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Abstract

Motivation: Whole exome and gene panel sequencing are increasingly used for oncological diag-

nostics. To investigate the accuracy of SCNA detection algorithms on simulated and clinical tumor

samples, the precision and sensitivity of four SCNA callers were measured using 50 simulated

whole exome and 50 simulated targeted gene panel datasets, and using 119 TCGA tumor samples

for which SNP array data were available.

Results: On synthetic exome and panel data, VarScan2 mostly called false positives, whereas

Control-FREEC was precise (>90% correct calls) at the cost of low sensitivity (<40% detected).

ONCOCNV was slightly less precise on gene panel data, with similarly low sensitivity. This could be

explained by low sensitivity for amplifications and high precision for deletions. Surprisingly, these re-

sults were not strongly affected by moderate tumor impurities; only contaminations with more than

60% non-cancerous cells resulted in strongly declining precision and sensitivity. On the 119 clinical

samples, both Control-FREEC and CNVkit called 71.8% and 94%, respectively, of the SCNAs found by

the SNP arrays, but with a considerable amount of false positives (precision 29% and 4.9%).

Discussion: Whole exome and targeted gene panel methods by design limit the precision of SCNA

callers, making them prone to false positives. SCNA calls cannot easily be integrated in clinical

pipelines that use data from targeted capture-based sequencing. If used at all, they need to be

cross-validated using orthogonal methods.

Availability and implementation: Scripts are provided as supplementary information.

Contact: gunther.jansen@molecularhealth.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Although copy number variation only represents about one tenth of a

percent of an individual patient’s genetic variation, it affects more base

pairs than single nucleotide polymorphisms or short indels (The 1000

Genomes Project Consortium, 2015). Copy number variants (CNVs)

are likely to perturb normal cellular function because they cause

changes in gene dosage and expression, interrupt coding sequences,

interfere with gene regulation, or create genetic chimeras (Cook and

Scherer, 2008). Unsurprisingly, CNVs have been implicated in a wide

spectrum of human disorders ranging from autism (Pinto et al., 2010)

and schizophrenia (Cook and Scherer, 2008) to epilepsy (Mefford

et al., 2010), Down syndrome (Korenberg et al., 1994) and cancer. In

cancer, deletions of tumor supressor genes or amplifications of onco-

genes are considered key events in tumorigenesis and progression

(Zack et al., 2013), which makes them major biomarker candidates for

targeted therapeutic interventions. Well-known examples include tras-

tuzumab treatment of breast cancers with ERBB2 amplifications

(Pegram et al., 2004; Valero et al., 2011) and crizotinib therapy of

lung cancers with EML4-ALK fusions, ROS1 rearrangements, or MET

amplifications (Cappuzzo et al., 2009; Shaw et al., 2014). Somatic

copy number alteration (SCNA) identification has therefore become

part of routine diagnostics in several indications.

In clinical laboratories, well-studied, recurrent SCNAs are trad-

itionally identified using immunohistochemistry or fluorescence in

situ hybridization, which are highly sensitive and specific to the
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queried biomarker (Soda et al., 2007). Yet these molecular methods

are limited to known biomarkers and are hard to scale to multiple

loci. Array comparative genomic hybridization (aCGH) and SNP

arrays offer high-throughput alternatives that can simultaneously

search copy number aberrations at thousands of loci across the gen-

ome (Carter et al., 2012; Maciejewski et al., 2009). In recent years,

next-generation sequencing has entered the diagnostic arena, prom-

ising a single high-throughput assay able to detect the full range of

genetic alterations across the genome, across exomes, or across a

predefined set of genes. Importantly, an unbiased genome-wide

understanding of cancer-relevant mutations provides a more com-

plete picture of the patient’s tumor that can be exploited to effect-

ively match molecularly targeted drugs with the genetic

characteristics of the tumor (Abrahams et al., 2005; Auffray et al.,

2009; Ginsburg and Willard, 2009).

Despite its theoretical and practical appeal, the detection of

SCNAs from massively parallel sequencing methods is far from

straightforward. Ideally, SCNAs are determined from whole genome

sequences with uniform coverage across all positions, yet currently

such comprehensive sequencing remains beyond the means of most

clinics and patients. Whole exome and targeted panel approaches

offer higher coverage at a much reduced cost, but suffer from several

drawbacks caused by (i) non-homogeneous coverage, (ii) unequal

distribution of targeted sites across the genome, (iii) the inability to

find CNV breakpoints falling outside covered regions, and, particu-

larly for panel data, (iv) sometimes extreme GC bias (Boeva et al.,

2014; Dohm et al., 2008) and (v) large variations in the length of

the targeted regions. Tumor sequences present with their own suite

of challenges, because of fluctuations in sample quality (Basik et al.,

2013), tumor admixture with non-cancerous cells and within-tumor

clonal heterogeneity (Jacoby et al., 2015).

Given these issues, a CNV caller should ideally (i) find all copy

number variants in all of the sequenced genomic segments (sensitiv-

ity), (ii) reliably detect breakpoints and (iii) avoid falsely calling

sequencing errors, spurious fluctuations in coverage, or other sys-

tematic biases (precision). These challenges have spurred a rich body

of research that has produced a wide variety of CNV tools, only a

few of which were specifically designed to deal with the vagaries of

tumor genetics (Boeva et al., 2011, 2012, 2014; Chiang et al., 2009;

Koboldt et al., 2012; Talevich et al., 2016). Therefore, it remains

unclear if modern somatic CNV callers meet the rigorous standards

required for clinical applications in precision medicine.

2 Approach

In this study, we therefore set out to test the sensitivity and precision of

four SCNA callers on clinically realistic whole exome (WES) and tar-

geted gene panel (panel) data. First, we use simulated datasets with

known mutations (gold standard), which allows comprehensive ana-

lysis of both false positive and false negative rates. Here, we specifically

test the influence of low frequency variants that can be the consequence

of tumor admixture, impurity, or clonality (heterogeneity). Second, to

gain more realistic insights into clinical data, we also evaluate the per-

formance of the methods on 119 whole exome endometrial cancer

datasets for which SNP array data were available as a gold standard.

3 Materials and methods

3.1 Reference genomes and simulated tumor data
The construction of realistic tumor samples consisted of several

steps, each of which is explained in more detail in the next

paragraphs. First, to mimic realistic human genomes, a diploid nor-

mal (control) and five tumor genome reference sequences were gen-

erated by implanting germline SNPs and somatic SNVs, germline

and somatic indels and germline CNVs and tumor SCNAs. Second,

to simulate the heterogeneity of tumor samples, the five tumor

clones were mixed at random proportions. Finally, to simulate ad-

mixture of tumor samples with normal (control) samples, each sub-

clone mixture was further mixed with reads sampled from the

control samples. This entire process was repeated five times.

In step one, a control genome was created by implanting

3 894 338 germline SNPs and indels (Mills et al., 2011; Sudmant

et al., 2015), 939 germline deletions and 1199 germline duplications

(The 1000 Genomes Project Consortium, 2015) into the GRCh37

reference genome (Lander et al., 2001). The germline CNVs were

randomly picked from the Database of Genomic Variants

(MacDonald et al., 2014) (version 2013-07-23) and ranged in size

from 52 bp to 2 191 569 bp. From this control genome, five diploid

‘pure’ tumor genomes were simulated, in total containing 16 arm-

length SCNAs, 50 deletions and 50 amplifications that were ran-

domly selected from COSMIC v71 (Forbes et al., 2015) or from

large cohort studies (Beroukhim et al., 2010; Yang et al., 2013;

Zack et al., 2013), as well as 30 203 known somatic SNVs and 2218

somatic indels randomly selected from the ICGC and COSMIC

databases. In all simulated data, overlapping CNVs were avoided.

Amplifications were introduced as tandem duplications, as these are

best characterized in cancer genomes. Most (90%) of the introduced

CNVs were heterozygous.

Next, read simulation was performed using Wessim (Kim et al.,

2013). Wessim was chosen for read simulation because it emulates

the laboratory process used for targeted sequencing, including DNA

shearing and in silico probe capture by hybridization. In addition, it

reproduces known biases resulting from GC-content and fragment

length variation, and platform-specific errors. Read simulations

were conducted once for a whole-exome approach using the Agilent

SureSelect Human All Exon kit v5 probes, and once for a targeted

gene panel, using the Molecular Health Cancer Gene Panel contain-

ing 619 genes (Supplementary Material S1).

In the second step, a heterogeneous tumor sample consisting of

several subclones was constructed by sampling the reads of the five

pure tumor clones in different (randomly chosen) proportions of

0.27, 0.29, 0.36, 0.06 and 0.02.

In the third and last step, this clonal mixture was used to create

ten admixed tumors, by adding 0% to 90% of reads from the con-

trol sample. The entire process, starting from the construction of the

genome sequences, was repeated five times, such that in total we ob-

tained 50 admixed tumor-control sample pairs with a total of 5800

SCNAs.

The final FASTQ files consisted of 101 bp Illumina paired-end

reads with a mean insert size of 300 bp and 158x mean coverage for

exome, and 200 bp insert size with a mean coverage of 437x for

gene panel data. The datasets covered 50 390 601 and 2 383 840 nu-

cleotides, respectively. Each dataset was aligned to the GRCh37 ref-

erence using Novoalign 3.00.03 (www.novocraft.com), and

realigned around indels using GATK IndelRealigner 2.2 (McKenna

et al., 2010). The code for our simulations is available as

Supplementary Material S2.

3.2 TCGA patient cases
To test the performance of SCNA callers on clinical data, we ob-

tained exome sequencing data of 119 paired tumor-normal samples

from endometrial carcinoma cases from The Cancer Genome Atlas
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(TCGA) project (TCGAR Network, 2013). Samples from this indi-

cation can be clustered into four classes by unsupervised hierarchical

clustering, ranging from samples with few SCNAs (cluster 1) to sam-

ples with a very high number of SCNAs (cluster 4) (TCGAR

Network, 2013). The 119 samples were distributed as follows: 33

samples from cluster 1; 36 from cluster 2; 13 from cluster 3; and 37

from cluster 4. For each of the exome datasets, corresponding

Affymetrix Genome-Wide Human SNP Array 6.0 data was avail-

able. Only SCNAs overlapping with target regions were considered

during benchmarking analysis.

3.3 Choice of SCNA callers
Because our focus was on the evaluation of SCNA callers in the con-

text of cancer, we only included callers that were designed to call

SCNAs from tumors, and that could deal with targeted (exome and

gene panel) capture data. We included CNVkit (Talevich et al.,

2016) v0.7.10, Control-FREEC (Boeva et al., 2012) v8.9, Varscan2

(Koboldt et al., 2012) v2.4.1 and ONCOCNV (Boeva et al., 2014)

v6.4. CNVkit uses both targeted reads and unspecifically captured

off-target reads to determine genome-wide copy number. To improve

SCNA detection, it can normalize GC content, repetitive sequences,

and target footprint size and spacing from pooled control samples.

Control-FREEC performs genome-wide copy number normalization

followed by calculation of the B-allele frequency profile, and then

combines and segments that information to determine genotype sta-

tus for each segment. It incorporates a control sample into the ana-

lysis for normalization, and can take into account tumor purity.

ONCOCNV was specifically designed for amplicon data, and offers

extensive normalization of GC content, amplicon length and other

technical biases via PCA of control samples. However, it does not

compute B-allele frequencies, which may affect the precision of the

method in admixed data. Finally, VarScan2 is a popular SNP, indel

and CNV caller that simultaneously analyzes reads from control and

tumor samples, and makes calls directly from normalized read depth

information. All callers were tested on the simulated data, whereas

only the best performing algorithms on simulated data in the first

analysis were additionally evaluated using TCGA data.

Different parameter settings were tested on the synthetic data:

13 settings for VarScan2, 11 for Control-FREEC and 8 for

ONCOCNV (on panel only). Parameter optimization was not per-

formed for CNVkit, as the approach of this tool relies on off-target

reads which were not present in the simulated data. Parameters

included base and mapping quality thresholds, choice of segmenta-

tion algorithm, and several tool-specific modulations. In

ONCOCNV, we also tested the option to use three non-matched

controls, which greatly increases precision by adding more non-

cancer samples (that do not need to be from the same patient).

These three non-matched controls were randomly chosen from the

control samples not used to simulate that sample. A complete over-

view of the parameters tested for each tool is provided in

Supplementary Material S3.

3.4 Evaluation measures
For the synthetic data, SCNAs obtained from the caller were com-

pared with the known ‘gold standard’ variants that were implanted

into the datasets. For TCGA cases, the output of the bioinformatic

tools was compared with the variants determined by the SNP array,

which for our purposes can be considered the ‘gold standard’.

Using sparsely and unequally distributed targeted genome re-

gions to call copy number variants creates several technical diffi-

culties. For example, it can lead to oversegmentation due to

experimentally inherent coverage inhomogeneity, and can cause

larger CNVs encompassing several target regions to be missed or

falsely considered separate by the caller. Moreover, the highly vari-

able size of SCNAs, which can range up to a full chromosome

arm, renders simple interval comparisons difficult and inaccurate.

Given these complexities, all comparisons between predicted and

gold standard SCNAs were done using three metrics: nucleotide-

based, gene-based and interval-based agreement. For the gene

panel analysis, the latter was only done for genes covered in the

target panel. In the manuscript we will concentrate on the

nucleotide-based approach, which avoids setting an arbitrary

threshold on the fraction of overlap, and also accounts for com-

plex cases where several smaller predicted SCNAs are contained

within a larger gold standard SCNA. In our experience,

nucleotide-based and gene-based approaches yield similar values

for sensitivity and precision, while an interval-based approach with

an 80% overlap criterion leads to strongly decreased sensitivity

and precision estimates.

Using the definitions listed in Table 1 of true positives (TP), pre-

dicted positives (PP) and gold standard positives (GP), sensitivity

and precision were calculated for each tool, parameterization and

Table 1. Overview of metrics for calculation of sensitivity and

precision

Approach Metric Calculations

Nucleotide TP Number of nucleotides in inter-

section of predicted and gold

standard intervals of the same

type

PP Number of nucleotides in pre-

dicted intervals

GP Number of nucleotides in gold

standard intervals

Precision TP/PP

Sensitivity TP/GP

Interval TP Number of predicted intervals

overlapping � 80% of their

length with gold standard

intervals of the same type

PP Number of predicted intervals

True Discovery (TD) Number of gold standard inter-

vals covered � 80% of their

length by at least one predicted

interval of the same type

GP Number of gold standard

intervals

Precision TP/PP

Sensitivity TD/GP

Gene TP Number of genes in intersection

of PP and GP

PP Number of genes covered � 80%

of their length by at least one

predicted SCNA of the same

type

GP Number of genes covered by �
80% by at least one gold

standard SCNA of the same

type

Precision TP/PP

Sensitivity TP/GP

The approach column refers to how gold standard and predicted (called)

SCNAs were compared. TP: true positives; PP: predicted positives; GP: gold

standard positives.
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dataset. In the manuscript, we only report the results for the default

and best-performing parameter settings for each tool, and dataset;

the complete results can be found as Supplementary Material S4.

4 Results

4.1 Simulated data
First, we investigated the reliability of SCNA calling algorithms for

whole exome and targeted gene panel data across a range of known

tumor admixture levels. Simulated data offer the advantage that the

exact size, position and copy number of each SCNA is known; there-

fore true positives, false positives and false negatives can be directly

determined. Nevertheless, whether a given copy number variant is

indeed identical to the one that is known to be present in the data

can be determined in different ways (see methods). The interval-

based estimates led to significantly decreased precision estimates

across all simulated datasets, whereas the nucleotide-based and

gene-based approaches yielded higher, more similar estimates of pre-

cision. For clarity and simplicity we therefore further concentrate on

the nucleotide-based approach—the other measures lead to the same

conclusions (see Supplementary Information S4-S5).

On the 50 exome datasets we tested VarScan2, Control-FREEC

and CNVkit, and on the 50 gene panel datasets we additionally eval-

uated ONCOCNV, which was developed specifically for deep-

targeted amplicon sequencing data. Because our simulated data did

not contain off-target reads (outside of the capture regions), CNVkit

was hampered in its performance, as it uniquely exploits such off-

target reads to establish a genome-wide coverage baseline. For that

reason CNVkit could not be fairly appraised using our synthetic

data; the results are nevertheless included in Supplementary

Material S4 for the sake of completeness.

Across all of our experiments, VarScan2 showed surprisingly poor

performance. Compared to Control-FREEC or ONCOCNV it called

far more SCNAs, but most of these were false positives. Moreover,

VarScan2 found almost none of the known SCNAs (Fig. 1). In con-

trast, Control-FREEC reached very high precision values (on average

98%) on both (non-admixed) exome and gene panel data (Fig. 1A,C).

However, the method was not very sensitive, as it could only recover

on average 45% of the SCNAs known to be present in the exome

data (Fig. 1B), and on average 49% of the SCNAs in the panel data

(Fig. 1D). ONCOCNV (on gene panel data) also produced low sensi-

tivity (average 36.9%; Fig. 1D), but additionally had lower precision

(72.6%; Fig. 1C) when using one control sample only. With pooled

control samples, however, precision was similar to Control-FREEC

(97%; Supplementary Material S4).

To further explain the low sensitivities of Control-FREEC and

ONCOCNV, we investigated sensitivity with regard to the allele

fractions at which the variants occurred in the tumors. As shown in

Figure 2, the sensitivity of Control-FREEC to variants occurring at

relatively high allele fractions was around 40% for both exome and

panel data, but was much lower for variants with an allelic fraction

below 20%. Interestingly, switching on the admixture parameter in

Control-FREEC lifted the sensitivity to very low-frequency variants

to the level seen for high-frequency variants, without strongly affect-

ing the sensitivity to other variants (Fig. 2 A,B). On panel data,

ONCOCNV performed similarly to Control-FREEC, except for

variants in the lowest frequency class, where it outperformed default

Control-FREEC, but did not score as good as Control-FREEC with

the admixture parameter set.

The precision and sensitivity of ONCOCNV (on panel data) and

Control-FREEC (on gene panel and exome data) were relatively

robust up to 60% contamination with normal cells, but both meas-

ures dropped off steeply at higher admixtures (Fig. 1), presumably

because the relative read depth difference between SCNAs and the

genome background may have fallen below the detection limit.

Nevertheless, when the level of admixture was provided as an input

parameter to Control-FREEC, both the precision and the sensitivity

of the method remained above 90% and 40% for exome, and 80%

and 40% for panel, respectively. Interestingly, pooling more control

samples for the ONCOCNV analysis had a similar effect (preci-

sion>90%; sensitivity>40%; see Supplementary Material S4).

Next we analyzed deletions and amplifications separately

(Fig. 3; Supplementary Material S6). Both on whole exome and gene

panel data, Control-FREEC reached high precision and sensitivity

percentages for deletions (above 90%, except for the three highest

admixture levels and for sensitivity on panel data; Fig. 3C, D;

Supplementary Fig. S6). However, the results were drastically differ-

ent for amplifications: on average it found less than 1% of amplifi-

cations, and about 80% of these were not present in the exome data

(false positives). On panel data, precision was higher than on exome

data (80%), but still with very low sensitivity (below 1%).

A B

C D

Fig. 1. Average precision and sensitivity of SCNA callers on simulated tumors

with different levels of tumor impurity. (A, B) Exome and (C, D) targeted gene

panel data. Each data point represents the average of five experiments.

*Control-FREEC with anticipated admixture level set as parameter;

þONCOCNV with additional pooled control samples

A B

Fig. 2. Average sensitivity of Control-FREEC and ONCOCNV in relation to

SCNA allelic fraction, computed over all samples. Because the tumors were

heterozygous, very few variants had an allele fraction above 0.5. Therefore all

variants with an allele fraction above 0.4 were binned into one class. (A)

Exome and (B) targeted gene panel data. * Control-FREEC with anticipated

admixture level set as parameter. For ONCOCNV, the parameter settings did

not influence the sensitivity; therefore only results for default parameters are

shown
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Similarly, ONCOCNV performed relatively well on deletions (ex-

cept in the most admixed tumors), but could not reliably detect

amplifications. Both algorithms thus easily found deletions, but

faced considerable difficulties with finding the low-frequency ampli-

fications in our simulated tumors. Because few amplifications were

called by the two algorithms, the overall high precision was mostly

influenced by correctly called deletions, whereas the low sensitivity

could be explained by the failure to detect amplifications.

Finally, we compared the length distribution of detected SCNAs

across the different methods (Fig. 4). The 50 artificial genomes on

average contained one or two very large (over 100 Mb) or very small

(shorter than 1 Kb) SCNAs, with most SCNAs (on average 60) fall-

ing within the medium-sized class between 100 Kb and 1 Mb. Both

on exome and panel data, VarScan2 called a high number of vari-

ants, with a strong bias towards the shortest lengths, most of which

were false positives. On exome data, Control-FREEC mostly called

short amplifications (between 1 Kb and up to 1 Mb), while the size

distribution of deletions was more similar to the gold standard, but

with an excess of deletion calls ranging in size between 10 and

100 Kb. The number of false positive amplifications was high for all

size classes, whereas for deletions this was highest for the size classes

between 1 Kb and 100 Kb. Interestingly, deletions ranging between

100 Kb and 100 Mb were mostly called correctly. On panel data,

Control-FREEC almost exclusively called few short amplifications

between 1 Kb and 100 Kb, whereas it correctly detected deletions

across all of the size classes. False positives ranged mostly between 1

and 10 Mb. ONCOCNV found even fewer amplifications than

Control-FREEC, and exclusively called amplifications ranging be-

tween 10 Kb and 1 Mb. The deletions found by ONCOCNV had a

roughly similar size distribution as those called by Control-FREEC,

with most false positives also in the range between 1 Mb and

100 Mb.

Taken together, these analyses show that both Control-FREEC

and ONCOCNV are conservative methods with good sensitivity

and precision for deletions, but limited sensitivity to low-frequency

amplifications. This applied to both exome and panel data.

Nevertheless, Control-FREEC and ONCOCNV generated few false

positives on the simulated data, although this could be the result of

the relative ‘cleanliness’ of simulated data (simulation cannot cap-

ture the full complexity of heterogeneous tumors).

4.2 TCGA endometrial carcinoma data
To evaluate the performance of SCNA detection algorithms on real-

istic clinical data, we obtained exome sequencing data of 119 endo-

metrial cancer samples from TCGA. For these samples, SNP array

data were also available as an independent proxy for ‘true’ SCNAs.

The TCGA samples used in this study exhibit a wide range of SCNA

numbers, and it has been established previously that the presence of

SCNAs in endometrial tumors correlates with progression-free sur-

vival: most endometrioid tumors have few SCNAs, whereas serous

and serous-like tumors have many (TCGAR Network, 2013). On

average, the patient samples had 36 amplifications and 18 deletions

in the exome capture regions, but the number of SCNAs in individ-

ual samples ranged between 0–269 amplifications and 0–100 dele-

tions. This represents clinical reality, but it should be taken into

account when interpreting the extremes in the distributions of preci-

sion and sensitivity for the TCGA dataset presented below.

Our analyses showed that Control-FREEC reached median pre-

cision of 29% and median sensitivity of 71.8% across the 119 clin-

ical samples, although these values varied greatly depending on the

patient (Fig. 5A; Supplementary Material S5). In contrast, CNVkit

reached a median precision of 4.9%, but with higher median sensi-

tivity (94%). This suggests that CNVkit called a high number of

SCNAs, including both false and true positives.

Contrary to the simulation results, in half of the samples Control-

FREEC detected at least 60% of the amplifications, although with

many false positives (20% median precision). However, it identified

few deletions (median precision<1% with 30% median sensitivity;

Fig. 5B, C). Similarly, CNVkit reached a slightly higher median preci-

sion (30%) and even over 80% median sensitivity for amplifications,

A B

C D

Fig. 3. Precision and sensitivity of calling deletions and amplifications from

simulated data. Each box plot is based on 50 samples. (A, B) Exome and

(C, D) targeted gene panel data

A B

C D

Fig. 4. Length distributions of gold standard and predicted deletions and

amplifications in A, B. simulated exome and C, D. simulated targeted gene

panel data. Dark shadings indicate the number of true positives among the

bioinformatically called SCNAs; the remaining (lightly shaded) calls are false

positives not present in the gold standard data. The results are averaged

across 50 samples. SCNAs are considered correct if they overlap for at least

80% of their length with a gold standard of the same type. To determine true

positives, we only considered whether the SCNA was present in the gold

standard, not whether it was called in the correct size class. Therefore the

number of true positives called within particular size classes may seem coun-

terintuitively higher than in the gold standard
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but below 1% median precision and over 90% median sensitivity for

deletions. Precision clearly increased with the number of somatic

SCNAs present, and both precision and sensitivity were exceptionally

low when few somatic SCNAs are present.

When SCNAs were separated into size classes, we observed that

in each size bin Control-FREEC called many more amplifications

and more deletions than were detected by the SNP arrays (Fig. 5D,

E; Supplementary Material S7). However, the size distribution of

the called amplifications remained similar. CNVkit showed the op-

posite pattern, mostly calling deletions in the medium to largest size

classes, and larger amplifications ranging in size between 1 and

10 Mb. For both tools, most of the identified amplifications and de-

letions were not found with SNP array data.

To provide a better grasp of the large range in the number of calls

produced on individual samples, we plotted the log ratio of predicted

and gold standard copy-number-altered genes (shifting focus here to

individual genes rather than SCNAs; Fig. 6). For most samples, both

tools called many more copy-number-altered genes than found by the

SNP arrays. This was particularly the case in samples in which fewer

than ten SCNAs were detected by SNP arrays in the target regions, but

for which many, sometimes thousands, of amplified or deleted genes

were called. This suggests that the callers detected copy number alter-

ations in many genes, even in samples where almost none were known

to be present (unless most of the hundreds or thousands of bioinfor-

matically called genes were missed by the SNP arrays, which we con-

sider unlikely). This is particularly relevant considering that a small

proportion of these false positive amplified or deleted genes are clinic-

ally interpretable biomarkers, and could thus mislead clinical decisions.

Therefore these algorithms are insufficient to unequivocally determine

whether SCNA biomarkers are present in the patient’s tumor genome.

5 Discussion

In this paper we aimed to evaluate the performance of several SCNA

calling algorithms, including VarScan2, Control-FREEC, ONCOCNV

and CNVkit, on both simulated and clinical endometrial cancer data-

sets. Using 50 simulated whole exome and 50 simulated targeted gene

panel tumor samples, we concentrated on the ability of these methods

to identify SCNAs that occur at comparatively low frequencies as a re-

sult of tumor clonality and admixture with normal, non-cancerous

cells. The TCGA whole exome data allowed us to evaluate the tools in

more realistic conditions, but was potentially limited by incomplete

knowledge of low-frequency SCNAs in the SNP array data used as

reference.

We found that both on simulated gene panel and simulated WES

data, Control-FREEC produced few false positives, but could not

find the majority of low-frequency amplifications. VarScan2, in con-

trast, produced a large number of small, spurious amplification and

deletion calls. ONCOCNV slightly underperformed Control-

FREEC on panel data; it discovered fewer amplifications and called

more false positive deletions. However, its performance was similar

when more (not necessarily matched) control samples were pooled,

which enables better GC and library size normalization (Boeva

et al., 2014), and reduces the negative impact of germline CNVs.

The results for Control-FREEC are similar to a previous study

(Alkodsi et al., 2015), where Control-FREEC and VarScan2

reached, respectively, 87% and 75% sensitivity on a small simulated

WES dataset (based on chromosome 22 without admixture). Taken

together, these results suggest that Control-FREEC performs simi-

larly on both WES and targeted gene panel data, but on this type of

data is largely incapable of discovering low-frequency SCNAs.

ONCOCNV is an alternative to Control-FREEC on panel data, if

provided with a sufficient number of control samples (at least three).

On a side note, ONCOCNV was designed to call SCNAs from tar-

geted amplicon sequencing, which introduces additional biases.

A different, even worse, picture emerged when we analyzed the

119 clinical endometrial carcinoma exome samples. Control-FREEC

produced many more false positive amplifications and deletions on

real than on simulated data, but found only 30% of deletions and

only about 60% of amplifications determined by SNP arrays. CNVkit

tended to correctly identify more gold standard amplifications and de-

letions than Control-FREEC, but at the cost of close to zero precision.

Control-FREEC was biased to mostly medium-sized amplifications,

while CNVkit preferentially produced medium-sized and large

A B

D E

C

Fig. 5. Results of SCNA calling based on 119 clinical TCGA tumor exome data-

sets. Precision and sensitivity for (A) all SCNAs, (B) deletions and (C) amplifi-

cations. Length distributions of SNP array (gold standard) and predicted (D)

deletions and (E) amplifications. Dark shadings indicate the number of true

positives among the called SCNAs that are also found using SNP arrays.

Detected SCNAs are considered correct if they overlap over at least 80% of

their length with a gold standard of the same type

A

B

Fig. 6. Log ratio of the number of predicted and expected copy-number-

altered (gold standard) genes displayed for each individual TCGA sample.

Values close to zero indicate high concordance between the number of

SCNAs found by SNP arrays and the bioinformatic tools; positive values ex-

press overcalling by bioinformatic callers, and negative values suggest ampli-

fied or deleted genes found in the gold standard were not detected by the

bioinformatic tools. Samples with ten or fewer SCNAs detected by SNP

arrays in the exome capture regions are in light blue
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deletions. These data suggest that all of the tested algorithms called

too many spurious SCNAs. This confirms an earlier study on 50 kid-

ney chromophobe tumor exomes (Nam et al., 2016), which reported

close to zero precision, and sensitivity of 30% or 40% for Control-

FREEC and VarScan2, respectively. Alkodsi et al. found around 30%

Jaccard concordance between Control-FREEC calls and SNP arrays

on four breast cancer samples (Alkodsi et al., 2015). In general, our

comprehensive results agree with previous studies that calling SCNAs

from WES data needs to be approached with extreme caution

(Alkodsi et al., 2015; Guo et al., 2013; Kadalayil et al., 2015; Nam

et al., 2016; Talevich et al., 2016; Tan et al., 2014). A recent paper

painted an even grimmer picture, confirming that even identification

of structural and copy-number variation from whole genome sequenc-

ing is unsatisfactory for clinical use unless it can be supported by or-

thogonal technologies (Telenti et al., 2016).

The discrepancy between our simulated data and the TCGA

cases can be explained by several factors. First, clinical datasets fea-

ture the full biological complexities of the tumor environment and

potential sample preparation and processing biases, which cannot

be captured by simulations. The much-reduced precision in the

TCGA data may thus be partially explained by confounding com-

plexity, or by the presence of artifacts such as sequencing errors or

differential coverage at GC-rich regions. Second, Control-FREEC

had much lower sensitivity for amplifications in the simulated

exome data than in the tumor samples, presumably because the real

data also contained more high-copy number amplifications, which

are easier to detect than duplications. On the other hand, detection

of deletions was easier in the simulated than in the real data.

Deletions, as an absence of signal, are expected to be easier to find.

It is therefore puzzling that the precision of the tools on deletions in

the TCGA data was low. Possibly this effect was negligible com-

pared to the alltogether high number of false positives. Third, the

use of SNP arrays as gold standard also introduces important limita-

tions compared to the absolute ground truth in the simulated data.

A comprehensive comparison of array-based CNV calling methods

found less than 50% concordance among algorithms, and less than

70% reproducibility among replicates when the same raw data was

processed multiple times with the same array platform and CNV

calling algorithm (Pinto et al., 2011). Moreover, SNP array profiles

do not allow accurate evaluation of small CNVs that may be cor-

rectly called from WES data, and may be biased towards deletions

(Pinto et al., 2011). Therefore, it is quite possible that not all SCNAs

that were found by the WES-based tools were false positives; at least

a small portion of these may have been genuine variants not found

by SNP arrays. The TCGA data unfortunately did not allow separ-

ation of true, undiscovered SCNAs from false positives, particularly

at low allele fractions. Nevertheless, the high number of SCNA calls,

including in samples with very few SCNAs as determined by SNP

arrays, is unlikely to represent hithertho undiscovered SCNAs.

Because with simulated data we were able to rely on an absolute

gold standard, we investigated how low allele fractions of SCNAs af-

fect the sensitivity and precision of the SCNA discovery algorithms.

Low allele fractions are common in clinical tumor samples, for two

related reasons. First, they are caused by the presence of non-

cancerous cells such as stromal cells, immune cells and blood cells

present in the tumor (Fridman et al., 2012; Hanahan and Weinberg,

2011), or can be a result of contamination with surrounding healthy

tissue during biopsy (Basik et al., 2013). These reduce the propor-

tion of tumor-derived reads, and thus negatively impact the signal-

to-noise ratio in the sample. On the other hand, it is becoming clear

that tumors are not homogeneous entities consisting of clonal cells

with perfect copies of the same genome, but are complex collections

of distinct subclonal populations that differ both from other clones

and from their non-cancerous ancestral cells (Gerlinger et al., 2012;

Jacoby et al., 2015). Moreover, these clones are continuously sub-

jected to local selection in the tumor environment, leading to

increasing intra-tumor heterogeneity as the tumor grows (Burrell

et al., 2013). Some of the clones at low frequency may be important

therapeutically, because they may harbor resistance mutations that

can cause the eventual failure of seemingly successful chemothera-

pies aimed at initially dominant clones (Burrell and Swanton, 2014;

Landau et al., 2013). Our data suggest that up to 60% contamin-

ation with normal cells does not severely impact the performance of

SCNA callers (although sensitivity is generally low, even for non-

admixed tumors, and drops significantly for variants with an allele

fraction below 20%). For lower tumor cellularity, it may be advan-

tageous to obtain more control samples (ONCOCNV) or add an es-

timate of tumor cellularity based on e.g. a pathological report (as a

parameter for Control-FREEC). However, an important caveat to

our study is that we could not unequivocally answer the question

whether this also applies to more realistic tumor data. The high

quality standards set by TCGA for its tumor samples result in homo-

geneous tumor cellularity. Nevertheless, we deem it unlikely that the

very low precision in the TCGA cases was predominantly caused by

undetected, low-frequency SCNAs. Rather, the data suggest it is due

to too many false positives. SCNA calls from next-generation

sequencing data are at best error-prone hypotheses that need careful

cross-validation with orthogonal methods. We therefore cannot rec-

ommend including SCNA calls based on capture NGS data into pre-

cision medicine pipelines.

6 Conclusion

Whole exome and targeted gene panel sequencing are increasingly

finding their way into clinical practice. Their focus on a smaller and

presumably more cancer-relevant part of the genome at higher

coverage offers a compelling alternative to whole genome sequenc-

ing, at a much reduced price. Although these methods are primarily

used in precision medicine to detect single nucleotide variants and

small indels, they offer the opportunity to simultaneously call som-

atic copy number aberrations. This is an attractive option consider-

ing that the presence of SCNAs such as ROS or MET amplifications

offers clear therapeutic options. However, our analysis of SCNA

callers using 50 simulated datasets and 119 endometrial tumors

clearly shows that considerable caution is needed with targeted

sequencing approaches. On such data, SCNA methods are error-

prone: they both missed a considerable portion of SCNAs known to

be present in our test datasets, and called a large number of false

positives, especially in the TCGA data. Therefore copy number aber-

rations called from WES or targeted gene panel sequences should be

considered hypotheses that require cautious interpretation and

cross-validation with more reliable methods such as FISH, PCR, or

SNP arrays. In cases where SCNA discovery is explicitly desired, re-

searchers are recommended to contemplate appropriately powerful

experimental alternatives.
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