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Abstract: Plant growth-promoting rhizobacteria (PGPR) are a group of root-associated beneficial
bacteria emerging as one of the powerful agents in sustainable plant disease management. Among
the PGPR, Bacillus sp. has become a popular biocontrol agent for controlling pests and the diseases
of several crops of agricultural and horticultural importance. Understanding the molecular basis
of the plant growth-promoting and biocontrol abilities of Bacillus spp. will allow us to develop
multifunctional microbial consortia for sustainable agriculture. In our study, we attempted to unravel
the genome complexity of the potential biocontrol agent Bacillus subtilis Bbv57 (isolated from the
betelvine’s rhizosphere), available at TNAU, Coimbatore. A WGS analysis generated 26 million reads,
and a de novo assembly resulted in the generation of 4,302,465 bp genome of Bacillus subtilis Bbv57
containing 4363 coding sequences (CDS), of which 4281 were functionally annotated. An analysis of
16S rRNA revealed its 100% identity to Bacillus subtilis IAM 12118. A detailed data analysis identified
the presence of >100 CAZymes and nine gene clusters involved in the production of secondary
metabolites that exhibited antimicrobial properties. Further, Bbv57 was found to harbor 282 unique
genes in comparison with 19 other Bacillus strains, requiring further exploration.

Keywords: Bacillus subtilis; Bbv57; whole genome sequence; biocontrol agent; PGPR; secondary metabolites

1. Introduction

Plant diseases due to fungi, bacteria, viruses, Candidatus phytoplasma, fastidious vascu-
lar bacteria, and viroids cause an estimated yield loss of 14% in diverse crops of agricultural
importance, leading to an economic loss of 220 billion U.S. dollars [1] The transboundary
movement of pathogens introduces new diseases in several geographical locations, which
poses a threat to global food security [2]. To sustain crop productivity against diseases,
chemicals are used, which is inadvertently responsible for environmental pollution and
health hazards [3]. In this context, the cultivation of resistant varieties and use of biocontrol
agents will minimize the use of synthetic chemicals. This approach will protect the envi-
ronment in addition to sustaining ecological balance. The rhizosphere harbors beneficial
microorganisms that have potential to be used as biopesticides in plant disease manage-
ment and to induce systemic resistance in the host [4]. These rhizospheric bacteria such as
Bacillus, which belongs to the family Bacillaceae, were found to contain bioactive molecules
with growth-promoting activity and antagonistic effects against phytopathogens [5]. Its
faster growth rate and resistance to adverse environmental conditions through the pro-
duction of endospores have made Bacillus a popular biocontrol agent [6]. Bacillus was
also reported to produce volatile compounds exhibiting growth promotion and triggering
defense mechanisms in plants [7,8].
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In one of our earlier studies, a potential bioinoculant, Bacillus subtilis Bbv57, exhibiting
fungicidal/bactericidal/nematicidal properties was isolated from a betelvine’s rhizosphere
(accession No. MW282917; [9]. B. subtilis Bbv57 is a Gram-positive rod-shaped bacterium
arranged in pairs or chains with rounded or square ends, usually has a single endospore,
and is able to grow between 4 ◦C to 45 ◦C. It utilizes citrate, hydrolyze starch, and gelatin
while reducing nitrate. The presence of genes encoding antimicrobial peptides, viz., iturin
(ItuD), surfactin (srfA; sfp), bacilysin (bacAB; bacD), bacillomycin D (bamD), fengycin (fenB),
ericin (eriB), mycosubtilin (mycC), and subtilin (spaB), was analyzed in B. subtilis Bbv57
through PCR. Additionally, the presence of two quorum-sensing genes, aiiA and comQ,
was also reported [9,10]. The isolate synthesizes hydrogen cyanide (HCN), IAA, GA3, SA,
siderophore, protease, exopolysaccharides, and biofilm, and it possesses intrinsic antibiotic
resistance to ampicillin, erythromycin, and clindamycin and intermediate resistance to
cephalothin and oxacillin. A bioassay using the crude extract of Bbv57 revealed its antago-
nistic effect against F. oxysporum and Meloidogyne incognita in gerbera and increased flower
yield by 23.36% [9,11]. The crude lipopeptide antibiotics of Bbv57 exerted lethal effects on
the eggs and juveniles of the root-knot nematode for up to 72 h of exposure, compared with
that of a control [12,13]. The conserved ITS region 16SrRNA of Bbv57 was amplified with
an amplicon size of 1460 bp, sequenced, and deposited in the NCBI database (Accession No.
MW282917). However, whole genome sequencing (WGS) of the isolate Bbv57 unravels the
molecular basis of its plant growth-promoting and antimicrobial properties. The efficiency
of WGS in differentiating some closely related Bacillus sp. was reported earlier [14]. Further,
WGS may also enable the identification of carbohydrate-active enzymes (CAZymes) and
secondary metabolites that play a major role in biocontrol properties [3,11].

Sophisticated bioinformatics tools like SMURF and antiSMASH have powered the
identification of biosynthetic gene clusters (BGCs) and secondary metabolite gene clus-
ters (SMGC) [15–18]. Based on the above facts, our study aimed to unravel the genome
complexity of Bacillus subtilis Bbv57 to identify the genetic factors underlying its plant
growth-promoting and biocontrol properties. WGS, combined with a detailed bioinfor-
matics analysis, identified novel gene clusters in Bbv57 that encoded for CAZymes and
secondary metabolites. This study provides insight into the genome of B. subtilis Bbv57
and thus exploits its genetic potential in future research.

2. Results
2.1. Genomic Features of Bacillus subtilis Bbv57

The whole genome sequencing of B. subtilis Bbv57 yielded 4,302,465 bp with an
average G + C content of 44.5%, five copies of the rRNAs operon (16S, 23S and 5S RNA),
and 76 tRNA genes. The Bbv57 genome was predicted to contain 4363 coding sequences
(CDS), of which 4281 were functionally annotated (Table 1). All the protein-coding genes
were assigned to COGs (cluster of orthologous groups). The functional classes defined
by COGs indicated that B. subtilis Bbv57 harbors a high proportion of proteins involved
in amino acids transport and metabolism (COG E) and transcription (COG K), followed
by carbohydrate transport and metabolism (COG G). Sixty-six different protein-encoding
genes were found to be involved in defense mechanisms (COG V) (Table 2).
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Table 1. The general genome feature of Bacillus subtilis.

Feature Value

Genome size (bp) 4,30,2465

G + C content 44.5%

Total number of genes 4363

Total size of protein-coding genes 3,735,486

Protein-coding genes 4281

Average CDs size (bp) 872.57

rRNA number 5

tRNA number 76

tmRNA number 1

Pseudogenes (total) 27

Table 2. COG categories of Bacillus subtilis.

COG Code Number Proportion Description

J 210 4.91 Translation, ribosomal structure, and biogenesis

A 1 0.02 RNA processing and modification

K 352 8.22 Transcription

L 157 3.67 Replication, recombination, and repair

B 1 0.02 Chromatin structure and dynamics

D 47 1.10 Cell cycle control, cell division, and chromosome partitioning

Y 0 0 Nuclear structure

V 66 1.54 Defense mechanism

T 189 4.41 Signal transduction mechanisms

M 234 5.47 Cell wall/membrane/envelope biogenesis

N 68 1.59 Cell motility

Z 0 0 Cytoskeleton

W 0 0 Extracellular structures

U 56 1.31 Intracellular trafficking, secretion, and vesicular transport

O 106 2.48 Post-translational modification, protein turnover,
and chaperons

C 229 5.35 Energy production and conversion

G 335 7.83 Carbohydrate transport and metabolism

E 406 9.48 Amino acid transport and metabolism

F 121 2.83 Nucleotide transport and metabolism

H 136 3.18 Coenzyme transport and metabolism

I 120 2.80 Lipid transport and metabolism

P 285 6.66 Inorganic ion transport and metabolism

Q 92 2.15 Secondary metabolites biosynthesis, transport, and catabolism

R 0 0 General function prediction only

S 1086 25.37 Function unknown

- 117 2.73 Not in COGs
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2.2. Bacillus sp. Bbv57 Shares Significant Similarity with Bacillus subtilis

The 16S ribosomal gene similarity was analyzed using a BLAST search against the 16S
ribosomal RNA database in CLC workbench 21.0.3; thus, we identified Bacillus subtilis IAM
12118 as a top hit with e value 0 and 100% sequence identity. An ANI-based whole genome
analysis of 20 different Bacillus strains showed that Bacillus subtilis Bbv57 was closely related
to other 11 different Bacillus strains with ANI values of 0.97 or higher (Figure 1). Bacillus
subtilis Bbv57 and Bacillus subtilis BSP1 had the maximum ANI value (97.67%). An analysis
of the 16S rRNA sequence and ANI analysis confirmed the identity of Bbv57 as Bacillus
subtilis (Figure 2).
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2.3. Bbv57 Harbors Novel Genes Encoding for CAZymes

CAZymes are a group of enzymes possessing key roles in carbohydrate metabolism [19],
and information on CAZymes is stored in the CAZy database (www.cazy.org, accessed on
16 July 2022). CAZymes are grouped into five different classes, viz., glycoside hydrolases
(GHs), glycosyltransferases (GTs), polysaccharide lyases (LPs), carbohydrate esterases
(CEs), and auxiliary activities (AAs). A bioinformatic analysis of the Bbv57 genome se-
quence information identified 65 glycoside hydrolases (GHs), 53 glycosyltransferases
(GTs), and 32 carbohydrate-binding modules (CBMs) belonging to the group of CAZymes
(Figure 3). Bacillus subtilis Bbv57 was found to harbor potential antifungal CAZymes, viz.,
endo β1,4 glucanase (GH 5), chitinase (GH18), endoglucanase (GH51), and xyloglucanase
(GH16), which have the potential to inhibit the growth of plant pathogens. The distribution
of CAZymes in the Bacillus subtilis Bbv57 suggests that it poses a secondary metabolic
potential for this strain.

www.cazy.org
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Figure 3. Distribution of the carbohydrate active enzyme (CAZy) family protein identified in the
genome of B. subtilis Bbv57.

2.4. Bacillus subtilis Bbv57 Harbors Genes Encoding for Antimicrobial Secondary Metabolites

The Bbv57 genome was found to harbor genes encoding for novel secondary metabo-
lites having antimicrobial properties. Three gene clusters encoding NRPS (non-ribosomal
peptide synthetase), two gene clusters encoding for terpene biosynthesis, one gene clus-
ter for T3PKS (Type III polyketide synthetase), one cluster for CDPS (Cyclodipeptides
synthetase), one cluster for sactipeptide biosynthesis, and one gene cluster encoding for
bacilysin biosynthesis were all identified in the Bbv57 genome. Among the three gene
clusters encoding for NRPS, one cluster was found to exhibit 100% similarity with genes
involved in fengycin and piplastin synthesis, another cluster showed 100% similarity with
gene clusters involved in bacillibactin and paenibactin synthesis, and the third cluster was
found to exhibit 82% similarity with genes involved in the biosynthesis of surfactin. The
gene cluster encoding for sactipeptide synthesis showed 100% similarity with subtilosin A
(Figure 4).
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Figure 4. Secondary metabolites’ gene clusters with antimicrobial metabolites in Bacillus subtilis
Bbv57, identified by antiSMASH 6.0 (a) Bacillibactin, (b) bacilysin, (c) subtilosin A, (d) fengycin,
(e) piplastin, (f) paenibactin, and (g) surfactin.

A functional categorization by gene ontology (GO) terms was performed based on
the Blastx hits from the nr database using Blast 2 GO annotation in OmicsBox 2.0.10.
Twenty GO terms belonging to biological processes, 7 GO terms belonging to cellular
components, and 10 GO terms belonging to molecular function classes were identified
(Figure 5).
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2.5. Pangenome Analysis of B. subtilis Bbv57

The pangenome model developed by involving 20 strains of Bacillus, comprised of
12 strains of B. subtilis and 8 strains of Bacillus species, indicated a close genetic relation-
ship between Bbv57 and other Bacillus subtilis strains. There was only minimal variation
in the gene content between the Bacillus subtilis strains. The pangenome of 20 Bacillus
strains consisted of 28404 genes, of which 4281 genes belonged to Bacillus subtilis Bbv57.
B. subtilis Bbv57 was found to harbor some unique gene clusters putatively present in
B. amyloliquefaciens (Figure 6a,b).
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Figure 6. Bacillus subtilis pangenome. The pangenomes of six Bacillus sp. were determined using the
Roary matrix. A total of 28,404 sets of orthologous proteins were found. (A) A heatmap showing the
gene presence (dark blue) or absence (light blue) in each of the 20 strains. A phylogeny built based on
the core genes is shown on the left, and the species names are indicated on the right. (B) A histogram
displaying the distribution of genomes per gene is found within.
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3. Discussion

Plant growth-promoting rhizobacteria (PGPR), a group of root-associated bacteria, are
involved in modulating plant health and soil fertility through the production of bioactive
substances [8]. Among the reported PGPR, Bacillus is one of the most exploited bacte-
rial genera for plant growth promotion and biocontrol activity [3]. It suppresses plant
pathogens by producing antibiotic metabolites or by stimulating the host’s defense path-
ways (Van Loon, 2007). Several strains of the genus Bacillus have become popular biocontrol
agents [20,21]. The author proved that the broad-spectrum activities of Bacillus are at-
tributed to its ability to produce a number of secondary metabolites, including antibiotics,
volatile HCN, siderophores, chitinase, and ß 1,3-glucanase [22]. It was also demonstrated
that Bacillus modulates plant growth through the production of IAA, gibberellin, and cy-
tokinin [23]. Bacillus harbors various antibiotic biosynthetic genes, viz., iturin A, surfactin,
zwittermicin A, and bacillomycin D [24]. Hence, the genome mining of Bacillus spp. must
be carried out to unravel its genetic potential and to exploit the identified genes/proteins
for a disease management program.

In our previous study, we isolated Bacillus subtilis Bbv57 from a betelvine’s rhizo-
sphere and found it to exhibit antagonistic activity against a variety of phytopathogens
and nematodes [9]. Thin-layer chromatography studies of Bbv57 extracts showed the
presence of surfactin and iturin, which were attributed to its inhibitory action against
F. oxysporum [11]. Similarly, a gas chromatography–mass spectrometry (GCMS) analysis
detected the aliphatic hydrocarbons, viz., butanedioic acid, hexadecanoic acid ethyl ester,
pentanedioic acid 2-oxo-dimethyl ester, pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-
methylpropyl), pyrrolo [1,2-a]pyrazine-1,4-dione, and hexahydro-3-(phenylmethyl) ester,
possessing antifungal, antibacterial, and antinematicidal activity [9]. Thus, the presence of
these antimicrobial metabolites in B. subtilis Bbv57 might play an important role in its antag-
onistic activity against phytopathogens. Bacillus subtilis can directly prevent the infection
of the phytopathogens by releasing the aiiA enzyme, which inactivates acyl homoserine
lactone molecules that regulate the expression of virulence genes in plant pathogens [25].
B. subtilis naturally colonizes plant roots by forming a thin biofilm that is important for its
root colonization and protection. The culture filtrate from the strain Bbv57 significantly
reduced the egg-hatching capacity and juvenile mortality of M. incognita [9].

In this study, whole genome sequencing combined with bioinformatics analysis shed
more light on the molecular basis of the plant growth-promoting and biocontrol abilities of
Bacillus spp. Bbv57. A detailed sequence analysis of 16s rRNA revealed its 100% identity
against Bacillus subtilis. This was further confirmed through an alignment of whole genome
sequence information against 19 other Bacillus strains in the database. An ANI analysis
indicated >97% sequence similarity with the Bacillus subtilis strain BSP1. An analysis for
the presence of CAZymes in the genome of Bacillus subtilis Bbv57 identified 65 glycoside
hydrolases (GHs), 53 glycosyltransferases (GTs), and 32 carbohydrate-binding modules
(CBMs). Specific antimicrobial enzymes, viz., endo β1,4 glucanase (GH 5), chitinase (GH18),
endoglucanase (GH51), and xyloglucanase (GH16) were also noticed. The author also
reported the antifungal activity of Bbv57 against Fusarium oxysporum f. sp. gerberae and
Meloidogyne incognita [9]. In addition, an analysis of the Bbv57 genome for the presence
of secondary metabolites showed the presence of antimicrobial genes, which are effective
against pathogens. Secondary metabolite gene clusters involved in the biosynthesis of
fengycin, piplastin, bacillibactin, paenibactin, surfactin, and subtilosin A were also present
in Bbv57. In an earlier study, Bacillus subtilis EBPBS4, exhibiting a high level of antagonistic
activity against rice sheath blight, was found to harbor 13 antimicrobial peptide genes, viz.,
iturin A, iturin D, iturin C, surfactin, bacilysin, fengycin, ericin, mycosubtilin, subtilosin,
and mersacidin apart from plant growth-promoting genes [5]. The genome of B. subtilis PTA-
271 possessed secondary metabolites, viz., bacillaene, subtilosin, bacilysin, fengycin, and
surfactin, which showed antagonistic activity against a broad spectrum of pathogens [15].
Bacillus subtilis genome(s) of various isolates harbor novel genes exhibiting antagonistic
activity against plant pathogens and/or the capability of activating induced systemic
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resistance in plants (Table 3). In our study, the whole genome sequencing of Bacillus subtilis
Bbv57 identified the genes encoding for novel antimicrobial peptides associated with its
biocontrol properties.

Table 3. Functions of genes in the genome of various Bacillus subtilis isolates.

Sl. No. Isolate Predicted Functions Reference

1. B. subtilis EBPBS4 Iturin, surfactin, bacillomycin D, fengycin,
ericinmycosubtilin, subtilosin, and mersacidin [5]

2. Bacillus subtilis MBI600

Fengycin, surfactin, bacillaene, bacillibactin,
subtilosin A, basilysin, carbohydrate transport
and metabolism, aminoacid transport and
metabolism, nitrate transporter, magnesium
transporter, and potassium uptake

[26]

3. Bacillus subtilis PTA-271
Catecholicsiderophore, surfactin, fengycin,
acetoin, 2,3-butanediol, and
N-acyl-L-homoserine lactone

[15]

4. Bacillus subtilis

Carbohydrate transport and metabolism, amino
acid transport and metabolism, endo-1,
4-ß-glucanase, endo- ß -1,3-,4glucanase, xylose
isomerase, and pectatelyase

[27]

5. Bacillus subtilis BAB-1
Non-ribosomal peptide synthetase (NRPS)
antibiotics, polyketide synthase (PKS) antibiotics,
lantibiotics, surfactin, fengycin, and bacillibactin

[28]

6. Bacillus subtilis XF-1

Antimicrobial lipopeptides (surfactin and
fengycin), polyketides (macrolactin and
bacillaene), bacillibactin, bacilysin,
and chitosanase

[29]

7. Bacillus subtilis CMB32 Antifungal lipopeptides [30]

8. B. subtilis isolate ME488 Possessing secondary metabolites ituC, ituD,
bacA, bacD, mrsA, and mrsM [31]

9. Bacillus subtilis Iturin and fengycin [32]

10. Bacillus subtilis GA1 Lipopeptides [33]

11. Bacillus subtilis BBK1 Bacillomycin L, plipastatin, and surfactin [34]

4. Materials and Methods
4.1. Isolation and Maintenance of Bacterial Strain Bbv57

The strain Bacillus subtilis Bbv57 with growth-promoting activity and antagonistic ac-
tivity against phytopathogens and nematodes, isolated from the rhizosphere of a betelvine,
was used [9]. The pure culture of the organism was stored in a glycerol stock at −20 ◦C for
further studies.

4.2. Genome Sequencing of Strain B. subtilis Bbv57

A single colony of Bacillus subtilis strain Bbv57 was inoculated in Luria–Bertani (LB)
nutrient broth and grown overnight at 28 ◦C in an incubator shaker. The genomic DNA was
then extracted from the grown cells using the cetyltrimethyl ammonium bromide (CTAB)
method [9]. The grown culture was centrifuged at 6000 rpm for five minutes at 4 ◦C. The
pellet was suspended in 1 ml TE buffer and 0.5 mL butanol and centrifuged at 5000 rpm for
five minutes at 4 ◦C. The pellet was added with 100 µL lysozyme (10 mg/mL) and incubated
at room temperature for five minutes. We then added 150 µL of 1% CTAB solution, mixed
well, and incubated it at 65 ◦C for ten minutes. The mixture was extracted with 1 mL of
phenol:chloroform mixture, mixed well, and centrifuged at 6000 rpm for 15 min at 4 ◦C.
The aqueous layer was separated, and 0.6 volume of ice-cold isopropanol was added and
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incubated overnight at −20 ◦C. The DNA was pelleted by centrifugation at 12,000 rpm for
15 min at 4 ◦C. The pellet was washed with 70% ethanol, dried under a vacuum for 10 min,
and resuspended in 50 µL of TE buffer. The DNA was stored at −20 ◦C for further use. The
integrity of the DNA was confirmed on a 0.8% agarose gel electrophoresis, and its quality
and quantity was assessed using a NanoDrop spectrophotometer. The DNA library for
genome sequencing was prepared from high-quality genomic DNA using the Nextera XT
DNA Library Preparation Kit and TruSeq Nano DNA Kit and sequenced using Illumina
platform (PE 2 × 150 bp) (Table 4). The experimental data are available in NCBI (Accession
PRJNA794929).

Table 4. Genome sequencing information of Bacillus subtilis.

Property Term

Sequencing finishing quality High quality draft

Libraries used Illumina paired-end library (2 × 150 bp insert size)

Sequencing platform IlluminaHiseq

Assemblers SPAdes

Gene-calling method Prodigal

BioProject PRJNA794929

BioSample SAMN24663524

Source material identifier Bacillus subtilis

Project relevance Biocontrol

4.3. Genome Assembly and Annotation

The obtained raw reads were filtered using FastQC version 0.11.9 [35] and sickle
version 1.33 [36]. The high-quality adapter-free filtered reads were assembled using SPAdes
version 3.9.0 [37] and polished by pilon [38]. The polished sequences were used for ref-
erence to guide the scaffolding with Bacillus subtilis subsp subtilis str 168 (AL009126.3)
by ragtag [39]. The gene prediction was performed using Prodigal version 2.6 [40] and
annotated using Prokka version 1.12 [41]. A circular map of the strain Bbv57 genome was
constructed using a CG viewer [42] (Figure 7). The genes were mapped onto pathways
against the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Clusters of Ortholo-
gous Groups (COG) classification, and the Gene Ontology (GO) database using OmicsBox
2.0.10 [43].
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4.4. Molecular Confirmation of Bacillus subtilis Bbv57

The short reads of Bbv57 were processed using CLC Genomics workbench v 21.0.3
(CLC bio, Aarhus, Midtjylland, Denmark). The filtered reads were searched against the 16S
ribosomal RNA sequences database using the Blastn program using default parameters.
The average nucleotide identity (ANI) between Bacillus subtilis Bbv57 and 19 other Bacillus
strains in the database was calculated using the ANI calculator [44]. An ANI-based phy-
logenetic tree of 20 different Bacillus strains was constructed with MASH clustering [45].
A pangenome analysis of 20 different Bacillus strains was carried out to analyze the gene
differences using the Roary matrix [46].

4.5. Prediction of Genes Encoding for CAZymes and Secondary Metabolites in Bacillus subtilis Bbv57

The predicted protein sequences of Bacillus subtilis Bbv57 were aligned with the carbo-
hydrate active enzyme (CAZy) database [19] using OmicsBox 2.0.10 [43]. The secondary
metabolite gene clusters were identified using antiSMASH 6.0.1 [47].

5. Conclusions

Thus in our study, whole genome sequencing of Bacillus subtilis Bbv57 generated
4,302,465 bp and permitted us to assemble the draft genome of B. subtilis Bbv57 and to
identify its unique features. A detailed bioinformatics analysis of 16S rRNA genes and
an ANI analysis revealed its close genetic/sequence similarity to Bacillus subtilis. Bbv57
was found to harbor > 100 CAZymes and several antimicrobial secondary metabolites,
contributing to its biocontrol activities. A pangenome analysis involving 20 other strains of
Bacillus revealed that Bbv57 contains 282 unique genes out of its 4281 total number of genes.
These 282 unique genes need further exploration. Overall, our study generated molecular
evidences for the antagonistic properties of Bbv57 against plant diseases and thus paved
way for its large-scale application in sustainable agriculture.
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