it has been frequently 
practised (e.g., Lochy et al., 2000).

Another problematic aspect concerning verification 
tasks is that solution times depend on whether the pre-
sented equation is true or false. Indeed, studies on both 
mental arithmetic (e.g., Ashcraft & Battaglia, 1978; 
Ashcraft & Fierman, 1982; Ashcraft & Stazyk, 1981; 
Campbell, 1987; Groen & Parkman, 1972; Parkman & 
Groen, 1971) and alphabet–arithmetic (e.g., Compton & 
Logan, 1991; Logan & Klapp, 1991; Thevenot et al., 2020; 
Zbrodoff, 1999) using a verification task have shown that 
solution times are faster for true than for false equations. 
Furthermore, particularly in alphabet arithmetic, solution 
times in verification tasks depend on whether the proposed 
answer precedes or succeeds the correct answer (Dewi 
et al., submitted; Zbrodoff, 1999). For mental arithmetic 
studies, Ashcraft and Battaglia (1978) explained the differ-
ence in solution times between true and false equations by 
arguing that in a verification task, the evaluation of cor-
rectness is executed only after the correct answer has been 
found. In fact, whereas a production task involves three 
stages (i.e., encoding of the problem, searching or comput-
ing the answer to the problem, and providing the answer), 
a verification task involves four stages (i.e., the same three 
stages as in a production task plus the evaluation of the 
response, wherein the proposed answer in the equation is 
compared with the correct answer) (Ashcraft, 1982; 
Ashcraft et al., 1984). In short, verification is production 
plus comparison. Within a verification task, the evaluation 
stage depends on the split or distance effect, that is, the 
rejection times increase with the distance between the cor-
rect answer and the proposed answer (Ashcraft & Battaglia, 
1978). This is why solution times for true equations are 
shorter than those for false equations.

Considering that solution times are often regarded as 
the mirror of the processes implied in problem-solving but 
that, as already described, solution times in verification 
and production tasks can differ, Baroody (1984) asserted 
that solution times in verification tasks are inevitably not 



2184 Quarterly Journal of Experimental Psychology 74(12)

representative of the genuine times it takes to solve a prob-
lem in an ecological situation. Furthermore, assuming that 
memory retrieval is used to solve the problem, Campbell 
(1987) argued that memory access to the correct answer 
might be facilitated by the presented answer in the equa-
tion. Therefore, according to him, succeeding in a verifica-
tion task does not necessarily imply that the participant has 
correctly retrieved the answer. The arguments put forward 
by Baroody and Campbell make it obvious that verifica-
tion tasks are generally less ecological than production 
tasks.

Therefore, the choice between verification and produc-
tion tasks is crucial when mental arithmetic is investigated, 
and particularly when the alphabet–arithmetic paradigm is 
used. Indeed, past conclusions based on the results obtained 
with this paradigm could be dependent on the overreliance 
on methodologies based on verification. Moreover, as 
already stated, this paradigm is supposed to mimic the way 
children learn additions because both addition and alpha-
bet–arithmetic tasks have to be learnt initially by way of 
counting and scanning through a familiar sequence. 
Nevertheless, in real life, children do not learn additions 
by means of a verification task and, therefore, the results 
obtained in alphabet–arithmetic verification tasks might 
not be directly generalizable to addition learning. Thus, by 
adopting a production task in this article, we aim at verify-
ing that the results from alphabet–arithmetic verification 
tasks are replicable in a more-ecological production task. 
Although several studies using production tasks in alpha-
bet arithmetic have already been conducted (Campbell 
et al., 2016; Chen et al., 2020; Pyke et al., 2019; Pyke & 
LeFevre, 2011; Rabinowitz & Goldberg, 1995; Rickard, 
2004), this article is the only one allowing for a direct 
comparison between verification and production tasks in 
alphabet–arithmetic learning. To do so, we designed a 
training experiment with a production task using exactly 
the same stimuli as in the verification training reported in 
Experiment 2 of Thevenot et al. (2020). This material was 
very similar to the one constructed by Logan and Klapp 
(1991) except that 8 consecutive letters instead of 10, 
which were paired with addends from 2 to 6 instead of 2 to 
5, were used. Despite these small differences between 
Logan and Klapp and Thevenot et al.’s material, the cen-
tral variables, namely, the number of problems to learn and 
the number of repetitions for each problem, were kept con-
stant across experiments (i.e., 40 problems, and the num-
ber of repetitions for each problem, i.e., 12 times per 
session). Finally, as in Thevenot et al. or Logan and Klapp, 
the present experiment consisted of 12 learning sessions. 
This training programme was followed by three transfer 
sessions for which the results will not be reported in this 
article.

If the results obtained in an alphabet–arithmetic task 
using a verification paradigm are replicable in a more eco-
logical production task, we should observe the discontinu-
ity in solution times found in previous alphabet–arithmetic 

studies (e.g., Compton & Logan, 1991; Logan & Klapp, 
1991; Thevenot et al., 2020; Wenger, 1999; Zbrodoff, 
1995, 1999) As already explained above, this discontinuity 
corresponds to a decrease in solution times for problems 
with the largest addend. Second, when the problems with 
the largest addend are excluded from the analyses, the 
residual addend slope should still be significant at the end 
of training, implying no sign of shift from counting to 
retrieval.

Method

Participants

Twenty-three students (six females) aged between 18 and 
32 years were recruited by means of the student-job web-
sites of the University of Lausanne and the Swiss Federal 
School of Technology in Lausanne. All participants were 
native French speakers and they received CHF 190 for 
their participation.

Written informed consent was obtained for each partici-
pant. All procedures performed in this study, involving 
human participants, have been conducted in compliance 
with the Swiss Law on Research involving human beings. 
Because only behavioural data were collected in a non-
vulnerable population of adults, the approval of the Canton 
de Vaud ethic committee was not required. The study was 
carried out in accordance with the recommendations of the 
Ethics Committee of the University of Lausanne, follow-
ing the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. Finally, the research pro-
tocol that we followed was approved by the Research 
Committee of the Faculty of Social and Political Sciences 
of the University of Lausanne.

Material and stimuli

Participants were trained on an alphabet–arithmetic pro-
duction task (e.g., A + 2 = ?). Half of the participants were 
assigned to Group 1 and the other half to Group 2. During 
the learning phase, participants in Group 1 were trained on 
the first eight letters of the alphabet (i.e., Set 1: letters A to 
H) and those in Group 2 on the second eight letters (i.e., 
Set 2: letters I to P). Each letter was paired with addends 
from two to six, resulting in 40 problems in each set. Each 
problem was presented four times in a block, and each ses-
sion comprised three identical blocks of 160 trials. The 
160 problems were randomised within each block. Thus, 
similar to Experiment 1 of Logan and Klapp (1991) and 
the two experiments of Thevenot et al. (2020), the stimuli 
contained 40 problems that were presented 12 times in a 
session.

The experiment was programmed with the DMDX soft-
ware (Forster & Forster, 2003). Each trial began with a 
fixation point (*) presented for 500 ms, followed by the 
problem, which remained on the screen until participants 
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gave their response orally into the microphone. Then, the 
problem disappeared from the screen and the screen 
remained blank for 500 ms until the onset of the next trial.

Participants’ responses were recorded in individual 
.WAV audio files. Solution times, which corresponded to 
the time elapsed between problem presentation and voice 
key triggering, were recorded in a separate file. For some 
trials, the intensity of participants’ responses did not reach 
the threshold at which the voice key could be triggered and 
the problem remained on the screen until participants 
repeated their response louder. In such voice-key failure 
cases, recorded solution times were not correct and they 
were therefore corrected manually using the CheckVocal 
software (Protopapas, 2007). The latter software also 
allows for the verification of the response accuracy.

Procedure

Participants were trained across 12 sessions, correspond-
ing to 12 consecutive working days. They were tested indi-
vidually in our laboratory, in separate experimental booths. 
The experimenter was present in the room where the 
experimental booths are located, but outside the booth. 
During the weekend, participants were required to do one 
session of home training consisting of 160 problems pre-
sented on paper that they had to solve as quickly and accu-
rately as possible. The 160 problems corresponded to one 
experimental block.

Results

We excluded the data of four participants either because 
the accuracy was too low (less than 75% of correct 
responses for at least two sessions) or because the number 
of recording errors was too high (i.e., more than 20% for at 
least three sessions). The data of two other participants 
were also excluded because they showed non-significant 
addend slopes in Session 1. This was done because the 
alphabet–arithmetic task is conceived with the assumption 
that participants would start the learning process by a 
counting procedure, which implies significant addend 
slopes. It is therefore obvious that these two participants 
had never solved the problem through counting. Thus, the 
data of 17 participants were included in the analyses, that 
is, 10 in Group 1 and seven in Group 2.

Accuracy

We first carried out a 12 (Session: 1 to 12) × 5 (Addend: 2 
to 6) × 2 (Group: 1 or 2) repeated-measures, mixed-design 
analysis of variance (ANOVA) on accuracy with Group as 
a between measure (see Figure 1 for accuracy in Sessions 
1, 6, and 12). First of all, an effect of Group was found, 
F(1, 15) = 5.71, ηp

2  = .28, p = .03, with Group 1 participants 
having lower accuracy (92%) than Group 2 participants 

(96%). We also found an effect of Addend, F(4, 60) = 9.55, 
ηp
2  = .39, p < .001, with +2 problems being solved with 

the highest accuracy (95%) and +5 problems with the 
lowest accuracy (92%). There was also an interaction 
between Addend and Group, F(4, 60) = 3.44, ηp

2  = .19, 
p = .01. A series of contrasts with Holm correction showed 
that this interaction was due to +5 and +6 problems being 
solved with lower accuracy by Group 1 participants (89% 
and 92% for +5 and +6 problems, respectively) than by 
Group 2 participants, 95%, t(15) = 3.12, p = .007 for +5 
problems and 96%, t(15) = 2.67, p = .02, for +6 problems, 
whereas there was no difference in accuracy between the 
two groups for problems with addends 2, 3, and 4.

We further found an effect of Session, F(11, 165) = 5.71, 
ηp
2

 = .27, p < .001, with accuracy increasing from 84% in 
Session 1 to 95% in Sessions 6 and 12. This effect did not 
interact with Group, F(11, 165) < 1, but interacted with 
Addend, F(44, 660) = 1.91, ηp

2  = .11, p < .001. A series of 
contrasts with Holm correction revealed that the interac-
tion was due to the significant linear addend effect in 
Sessions 1, t(15) = –3.53, p = .01, 2, t(15) = –4.12, p = .004, 
and 3, t(15) = –2.89, p = .04, with higher accuracy for lower 
addend. This addend effect disappeared from Session 4 
onwards. The three variables did not interact, F(44, 
660) = 1.12, p = .28.

Solution times

To analyse solution times, we removed invalid trials, that 
is, faulty trials due to technical problems and trials solved 
incorrectly, which together corresponded to 6.75% of all 
trials. Furthermore, we removed correct trials with extreme 
values, which corresponded to 0.33% of the correct trials. 
The extreme values were defined as trials with solution 
times shorter than 250 ms as well as trials with solution 
times larger than the mean for each participant and each 
session plus 3 times the corresponding standard 
deviation.

We performed a 12 (Session: 1 to 12) × 5 (Addend: 2 
to 6) × 2 (Group: 1 or 2) repeated-measures, mixed-design 
ANOVA on solution times with Group as the between 
measure (see Figure 1 for solution times in Session 1, 6, 
and 12). An effect of Group was found, F(1, 15) = 6.01, 
ηp
2  = .29, p = .03, with Group 1 participants being faster 

(1,558 ms) than Group 2 participants (2,128 ms). An effect 
of Addend was also found, F(4, 60) = 39.76, ηp

2  = .73, 
p < .001, with +2 problems being solved the fastest 
(1,388 ms) and +5 problems the slowest (2,135 ms). 
Addend and Group did not interact, F(4, 60) < 1.

We found an effect of Session, F(11, 165) = 47.12, 
ηp
2  = .76, p < .001, with solution times decreasing from 

2,708 ms in Session 1 to 1,749 ms in Session 6 to 1,500 ms 
in Session 12. This effect interacted with Group, F(11, 
165) = 2.97, ηp

2  = .17, p = .001, see Figure 1. A series of 
contrasts with Holm correction revealed that this 
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Figure 1. Accuracy and Solution times as a function of addends.
Note. Accuracy (top panels) and solution times (bottom panels) as a function of addends for Sessions 1 (circles, solid line), 6 (triangles, dotted line), 
and 12 (squares, dashed line) for Group 1 (left) and Group 2 (right) participants. Error bars represent standard errors.

interaction was due to Group 1 participants being faster 
than Group 2 participants in Session 1, t(15) = 4.47, 
p < .001; Session 2, t(15) = 2.90, p = .01; and Session 3, 
t(15) = 2.29, p = .04, but not in other learning sessions.

There was also an interaction between Session and 
Addend, F(44, 660) = 16.67, ηp

2  = .53, p < .001. The effect 
of Addend was significant throughout the learning ses-
sions, that is, from t(15) = 14.89, p < .001 in Session 1 to 
t(15) = 6.14, p < .001, in Session 12. There was no three-
way interaction, F(44, 660) = 1.06, p = .36.

As observed when verification tasks are used, Figure 1 
shows a discontinuity in solution times in Sessions 6 and 12. 
In other words, solution times for +6 problems were shorter 
than for +5 problems. In fact, for both groups of partici-
pants, as can be seen in Figure 2, this discontinuity occurred 

for the first time on average in Session 3. Based on these 
observations at an individual level, we categorised partici-
pants according to whether or not they showed this discon-
tinuity. Two non-breakers did not show a discontinuity in 
solution times at any point of the experiment. Ten breakers 
continuously showed a discontinuity starting from one ses-
sion (i.e., as early as Session 1 and as late as Session 9) until 
the end of training. Finally, five participants did not show a 
consistent pattern, that is, they showed a discontinuity in at 
least one session but the discontinuity disappeared in the 
following sessions. A χ2-test of independence revealed that 
the categorization of participants into breakers, non-break-
ers, and inconsistent did not depend on the part of the alpha-
bet on which they were trained on, that is, Group 1 or Group 
2, χ2(16, N = 17) = 2.92, p = 1.
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Addend slopes

We calculated the addend slopes for each participant and 
for each session. Because, as just described, the inclusion 
of problems with the largest addend potentially flattens the 
addend slopes, we also calculated the addend slopes with-
out +6 problems. Whether +6 problems were included or 
not, the addend slopes were significantly different from 0 
throughout the learning sessions, that is, 385 and 411 ms/
addend in Session 1, with and without +6 problems, 
respectively (ps < .001), 146 and 228 ms/addend in Session 
6, with and without +6 problems, respectively (ps < .001), 
and 86 ms/addend (p = .01) in Session 12 when +6 prob-
lems were included and 165 ms/addend when they were 
not (p < .001).

We ran a 12 (Session: 1 to 12) × 2 (data set: with or 
without +6 problems) × 2 (Group: 1 or 2) repeated-meas-
ures, mixed-design ANOVA on addend slope with Group 
as a between measure. We did not find an effect of Group, 
F(1, 15) < 1, but we found an interaction between Group 
and Session, F(11, 165) = 2.12, ηp

2  = .12, p = .02. A series 
of contrasts with Holm correction revealed that this inter-
action was due to a significantly lower addend slope for 
Group 1 than Group 2, but only in Session 1, t(15) = 2.30, 
p = .04; and Session 2, t(15) = 2.71, p = .02.

More importantly, we found an effect of data set, F(1, 
15) = 35.04, ηp

2  = .70, p < .001, showing that including 
+6 problems (172 ms/addend) significantly flattened the 
addend slope compared with excluding them (247 ms/
addend). The effect of data set did not interact with 
Group, F(1, 15) < 1, or Session, F(11, 165) = 1.25, p = .26. 
It was significant from Session 1, t(15) = 2.75, p = .01, to 
Session 12, t(15) = 4.29, p < .001. See Figure 3 for a rep-
resentation of addend slopes without considering +6 
problems.

Discussion

In the present research, we investigated whether the results 
based on an arithmetic verification task are replicated 
when a more-ecological production task is used. This 
question is particularly important in the current theoretical 
context because, as explained in section “Introduction,” 
some assumptions of the instance theory of automatization 
(Logan, 1988) have been recently called into question 
using a verification task (e.g., Thevenot et al., 2020). It is 
therefore central to ensure that previous conclusions of the 
literature hold in a more-natural paradigm using a produc-
tion task. To this aim, we replicated Logan and Klapp 
(1991) and Thevenot et al.’s (2020) experiments using a 
production paradigm in an alphabet–arithmetic task rather 
than a verification paradigm, as used in the original 
experiments.

Exactly as in Thevenot et al. (2020), we found a signifi-
cant addend slope at the end of the learning phase. 
Therefore, contrary to Logan and Klapp’s (1991) conclu-
sion, the possibility that the decrease in the slopes and the 
decrease in solution times at the end of an alphabet–arith-
metic training is due to an acceleration of procedures 
rather than a progressive shift from counting to retrieval 
cannot be discarded. As also observed in previous studies, 
we found a decrease in solution times for problems involv-
ing the largest addend (+ 6 in the present experiment). 
Indeed, a discontinuity, or in other words, a drop in solu-
tion times was observed for these problems (see Figure 1), 
which were therefore obviously not processed as the oth-
ers. The numerous counting steps required to solve prob-
lems with the largest addend probably discouraged 
participants to count. Deliberate memorization of the asso-
ciations between operands and answers might have there-
fore been preferred over counting (Logan & Klapp, 1991; 

Figure 2. Difference in Solution Times between +5 and +6 
problems as a function of sessions.
Note. Difference in solution times between problems with addends 5 
and 6 across the 12 sessions. Error bars represent standard errors.

Figure 3. Addend slopes as a function of sessions.
Note. Addend slopes of solution times as a function of sessions for 
Group 1 (solid circles) and Group 2 (solid triangles), without taking +6 
problems into account. Error bars represent standard errors.
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Thevenot et al., 2020). Still, similar to the finding of 
Thevenot et al., the decrease in solution times, suggesting 
a deliberate memorization of problems with the largest 
addend, was not found for all participants.

The observation of a discontinuity in solution times for 
problems with the largest addend in a production as in a 
verification task is important because it confirms that end-
terms effects in the verification task were not fully respon-
sible to the special processing of these problems. More 
precisely, in verification task where the false equations are 
constructed by adding or subtracting a certain quantity to 
the correct answers (usually 1 or 2 to minimise the split 
between true and false answers), the answers proposed for 
the equations involving the largest addend are necessarily 
underrepresented. For example, in an experiment involv-
ing letters ranging from A to H, addends from two to six, 
and a split of one between the correct and the proposed 
false answer, the letter O is presented only when H + 6 = O 
has to be verified. This false equation including the letter 
O is therefore extremely salient and can be rejected easily. 
In a production task, such unavoidable statistical irregu-
larities in the material cannot impact the results.

Our result that production and verification tasks lead to 
the same pattern of results has important implications. It 
shows that the drop in solution times observed for prob-
lems with the largest addend is a generalizable phenome-
non. However, in this article using a production task, we 
found more breakers (i.e., 10 out of 17) than when a veri-
fication task was used by Thevenot et al. (i.e., 7 out of 21). 
Furthermore, the discontinuity observed in this article 
occurred earlier during practice than in Thevenot et al.’s 
verification task, that is, Session 3 instead of Session 7. It 
seems therefore that a production task more strongly elicits 
deliberate memorization of the associations between the 
elements of the problems and their answers for problems 
with the largest addend. An interpretation of this result will 
be provided later on in section “Discussion.”

It is very important to note that the decrease in solution 
times for problems with the largest addend challenges the 
instance theory of automatization. As explained by Logan 
and Klapp (1991), both repeated counting and deliberate 
memorization should lead to the creation of instances in 
long-term memory. Indeed, in the framework of the 
instance theory, what is important for automatization, or in 
other words for memory retrieval, is the number of traces 
made and not the way they are created. In this article, as 
well as in Logan and Klapp (1991) or Thevenot et al. 
(2020), the number of presentations of problems with the 
largest addend and the number of presentations of other 
problems is exactly the same. Therefore, according to the 
instance theory of automatization, there is no reason for 
problems with the largest addend to be committed faster to 
memory than other problems. Thus, the decrease in solu-
tion times observed for these problems compared with 
problems involving an addend immediately inferior to the 

largest demonstrates that they are not subjected to the prin-
ciples described in the instance theory of automatization. 
As a consequence, and at the very least, the slopes calcu-
lated in alphabet–arithmetic tasks need to be calculated 
after the exclusion of problems with the largest addend. As 
shown in this article using a production task, in Thevenot 
et al.’s using a verification task, and as estimated from 
Logan and Klapp (1991) depiction of data, excluding these 
problems results in a significant addend slope throughout 
the experiment, from the beginning until the end. As 
already explained, following Logan and Klapp’s rationale 
that “memory retrieval should produce a slope of zero in 
the linear function relating reaction time to the magnitude 
of the digit addend” (p. 180), a decrease in the addend 
slope across sessions, without its disappearance, is not suf-
ficient to infer a shift from counting to retrieval during the 
course of training. This invalidates Logan and Klapp’s 
conclusion but we cannot conclude that there was no shift 
towards retrieval during the experiments. Nevertheless, we 
can conclude that there is no sign of this shift from the 
evolution of addend slopes in alphabet–arithmetic tasks.

We have just shown and discussed that the qualitative 
results we observed concerning our variables of interest 
are very similar in a production and a verification task. We 
will now examine whether the results between the two 
tasks are also quantitatively similar when we consider the 
other variables that we analysed. The following compari-
sons are made between the results obtained in the produc-
tion task reported in this article and the true equations in 
the verification task reported in Thevenot et al. (2020). As 
a reminder, the material used in the two experiments is 
strictly the same. Concerning accuracy, the percentage of 
errors at the beginning of learning was descriptively higher 
in the production task (i.e., 8% and 5% in Session 1 for the 
production and verification tasks, respectively), but this 
small difference completely disappeared at the end of 
learning (i.e., 4% in both verification and production 
tasks). Therefore, the two tasks resulted in very similar 
error rates. Concerning solution times, it is difficult to 
make direct comparisons because of the difference in the 
way solution times are measured in the two tasks, that is, 
oral response in the production task versus keyboard press-
ing in the verification task. We can nevertheless compare 
the decrease in solution times from the first to the last ses-
sions of the learning phase. Again, they were very similar 
(i.e., a decrease in 49% in the verification task and of 45% 
in the production task). Finally, concerning the magnitudes 
of the addend slopes, they were lower in the production 
than in the verification task. In the first session, the addend 
slopes were 385 and 411 ms/addend for the production task 
and 441 and 487 ms/addend for the verification task when 
+6 problems were included and excluded, respectively. 
Interestingly, the addend slopes at the end of the verifica-
tion task were comparable with the addend slopes in the 
middle of the production task. More precisely, addend 
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slopes in Session 12 of the verification task were 163 and 
236 ms/addend, when +6 problems were included and 
excluded, respectively, whereas addend slopes in Session 
6 of the production task were 146 and 228 ms/addend, 
when +6 problems were included and excluded, respec-
tively. In Session 12, addend slopes in the production task 
were much lower than in the verification task, that is, 86 
and 165 ms/addend, when +6 problems were included and 
excluded, respectively.

Concerning the set of problems including problems 
with the largest addend, an explanation for smaller slopes 
at the end of training in the production task can be found in 
light of the results we obtained concerning breakers and 
non-breakers. As already noted, there were more breakers 
among the participants in this article using a production 
task compared with the verification task used by Thevenot 
et al. (2020), and the breakers in the production task 
showed the discontinuity in solution times earlier during 
the learning phase. Furthermore, in the end of the learning 
session, the difference in solution times between +5 and 
+6 problems was about 100 ms in the verification task (see 
Figure 8 of Thevenot et al.) and about 200 ms in the pro-
duction task (see Figure 2 in this article). All these results 
show that deliberate memorization of the problems with 
the largest addend is more prominent in a production than 
in a verification alphabet–arithmetic task. One possible 
interpretation is that in a verification task, the false answers 
that are proposed in half of the trials interfere with the cor-
rect answers, hence more difficult associations between 
the different elements of the problems (e.g., Siegler & 
Shrager, 1984). Concerning the set of problems without 
problems with the largest addend, smaller slopes in the 
production than in the verification task could be due to a 
higher acceleration of counting procedures in the produc-
tion task. Alternatively, this difference could be due to 
more numerous shifts from counting to retrieval in the pro-
duction than in the verification task. As already mentioned, 
it is not because such shifts are not evidenced by our results 
that they never occur. Nevertheless, it is unlikely that fur-
ther training in a verification task would lead to the same 
level of performance as in a production task, and a fortiori, 
would lead to a complete shift from counting to retrieval. 
Indeed, Thevenot et al. (2020, Experiment 1) ran an alpha-
bet–arithmetic task over 25 instead of 12 sessions and 
showed that the addend slopes across sessions were always 
different from 0 (i.e., from Session 1 to Session 25). More 
crucially for the present point, there was no significant dif-
ference in the size of addend slopes between Sessions 12 
and 25. The asymptote was therefore reached by Session 
12, showing that from this point onwards, there was no 
further evolution in participants’ strategy choices.

To sum up, the overall pattern of results obtained in this 
study using a production task replicates the results obtained 
in a verification task. We can therefore conclude that veri-
fication and production tasks rely on the same general cog-
nitive mechanisms, at least when the split in the verification 

task between the correct and the proposed answer is small. 
It could be interesting to test in future studies whether 
manipulating the size of the split can affect alphabet–arith-
metic tasks (e.g., D + 3 = P). In fact, even if we show here 
that using a production or a verification task provide simi-
lar results, this does not mean that, in the previous litera-
ture, all studies using a verification task could have been 
conducted using a production task and vice versa. Rather, 
the choice of the task depends on the purpose of the study. 
If the goal of the researchers is to collect precise and eco-
logical data, then a production task is more appropriate. 
However, such level of precision is possible only when 
participants give their response orally and when, to correct 
for voice-key failures, solution times for each of the oral 
response are manually adjusted to correspond to the onset 
of the spectrogram (e.g., Poletti et al., 2021). Despite the 
precision of such approach, not any questions can be 
answered directly using a production task. The distance 
(i.e., split) between the proposed and the correct answers 
can obviously be manipulated only in a verification task. 
As already evoked above, this kind of manipulation 
allowed researchers to discover that when the split is large, 
individuals do not always engage in a costly solution pro-
cess leading to the exact answer but can decide that the 
answer is false on the basis of a plausibility judgement 
(e.g., Duverne & Lemaire, 2004, 2005; Hinault et al., 
2016). The question of whether individuals have interior-
ised and can use rules such as the parity rule (e.g., the addi-
tion of two even numbers cannot result in an odd number) 
or the multiple-of-five rule (i.e., multiplying a number by 
5 necessarily results in an answer ending by a 0 or a 5) can 
also be easily addressed using verification tasks (e.g., 
Krueger, 1986; Masse & Lemaire, 2001). Within such 
design, it is possible to directly observe whether a false 
equation is rejected quicker when the proposed answer 
violates the rule than when it does not. It is also possible to 
infer such rule use in production tasks by comparing solu-
tion times on different problems (e.g., involving a 5 or not; 
Miller et al., 1984), but this approach seems to be more 
inferential than using a verification task. Finally, verifica-
tion tasks can sometimes be more appropriate when 
researchers aim at recording brain activity (e.g., Avancini 
et al., 2014; Mathieu et al., 2018). Given that arithmetic 
problems can be mentally represented in a verbal format 
(Dehaene, 1992), interference between an oral answer and 
the problem-solving process can be more detrimental to 
recordings than interference between the solving process 
and a purer motor task (i.e., pressing a key for decision). 
Still, to overcome these complications, delayed production 
or delayed verification tasks can also be used (e.g., 
Bagnoud, Dewi, & Thevenot, 2021; Didino, 2011).
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