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Cell-free transcription–translation is an expanding field in synthetic biology as a rapid
prototyping platform for blueprinting the design of synthetic biological devices. Exemplar
efforts include translation of prototype designs into medical test kits for on-site identifica-
tion of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged
and re-designed within rapid turnover times. Coupled with mathematical modelling, this
discipline lends itself towards the precision engineering of new synthetic life. The next
stages of cell-free look set to unlock new microbial hosts that remain slow to engineer
and unsuited to rapid iterative design cycles. It is hoped that the development of such
systems will provide new tools to aid the transition from cell-free prototype designs to
functioning synthetic genetic circuits and engineered natural product pathways in living
cells.

Introduction
Cell-free systems represent a historically important component of the founding of the field of bio-
chemistry. Ever since the pioneering efforts of the Nobel laureate Eduard Buchner (Nobel Prize in
Chemistry in 1907) and his discovery of fermentation in yeast cell extracts [1], cell-free systems have
been repurposed towards the further understanding of biological processes. Indeed, arguably one of
the most notable biological discoveries of the 20th century was the unravelling of the genetic code by
Nirenberg and colleagues [2–4], which was underpinned by the use of Escherichia coli cell extracts to
study coupled transcription–translation (TX–TL). Together with Har Khorana and Robert Holley, this
resulted in a shared Novel Prize in Physiology or Medicine in 1968. On this theme, the efforts of
Alfred Goldberg led to the unveiling of an ATP-dependent mechanism for protein degradation by ubi-
quitin in a mammalian cell-free system [5].

Cell-free synthetic biology
Today, with the rise of synthetic biology and the design and construction of synthetic life [6], cell-free
systems have yet again found a niche towards the understanding of biological networks and biosyn-
thetic pathways [7,8]. Indeed, by isolating the cellular components of core metabolism and the TX–TL
network within a test tube, this allows the synthetic biologist to study systems without the regulatory
constraints and limitations of a dividing, evolving or adapting living cell. This mini-review summarises
the efforts of recent cell-free synthetic biology research and the opportunities it provides for the
future.
Cell-free coupled TX–TL utilises the core machinery of RNA polymerase holoenzyme, the transla-

tion apparatus (ribosomes, tRNA synthetases and translation factors) and energy regeneration
enzymes to amplify a set of DNA instructions into the target protein(s) of choice (Figure 1A).
Therefore, the study of cell-free presents an enticing opportunity to the synthetic biologist to design
and engineer living systems from the bottom-up as prototype designs. Exemplar demonstrations of
cell-free synthetic biology include their use as biomolecular ‘breadboards’ [9,10], healthcare biosensors
[11,12] and enzyme cascades [13–16]. Coupled with the aid of computational design approaches
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[10,17–19], these early developments in cell-free synthetic biology will endeavour to aid the engineering of
more complex systems. We shall now summarise the cell-free platforms available, with a specific focus to its
use in prototyping genetic circuits.

E. coli cell-free — purified recombinant elements or crude cell extract?
The choice of a well-characterised cell-free system almost entirely resides with E. coli platforms, which are
based on either a crude cell extract [20–23] or a system of purified recombinant elements (PURE) [24,25]. A
vital area of importance to cell-free systems is the process of energy regeneration, which represents the major
cost factor and limitation for both the PURE and cell extract-based routes. First, transcription requires nucleo-
tide triphosphates (NTPs — ATP, UTP, GTP and CTP), with each mRNA transcript utilised multiple times for
protein synthesis [26]. Protein translation is the major energy cost factor and requires two ATP equivalents for
tRNA aminoacylation and two GTP equivalents per peptide bond formed [27]. In addition, a single GTP
equivalent is required for each of the initiation and termination steps. Therefore, a small sized 25 kDa protein
costs ∼35–44 mM of ATP to synthesise 1 mg/ml under batch synthesis [27].
First, in respect to the PURE system [25], this includes the purified components (108 in total) of the entire

E. coli translation machinery including ribosomes, 22 tRNA synthetases, initiation factors, elongation, release
and termination factors, which when combined with T7 RNA polymerase, tRNA, energy regeneration enzymes,
substrates (amino acids and creatine phosphate) and synthetic DNA instructions, this reconstitutes the entire
TX–TL network within a test tube. This rather remarkable engineering feat is commercially available as the
PURExpress® kit (New England Biolabs). While the high cost of the system prohibits scaled-up applications, a
variety of cell-free researchers utilise the PURExpress® system to study the dynamics and kinetics of TX–TL
[24,28–32]. The major advantage of the PURE system is it’s high efficiency due to an absence of competing
side reactions such as non-specific phosphatases [24], which rapidly degrade the energy source.
In contrast, a crude cell extract provides an inexpensive route to protein synthesis. In addition, unlike the

PURE system, reactions are scalable into high-volume fermentation conditions [33,34]. However, with the pres-
ence of other primary and secondary pathway enzymes (phosphatases and amino acid biosynthesis), this leads
to undesirable side reactions during catabolism of the starting energy source. Importantly, based on improve-
ments in energy regeneration schemes by the groups of Swartz [27,35–37], Jewett [38,39] and Noireaux [40–
42], powerful cell extract-based batch systems can now reach recombinant protein yields of up to 2.34 mg/ml
[33,40], while extended steady-state synthesis can be achieved through the use of a semi-permeable dialysis
membrane device, thus elevating protein yields up to 6 mg/ml [40]. In addition, inexpensive energy sources

Figure 1. Summary of cell-free TX–TL.

(A) TX and TL process and requirements of NTPs and substrates (ATP, GTP, tRNA and amino acids). (B) Energy regeneration

cycle for central metabolism. ATP is synthesised through the formation of inverted vesicles, which spontaneously form during

cell disruption [37]. Abbreviations: MQ, menaquinone; MQH2, reduced menaquinone.
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such as glucose [27], glutamate [33], maltose/maltodextrin [41] and succinate [43] can be utilised to reduce the
cost of energy regeneration in cell-free systems (Figure 1B). To this end, various cell extract protocols have
been developed and are based on the harvesting of cells at exponential phase, when typically intracellular trans-
lation is at its peak. Standardised protocols involve washing the cells, mechanical lysis [38] and activation of
the extract through a run-off reaction, a process believed to degrade endogenous mRNA transcripts and
genomic DNA that can reduce cell-free translation efficiency [23]. Additional dialysis can also remove inhibi-
tory small molecules, but the requirement of this varies between E. coli strains and user preference [38].

Cell-free prototyping
Cell-free TX–TL provides the ability to study gene expression in isolation with the timescale from DNA to
experimental results taking a few hours [10,44,45], whereas depending on the host chassis, an in vivo based
approach can take several days to weeks. Thus, cell-free provides a prototyping approach (Figure 2) for rapid
cycling between circuit experimental design and debugging [9]. To enable cell-free prototyping, fluorescence
tags that monitor both mRNA and protein synthesis can be studied in real time [29,40,46,47], thus providing
dual microscale quantitative data of the TX–TL cascade that can be difficult to achieve within a living cell. In
addition, the starting concentration of the substrates and relative enzyme stoichiometry can be determined
[40], thus aiding system identification and mathematical modelling of the chemical reaction dynamics
[9,17,18]. These models can be used to inform future circuit designs as part of an iterative design process. In
vivo, the cellular components are constantly being diluted by cell growth and division as well as being synthe-
sised. In contrast, batch cell-free reactions are closed systems starting with a limited set of initial resources.
These differences make direct comparisons between in vivo and cell-free reaction dynamics of complex multi-
promoter circuits difficult. One method to combine the rapid prototyping benefits of cell-free while emulating
the conditions found in living cells is to use microfluidic devices to allow the continuous dilution and replen-
ishment of the reaction substrates. This method was used to design three- and five-node ring oscillators in cell-
free, based on the utilisation of PCR templates to test initial prototypes, before a model-inspired
design-build-test cycle led to circuit designs that were also found to function in cells [48]. On this theme, cell-
free provides a dynamic biochemical system that can be accurately described by mathematical modelling [9].

Figure 2. Prototyping cell-free TX–TL systems.

A workflow for the prototyping of new microbial platforms, coupled with DNA libraries, testing and computational modelling.
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In another context, cell-free prototyping can also be useful towards the design of synthetic cells. At the
systems level, central to this effort is the further understanding of cellular compartmentalisation. Owing to its
difficulty, especially at the structural level, a perhaps understudied area of biology is the dynamics of protein
folding in the lipid membrane bilayer. Cell-free uniquely provides an opportunity to study the folding of mem-
brane proteins [49], while in synthetic microfluidic-based liposomes, enzymes and substrates can be transported
from one cell to another, demonstrating a simple recreation of membrane trafficking [50]. Towards complexity,
cell-free systems have also begun to be implemented for the assembly of large protein complexes. The bacterio-
phage represents a simple life form with a package of genes within a protein shell, which is released upon inva-
sion of a cell to hijack the hosts TX–TL apparatus. A classically studied system is the T7 bacteriophage [51]
that infects E. coli. Through cell-free, it has now been shown possible that the 40 kb dsDNA genome of the T7
bacteriophage, which constitutes 57 genes, can be reconstituted in vitro to demonstrate the assembly of a
natural protein compartment [52]. This is also expandable to other bacteriophage systems [40]. Moving aside
beyond biological compartmentalisation, cell-free is also portable to the interface of nanotechnology for study-
ing gene expression and synthesising protein nanotube on biochips [53]. Together these examples of compart-
mentalisation demonstrate an extra level of complexity in cell-free systems for prototype designs, which may
aid in the design of new synthetic cells in the future.

Non-model cell-free platforms
Viewed from a different perspective, synthetic biology has begun to examine the prospects of engineering non-
model microbial hosts [54] that can provide unique advantages for biotechnological application, such as rapid
growth with inexpensive substrates, growth in extreme conditions or unique enzyme machinery, which in some
cases can only accessed within non-standard microbial hosts. However, the greatest disadvantage of such culti-
vatable microbes is a combination of one or more of the following traits, such as a general lack of characterised
gene expression tools, poor genetic tractability or insufficient knowledge towards the microbe metabolism.
While cell-free cannot directly address genetic competence, it could provide a starting point to understanding
the host’s inherent TX–TL kinetics, genetic tools and enzymology, without the time limitations associated with
direct engineering of the host. Noticeably, the methodology for cell-free extract preparation [42,55] has shown
universal application to a variety of microbial cell-free platforms such as Saccharomyces cerevisiae [56,57],
Streptomyces spp. [58–61] and Bacillus spp. [43,62]. Such interest in the use and application of alternative cell-
free systems as a prototyping device is likely to grow; however, the cooperative development of synthetic
biology tools with translational application into live cells may provide the greatest opportunity to access the
design space of traditionally difficult to engineer microbes. In particular reference to the Streptomyces family,
the high G + C (%) soil bacteria, it has long been appreciated that these hosts provide unique and well-
characterised platform for the assembly of a rich repertoire of natural products [63]. For Streptomyces cell-free,
the recently developed high-yielding Streptomyces lividans and Streptomyces venezuelae host platforms [58,61]
can potentially provide an opportunity to access high G + C (%) enzymes from secondary metabolism directly
within a test tube for combinatorial biosynthesis. With further advances in efficiency and yield, Streptomyces
cell-free could be utilised for incorporating non-natural or potentially toxic substrates into natural products,
towards expanding the chemical space of biosynthesis. A proof of concept of how cell-free can be utilised to
incorporate non-natural amino acids into protein backbones was demonstrated for GFP synthesis in E. coli cell-
free [64]. While this technology is in its infancy, it is also possible to engineer this in living cells in high yield
[65], which has been made available through the multiplex automated genome engineering (MAGE) technol-
ogy [66]. However, this methodology is currently only accessible to specially engineered strains of E. coli. Thus,
with further developments, cell-free potentially provides a potentially fast route to prototype and engineer the
application of novel chemistry to natural product biosynthesis [67].

Conclusions
The rise of cell-free systems from its historical links in foundational biochemistry has provided a platform to
this expanding field in synthetic biology. Perhaps, the greatest challenge of cell-free studies is to establish and
define the boundaries and limitations of mimicking cellular biology within cell-free systems. One understudied
area is the impact of molecular crowding on enzyme velocities [68,69] and spatial organisation [70], which can
only be artificially controlled in cell-free reactions. In fact, cell-free systems in essence are reminiscent of prim-
ordial biology [71], whereby enzymes (or ribozymes) and chemicals once freely tumbled without the restric-
tions of biological compartmentalisation and the regulatory control of the genome. With the growing interest
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in the design of a minimal synthetic cell [72–74], cell-free systems can provide a base towards the design of
synthetic life from individual components. We anticipate that the prototyping and modelling of gene expression
and enzyme machinery from understudied arcane microbes will provide important new tools for the cell-free
synthetic biologist’s disposal.
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