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ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We 
investigated whether the relationship between carbohydrate intake and NAFLD is mediated by 
interactions between gut microbial modulation, impaired insulin response, and hepatic de novo 
lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven 
NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 
16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and 
percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also 
analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals 
without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate 
diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals 
from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae 
were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. 
The addition of these two microbial families, along with Veillonellaceae, significantly improved the 
diagnostic performance of the predictive model, which was based on the body mass index, age, and 
sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of 
DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel 
causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregu-
lation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. 
Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose home-
ostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is asso-
ciated with metabolic syndrome, obesity, and dia-
betes mellitus (DM)1. In addition, NAFLD has 
genetic and dietary risk factors.2 Patients with non-
alcoholic steatohepatitis (NASH) and advanced 
fibrosis present more adverse clinical outcomes,3 

and should be potentially targeted for pharma-
cotherapy. However, in NAFLD patients, lifestyle 
modification is primarily pursued as a cost-effective 

intervention to control metabolic dysfunction.4 As 
a result, further investigation of the underlying 
mechanisms by which dietary patterns affect 
NAFLD progression are merited to elucidate its 
complex pathogenesis.

Sources of lipid influx contributing to NAFLD 
development include lipid biosynthesis, mostly from 
carbohydrate (through de novo lipogenesis [DNL]5), 
free fatty acids (FFAs) derived from lipolysis of adi-
pose tissue,6 and excessive dietary fat in the form of 
chylomicrons absorbed from the intestine.7 Among 
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them, DNL contributes up to 26% of the total trigly-
cerides (TG) synthesis in NAFLD patients with hyper-
insulinemia, while serum-derived non-esterified fatty 
acids account for approximately 59% and the diet 
account for 15%;8 the rate of DNL is three times higher 
in NAFLD patients than in body mass index (BMI)- 
matched healthy controls.5 Circulating glucose and 
insulin levels can also induce hepatic DNL in 
NAFLD patients.9 Thus, elucidating the contribution 
of carbohydrates, the primary source of DNL, to 
NAFLD progression is crucial for optimizing effective 
dietary interventions that ameliorate NAFLD.

A growing body of evidence suggests that altered 
gut microbial ecology is associated with the develop-
ment and progression of NAFLD.10–12 Specifically, 
the diversity and composition of the gut microbiome 
are significantly different in non-obese NAFLD sub-
jects, resulting in the depletion of Ruminococcaceae 
and the enrichment of Veillonellaceae.11 Changes in 
the gut microbiome are closely linked with host- 
microbe-nutrient interactions, such as dietary pat-
terns; in turn, dietary patterns are associated with 
NAFLD progression.13,14 Indeed, a 2-week dietary 
intervention involving an extremely carbohydrate- 
restricted diet (4% of total energy intake from carbo-
hydrate) improved fat metabolism in the liver by 
modulating the folate-producing gut microbiome.15 

A 4-week dietary intervention that increased fiber 
intake also led to the modulation of gut microbiome- 
mediated glucose homeostasis in an overweight 
population.16 Despite the evident interaction 
among macronutrients, the gut microbiome, and 
NAFLD, further mechanistic studies that investigate 
these relationships in humans are needed.

In this study, we attempted to elucidate the effect 
of dietary patterns on NAFLD pathogenesis using 
a multi omics approach in a well-characterized 
biopsy-proven NAFLD cohort. We aimed to provide 
new insights into the pathomechanism of NAFLD as 
related to dietary carbohydrate patterns, alterations 
of the gut microbiome, and hepatic DNL.

Results

Study population characteristics

This study included 129 Korean individuals with 
biopsy-proven NAFLD (NAFL, n = 70; NASH, 
n = 59) and 75 controls without NAFLD 

(Supplementary Table 1). Subjects were divided 
into two groups according to their carbohydrate 
intake (high carbohydrate [HC] group, energy 
intake from carbohydrates ≥70%; low carbohydrate 
[LC] group, energy intake from carbohydrates 
<70%).17,18 Baseline characteristics did not signifi-
cantly differ between the HC and LC groups 
(Table 1). Subjects were then subdivided into 
three subgroups (N0–2) according to their 
NAFLD activity score (NAS). The subgroups were 
categorized as non-NASH (N0), borderline NASH 
(N1), and definite NASH (N2) (Table 1 and 
Supplementary Table 2).

Associations between nutrient intake and 
NAFLD-associated clinical markers according to 
carbohydrate intake

On average, the HC group consumed 76.83% of 
daily total energy from carbohydrate, 11.28% from 
fat, and 11.89% from protein, while the LC group 
consumed 63.56% of daily total energy from carbo-
hydrate, 20.16% from fat, and 16.28% from protein 
(Figure 1a). In terms of the absolute amount of each 
nutrient consumed, the LC group consumed higher 
amounts of fat, animal fat, plant fat, protein, animal 
protein, and plant protein than the HC group 
(Figure 1b, Supplementary Table 3).

BMI did not significantly differ between the HC 
and LC groups (Table 1); The percentage of obese 
NASH individuals was higher in the LC group (N0 
[43%], N1 [81%], and N2 [85%]) than the HC 
group (N0 [55%], N1 [72%], and N2 [71%]) 
(Figure 1c). In the LC group, body fat mass and 
visceral, subcutaneous, and total abdominal adi-
pose tissue areas significantly increased with wor-
sening the histological severity of NAFLD 
(Supplementary Figure 1).

Carbohydrate consumption was positively corre-
lated with serum alanine transaminase (ALT), a liver 
damage marker only in the HC group. After adjust-
ing for potential confounding factors, the positive 
correlation between carbohydrate intake and ALT in 
the HC group remained marginally significant 
(P = .053) (Figure 1d). Significant positive correla-
tions between the surrogate markers of insulin resis-
tance (homeostasis model assessment of insulin 
resistance [HOMA-IR] and adipose tissue insulin 
resistance [adipo-IR]) with carbohydrate 
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consumption were found only in the HC group. In 
contrast, obesity and lipid metabolism-associated 
clinical markers (low density lipoprotein [LDL]- 
cholesterol and TG) were significantly correlated 
with carbohydrate consumption in the LC group 
(Figure 1e). These results were confirmed by 
a linear regression model adjusted for BMI, age, 
and sex. Carbohydrate intake significantly predicted 
FFA concentrations, HOMA-IR, adipo-IR, and insu-
lin levels in the HC group, whereas carbohydrate 
intake significantly predicted LDL-cholesterol levels 
and BMI in the LC group (Figure 1f).

NAFLD activity-associated alterations in gut 
microbial diversity and composition in the HC group

In the HC group, the composition of gut microbiota 
varied significantly according to the NAS (P = .009), 
but this pattern was not exhibited in the LC group 
(P = .742) (Figure 2a). Subsequent analysis of non-
metric multidimensional scaling (NMDS) scores 
showed a significant difference between the N1 
and N2 groups (P = .0195) (Figure 2b).

However, alpha diversity, measured using four 
indices (Simpson’s diversity index, Pielou’s even-
ness index, the Shannon diversity index, and spe-
cies richness), did not significantly differ among the 
NAS subgroups in either the HC or LC group 
(Figure 2c). The top 10 microbial taxa enriched or 
depleted by NAFLD severity in all participants, the 
HC group, and the LC group were visualized using 
stacked bar plots (Figure 2d).

NAFLD activity-associated alterations in the relative 
abundances of gut microbial taxa in the HC group

Univariate analysis revealed a significant decrease 
in the abundance of Ruminococcaceae family 
(P = .006) and a significant increase in the abun-
dance of Enterobacteriaceae family (P = .010) with 
increasing NAFLD activity (N2 vs. N0) in the HC 
group, and a marginally significant increase in the 
abundance of Veillonellaceae in individuals with 
definite NASH (N2) compared to non-NASH indi-
viduals (N0) (P = .06). No significant alterations in 
the abundance of microbial taxa were found in the 

Table 1. Clinical characteristics of all study subjects stratified by carbohydrate intake and the NAFLD activity score.
HC (n = 107) LC (n = 97)

NAFLD cohort Non 
NASH

Borderline 
NASH

Definite 
NASH

P value Non 
NASH

Borderline 
NASH

Definite 
NASH

P value P value 
(HC vs. LC)

Clinical characteristics
No. of subjects (%) 38 (36) 37 (35) 32 (30) 37 (38) 33 (34) 27 (28)
Age (years) 56.7 ± 13.5 54.2 ± 13.9 49.1 ± 14.8 0.138 57.7 ± 8.9 46.0 ± 16.9 46.2 ± 12.1 <0.001*** 0.127
Male (%) 21 (55) 14 (38) 11 (34) 0.156 16 (43) 20 (61) 11 (41) 0.248 0.482
BMI (kg/m2) 25.3 ± 3.8 27.3 ± 3.8 27.4 ± 3.9 0.021* 25.2 ± 2.8 28.9 ± 4.0 29.0 ± 3.7 <0.001*** 0.138
AST (IU/L) 30.2 ± 19.2 41.2 ± 24.8 71.2 ± 75.5 <0.001*** 25.3 ± 8.8 62.6 ± 62.6 61.8 ± 41.4 <0.001*** 0.389
ALT (IU/L) 33.6 ± 29.0 53.4 ± 36.5 92.3 ± 80.7 <0.001*** 28.1 ± 15.1 76.6 ± 49.8 100.9 ± 72.9 <0.001*** 0.324
GGT (IU/L) 35.9 ± 37.1 47.2 ± 67.7 54.5 ± 41.1 <0.001*** 46.5 ± 51.9 62.6 ± 42.1 65.2 ± 38.9 0.008** 0.003**
Cholesterol (mg/dL) 178.8 ± 40.7 190.4 ± 45.8 182.2 ± 32.7 0.583 185.3 ± 38.2 183.3 ± 38.6 200.8 ± 36.2 0.079 0.217
HDL (mg/dL) 49.1 ± 11.9 46.5 ± 9.2 46.8 ± 11.2 0.764 48.5 ± 12.0 48.8 ± 10.6 44.7 ± 10.5 0.374 0.942
LDL (mg/dL) 101.7 ± 34.8 105.3 ± 35.3 107.9 ± 28.6 0.718 106.7 ± 32.5 107.3 ± 42.6 131.5 ± 23.2 0.034* 0.096
TG (mg/dL) 127.8 ± 69.8 180.4 ± 127.3 148.2 ± 67.6 0.174 128.0 ± 65.3 139.7 ± 50.8 158.5 ± 50.9 0.009** 0.841
FFA (µEq/L) 583.3 ± 222.7 636.5 ± 247.8 691.3 ± 255.1 0.074 597.7 ± 223.6 681.7 ± 294.4 657.5 ± 242.2 0.484 0.968
TB (mg/dL) 2.27 ± 9.45 0.87 ± 0.4 0.64 ± 0.19 0.010* 0.80 ± 0.38 0.77 ± 0.27 0.87 ± 0.37 0.431 0.357
Alb (g/dL) 4.09 ± 0.29 4.18 ± 0.31 4.24 ± 0.24 0.135 4.09 ± 0.26 4.27 ± 0.27 4.31 ± 0.29 0.002** 0.510
Platelet (x103/µL) 227.3 ± 60.1 237.1 ± 53.9 244.3 ± 56.6 0.500 241.7 ± 47.5 260.3 ± 62.2 241.5 ± 40.9 0.617 0.162
C-peptide (ng/mL) 2.61 ± 1.49 3.83 ± 2.59 4.14 ± 4.68 0.002** 2.52 ± 0.97 4.49 ± 3.57 4.24 ± 2.14 <0.001*** 0.156
hs-CRP (ng/mL) 0.18 ± 0.49 0.20 ± 0.31 0.24 ± 0.38 0.018* 0.17 ± 0.32 0.19 ± 0.15 0.31 ± 0.32 <0.001*** 0.130
Ferritin (ng/mL) 116.1 ± 71.5 126.6 ± 79.8 249.6 ± 330.7 0.108 105.3 ± 56.2 263.3 ± 311.7 228.0 ± 146.6 <0.001*** 0.054
HA (ng/mL) 44.8 ± 36.5 56.8 ± 59.0 41.5 ± 32.5 0.484 53.2 ± 68.9 62.6 ± 104.2 43.4 ± 29.5 0.487 0.560
HbA1c (%) 5.96 ± 1.06 6.03 ± 0.63 6.29 ± 0.87 0.031* 5.96 ± 0.63 6.09 ± 0.93 5.98 ± 0.46 0.832 0.799
FBS (mg/dL) 109.2 ± 27.6 113.9 ± 31.3 114.6 ± 30.2 0.071 109.2 ± 27.6 113.9 ± 31.3 114.6 ± 30.2 0.561 0.672
Insulin (µIU/mL) 12.9 ± 10.1 15.6 ± 7.46 16.9 ± 8.01 0.005** 11.4 ± 5.44 17.3 ± 7.87 17.5 ± 8.72 <0.001*** 0.765
Adipo-IR 45 ± 35.3 59.9 ± 35.8 71.7 ± 45.2 0.007** 43.7 ± 30.4 74.0 ± 70.7 71.7 ± 52.5 0.003** 0.806
HOMA-IR 3.17 ± 3.17 3.98 ± 2.24 5.05 ± 3.50 0.002** 2.95 ± 1.53 5.19 ± 3.11 4.76 ± 3.60 0.001** 0.476

Abbreviations: BMI, body mass index; AST, aspartate transaminase; ALT, alanine transaminase; GGT, gamma-glutamyl transferase; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; FFA, free fatty acids; TB, total bilirubin; Alb, albumin; hs-CRP, high-sensitivity C-reactive protein; 
HA, hyaluronic acid; T3, triiodothyronine; HbA1c, glycated hemoglobin; FBG, fasting blood glucose; Adipo-IR, adipose tissue insulin resistance; HOMA-IR, 
homeostasis model assessment of insulin resistance. The mean and standard deviation are presented as the mean ± SD and the number of subjects and those 
percentages are expressed as n (%). Significant differences among subgroups were calculated using the Kruskal-Wallis test. *P < 0.05, **P < 0.01, ***P < 0.001.
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LC group (Figure 3a). These trends were main-
tained at the genus level in the HC group 
(Figure 3b): compared with subjects without 
NASH, NASH subjects had a significant decrease 
in the abundance of Faecalibacterium (N2 vs. N0), 
and a significant increase in the abundance of 
unclassified Enterobacteriaceae (N2 vs. N0) and 
Dialister (N1 vs. N0).

The predictive validity of microbial taxa for 
NAFLD was tested using a random forest model 
(Figure 3c). The most critical microbial variables in 
the total population were the Veillonellaceae, 
Ruminococcaceae, and Enterobacteriaceae families. 
The Ruminococcaceae and Enterobacteriaceae 
families were also crucial microbial variables in 
the HC group. Microbial variables selected for the 

Figure 1. Stratification of the study population into high carbohydrate (HC) and low carbohydrate (LC) intake groups by carbohydrate 
intake and associations between nutrient intake and clinical markers in these groups. (a) Percentage of energy intake from 
carbohydrates, fats, and proteins in the HC and LC groups. (b) Absolute amounts of nutrient intake (in kcals) in each group, stratified 
by carbohydrate intake (%) and the NAFLD activity score (NAS). (c) The proportion of participants classified as obese population in each 
group (non-obese, BMI <25; obese, BMI ≥25 kg/m2), stratified by carbohydrate intake (%) and NAS. (d) Linear regression models (with 
95% confidence interval bands highlighted in gray) between the levels of alanine transaminase (ALT) and carbohydrate intake (in kcals) 
with and without adjustment for BMI, age, and sex (HC, upper panel, red line; LC, lower panel, blue line). (e) Heatmap displaying the 
significant correlations between clinical markers and the intake of nutrients (*P < .05, **P < .01, ***P < .001). Positive correlations are 
expressed in red and negative correlations are in blue (HC, upper panel; LC, lower panel). (f) Linear regression models (with 95% 
confidence interval bands highlighted in gray) between clinical markers and the intake of carbohydrates (in kcals) after adjusting for 
BMI, age, and sex (HC, upper panel, red line; LC, lower panel, blue line). Abbreviations: adipo-IR, adipose insulin resistance; Alb, 
albumin; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; C-peptide, connecting peptide; Chol, 
cholesterol; hs-CRP, high-sensitivity C-reactive protein; FBG, fasting blood glucose; FFA, free fatty acids; GGT, gamma-glutamyl 
transferase; HA, hyaluronic acid; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostasis model assess-
ment for insulin resistance; LDL, low-density lipoprotein; Plt, platelet; TB, total bilirubin; TG, triglycerides.
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prediction of NAFLD in the LC group were not 
significantly altered by NAFLD activity. 
Multivariate analysis was performed using 
MaAsLin219 after adjustment for BMI, age, and 
sex. Similar to the unadjusted data, in the HC 
group, the abundance of Ruminococcaceae was sig-
nificantly depleted with increasing NAFLD activity, 
while the abundance of Enterobacteriaceae was sig-
nificantly enriched (Figure 3d-f). Similar significant 
associations were not found in the LC group.

To analyze the functional changes in the gut 
microbiome in the HC and LC groups according 
to NAFLD severity, the functional prediction ana-
lysis was conducted. As a result of linear discrimi-
nant analysis effect size (LEfSe), a total of 287 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 

categories and 16 KEGG pathways were identified 
as significantly differing between the non-NASH 
(N0) and NASH (N1 and N2) subgroups within 
the HC group. On the other hand, no differences 
in the functional changes in KEGG categories 
between the non-NASH and NASH subgroups 
were observed, and 6 KEGG pathways were identi-
fied as significant in the LC group. The KEGG 
pathways found to be significant in the HC group 
are visualized in supplementary figure 2. Notably, 
the majority of KEGG pathways that were enriched 
in the NASH subgroup within the HC group were 
related to microbial carbohydrate metabolism, such 
as ‘phosphotransferase system PTS’, ‘glycerolipid 
metabolism’ and ‘fructose and mannose 
metabolism’.

Figure 2. Alterations in the diversity and composition of the gut microbiome according to NAFLD severity in the high carbohydrate 
(HC) and low carbohydrate (LC) intake groups. (a) Non-metric multidimensional scaling (NMDS) plot based on the Bray-Curtis distance 
showing the beta diversity of the gut microbiome composition at the genus level (HC: N0, yellow; N1, Orange; N2, red and LC: N0, light 
sky blue; N1, dark blue; N2, navy). (b) NMDS plot from (A) visualized as Tukey’s box and whisker plot, showing the median and upper 
and lower quantiles. The nonparametric Kruskal-Wallis test and Dunn’s multiple comparisons test were used for statistical analysis. (c) 
Alpha diversity in each group (upper left, Simpson’s diversity index; upper right, Pielou’s evenness index; lower left, Shannon diversity 
index; lower right, species richness). (d) Relative abundances of the top 10 family taxa in the total, HC, and LC groups stratified by the 
NAFLD activity score.

GUT MICROBES e2078612-5



Fi
gu

re
 3

. C
ha

ng
es

 in
 th

e 
re

la
ti

ve
 a

bu
nd

an
ce

 o
f t

he
 g

ut
 m

ic
ro

bi
al

 ta
xa

 a
cc

or
di

ng
 to

 N
A

FL
D

 s
ev

er
it

y 
in

 th
e 

hi
gh

 c
ar

bo
hy

dr
at

e 
(H

C)
 a

nd
 lo

w
 c

ar
bo

hy
dr

at
e 

(L
C)

 in
ta

ke
 g

ro
up

s.
 (a

) 
Th

e 
ab

un
da

nc
e 

of
 th

re
e 

re
pr

es
en

ta
tiv

e 
fa

m
ily

 ta
xa

 a
nd

 (b
) t

hr
ee

 re
pr

es
en

ta
tiv

e 
ge

nu
s 

ta
xa

 a
re

 d
ep

ic
te

d.
 N

on
pa

ra
m

et
ric

 K
ru

sk
al

-W
al

lis
 te

st
s 

an
d 

D
un

n’
s 

m
ul

tip
le

 c
om

pa
ris

on
s 

te
st

s 
w

er
e 

us
ed

 in
 t

he
 s

ta
tis

tic
al

 a
na

ly
si

s.
 (c

) R
an

ki
ng

 o
f t

he
 fa

m
ily

 ta
xa

 a
cc

or
di

ng
 t

o 
th

e 
m

ea
n 

de
cr

ea
se

 in
 t

he
 G

in
i c

oe
ffi

ci
en

t 
in

 t
he

 r
an

do
m

 fo
re

st
 m

od
el

 t
o 

pr
ed

ic
t 

th
e 

N
AF

LD
 a

ct
iv

ity
 s

co
re

. (
re

d 
ci

rc
le

, t
op

 3
 f

am
ili

es
 d

efi
ne

d 
by

 t
he

 r
an

do
m

 f
or

es
t 

m
od

el
; b

lu
e 

pe
nt

ag
on

, t
hr

ee
 r

ep
re

se
nt

at
iv

e 
fa

m
ily

 t
ax

a)
 (

d–
f) 

Re
gr

es
si

on
 a

na
ly

si
s 

w
as

 u
se

d 
to

 d
et

er
m

in
e 

th
e 

ab
un

da
nc

e 
of

 t
he

 
Ru

m
in

oc
oc

ca
ce

ae
, E

nt
er

ob
ac

te
ria

ce
ae

, a
nd

 V
ei

llo
ne

lla
ce

ae
 f

am
ili

es
 a

ft
er

 a
dj

us
tin

g 
fo

r 
co

nf
ou

nd
in

g 
fa

ct
or

s 
in

cl
ud

in
g 

BM
I, 

ag
e,

 a
nd

 s
ex

. M
ul

tiv
ar

ia
te

 a
ss

oc
ia

tio
n 

an
al

ys
is

 w
as

 p
er

fo
rm

ed
 

us
in

g 
M

aA
sL

in
2 

w
ith

 a
dj

us
tm

en
t f

or
 m

ul
tip

le
 c

om
pa

ris
on

s.
 (d

) T
ot

al
: P

 =
 .0

00
1,

 q
 =

 0
.0

34
; P

 =
 .0

01
, q

 =
 0

.1
40

; P
 =

 .0
11

, q
 =

 0
.4

19
. (

e)
 H

C:
 P

 =
 .0

02
, q

 =
 0

.0
35

; P
 =

 .0
05

, q
 =

 0
.2

02
; P

 =
 .0

14
, 

q 
=

 0
.3

41
. (

f) 
LC

: P
 =

 .1
02

, q
 =

 0
.7

1;
 P

 =
 .2

64
, q

 =
 0

.8
4;

 P
 =

 .1
49

, q
 =

 0
.0

26
. (

*P
 <

 .0
5,

 *
*P

 <
 .0

1,
 *

**
P 

<
 .0

01
, † FD

R<
0.

25
).

e2078612-6 H. KANG ET AL.



Effect of carbohydrate intake on microbial diversity 
and composition in the non-NAFLD population

To investigate the effect of an HC diet on the gut 
microbiome in the non-NAFLD population, gut 
microbiome data from the Korean healthy twin 
cohort were analyzed (n = 682) (Figure 4). Study 
subjects were divided into the HC and LC groups 
using a cutoff of 70% energy intake from carbohy-
drates (HC group, n = 382; LC group, n = 300) 
(Supplementary Figure 3A). Furthermore, both 
groups were subdivided into two subgroups 
according to the hepatic steatosis index (HSI) (HC 
group: HSI ≥30, n = 246; HSI <30, n = 135 and LC 
group: HSI ≥30, n = 211; HSI <30, n = 88). The 
population characteristics of the HC and LC groups 
in the healthy twin cohort are described in supple-
mentary information (Supplementary Table 5, 
Supplementary Figure 3).

The composition and alpha diversity of the gut 
microbiome did not significantly differ by the HSI 
in the healthy twin cohort, regardless of carbohy-
drate intake (Figures 4 A and b). Among the three 
crucial microbial families (Ruminococcaceae, 
Enterobacteriaceae, and Veillonellaceae), the 
enrichment of the abundance of Veillonellaceae in 
individuals with high HSI was evident in all parti-
cipants as well as in the HC and LC groups 
(Figure 4c). This observation was also confirmed 
in the HC group by univariate analysis (Figure 4d).

Differential regulation of DNL-related liver 
transcripts in the HC and LC groups

NAFLD-associated single nucleotide polymorph-
isms (SNPs) were analyzed to understand the genetic 
background of subjects (Supplementary Table 6). Of 
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Figure 4. Alterations in the diversity and composition of the gut microbiome according to nonalcoholic fatty liver disease 
(NAFLD) risk in high carbohydrate (HC) and low carbohydrate (LC) intake groups from the Health Twin cohort. A hepatic 
steatosis index (HSI) of 30 IU/L was used as the cutoff for determining NAFLD risk in the HC and LC groups (HC, n = 382; LC, n = 300). (a) 
NMDS plot showing the beta diversity of the gut microbiome composition in subjects with and without liver injury. NMDS scores were 
calculated using Bray-Curtis distance (HC group: HSI <30, pink; HSI ≥30, purple; LC group: HSI <30, yellow-green; HSI ≥30, dark green). 
(b) Alpha diversity was calculated using four indices (upper left, Simpson’s diversity index; upper right, the Shannon diversity; lower 
left, Pielou’s evenness index; lower right, species richness). (c) Relative abundances of the top 10 families are visualized in stacked bar 
plots for all patients as well as the HC and LC groups, stratified by liver injury severity. (d) Univariate analysis of three key microbial 
families using nonparametric Mann-Whitney tests and Dunn’s multiple comparisons tests (*P < .05, **P < .01, ***P < .001).
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the five major SNPs (PNPLA3_rs738409 C > G, 
TM6SF2_rs58542926 C > T, SREBF2_rs133291 
C > T, MBOAT7_rs641738 C > T, and 
HSD17B13_rs72613567 adenine insertion [A-INS]), 
only the prevalence of PNPLA3_rs738409 C > G sig-
nificantly differed among the NAS subgroups in both 
the HC and LC groups. There were no significant 
differences in the minor allele frequency of 
PNPLA3_rs738409 between the HC and LC groups 
(P = .612), suggesting that the differences between 
the HC and LC groups were not attributable to 
genetic factors.

Next, we analyzed liver transcripts related to 
hepatic DNL in the biopsy-proven NAFLD cohort 
(n = 90) (Figure 5). We investigated whether an HC 
diet was associated with upregulation of DNL due 
to increased glucose availability in the liver. A total 
of 37 DEseq2-normalized transcripts were selected 
and compared between the HC and LC groups 
according to NAFLD activity (Supplementary 
Table 7). We performed Spearman’s rank correla-
tion analysis to analyze the relationship between 
the selected transcripts and the NAS in the HC 
and LC groups. In the HC group, G6PC and 
SIRT1 were negatively correlated with the NAS 
(P = .049 and P = .001), while HCFC1 and 
SREBF2 were positively correlated with the NAS 
(P = .016 and P = .041). In the LC group, USF1, 
NR1H3, and MLXIPL were inversely correlated 
with the NAS (P = .021, P = .008, and P = .037), 
whereas SCD and mTOR were positively correlated 
with the NAS (P = .009 and P = .017) (Figure 5a).

Significant correlations were confirmed by com-
paring z score-transformed expression levels of the 
corresponding genes (Figure 5b). In the HC group, 
HCFC1 expression was higher and SIRT1 expres-
sion was lower in N2 subjects than in N0 subjects 
(P = .018 and P = .001, respectively). Although 
differences in the expression of SREBF2 and G6PC 
did not reach statistical significance, higher SREBF2 
expression and lower G6PC expression were 
observed with increasing NAFLD activity (N2 vs. 
N0; P = .057 and P = .072, respectively). The 
expression of USF1, NR1H3, and MLXIPL was 
lower (P = .022, P = .009, and P = .045, respectively) 
and the expression of SCD and mTOR was higher 
with increasing NAFLD activity in the LC group 
(SCD, P = .009 [N2 vs. N0]; mTOR, P = .035 [N0 vs. 
N1]; and P = .022 [N0 vs. N2]). Among the 

corresponding transcripts in the HC group, 
SREBF2, SIRT1 and HCFC1 significantly differed 
between the HC and LC groups in the definite 
NASH subgroup (N2) (Supplementary Figure 4).

We identified differentially expressed genes 
between the N0 vs. N1+ N2 subgroups (Figure 5c). 
Specifically, SIRT1, FASN, SREBF2, and HCFC1 were 
differentially expressed in the HC group (P = .002, 
P = .014, P = .029, and P = .042, respectively) and the 
expression of mTOR, SCD, GSK3B, and MLXIPL were 
differentially expressed in the LC group (P = .005, 
P = .012, P = .017, and P = .026, respectively). 
Among the analyzed transcripts, we focused on the 
association between SREBF2 and the abundance of 
Enterobacteriaceae (Figure 5d, Supplementary 
Figure 5). A linear regression model adjusted for 
BMI, age, and sex revealed that the expression of 
SREBF2 was predictive of Enterobacteriaceae abun-
dance in the HC group (P = .006). This suggests 
a close relationship between NAFLD activity, DNL, 
and the gut microbiome community under HC diet 
conditions.

Prediction of NASH using three gut microbial 
families in the HC group

We performed the area under the receiver-operating 
characteristic curve (AUROC) analysis to evaluate 
whether specific gut microbial families predict the 
presence of NASH among subjects with biopsy- 
proven NAFLD. Three microbial families, 
Enterobacteriaceae, Ruminococcaceae, and 
Veillonellaceae, which were present in differing 
amounts according to NAFLD activity in the HC 
group, were incorporated into the prediction model 
(Figure 6). For NASH diagnosis, the addition of these 
microbial families to the prediction model including 
BMI, age, and sex yielded an AUC of 0.861 in the HC 
group (95% CI, 0.774–0.940), which was significantly 
higher than that of the prediction model including 
only BMI, age, and sex (AUC = 0.743; 95% CI, 
0.625–0.860; P = .018 by DeLong test) (Figure 6b). 
However, the addition of those microbial families did 
not significantly improve the predictive validity of the 
model for detecting NASH in the LC group (AUC 
= 0.874 [microbes-BMI-age-sex]; AUC = 0.872 [BMI- 
age-sex]; 95% CI, 0.735–0.937; P = .883 by DeLong 
test) (Figure 6c).
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Causal effects of clinical markers, gut microbes, and 
gene expression on NAFLD pathogenesis

To determine causality among several variables, we 
used kernel causality analysis, which identifies 
plausible causal pathways between two variables 
using generalized correlation coefficients20 

(Figure 7). The descriptive source data are shown 

in Supplementary Table 8. Differences in the caus-
ality of variables between the HC and LC groups 
were observed. In the HC group, we identified 
positive causation between insulin resistance- 
related markers, such as HOMA-IR and adipo-IR, 
and liver damage markers, such as ALT, aspartate 
transaminase (AST), and gamma-glutamyl trans-
ferase (GGT). Additionally, there was positive 

Figure 5. Changes in de novo lipogenesis (DNL)-related transcripts in the high carbohydrate (HC) intake group. (a) Heatmap displaying 
the correlation between DNL-related genes and the NAFLD activity score (NAS) in the HC and LC groups. Statistical analysis was 
performed using transformed z scores and Spearman’s rank correlation analysis. (b) Z score-transformed expression levels of 
predefined transcripts were compared between the HC and LC groups according to NAFLD severity using an one-way analyses of 
variance and the FDR correction for multiple comparisons. (c) Differentially expressed genes were defined using the R package DEseq2. 
The upper panel indicates log10 transformed P values and the lower panel indicates log2 transformed fold changes. (d) The linear 
regression model depicts the relationship between SREBF2 and Enterobacteriaceae after adjustment for BMI, age, and sex (*P < .05, 
**P < .01, ***P < .001).
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causation between the abundance of 
Enterobacteriaceae and a DNL regulator, SREBF2; 
both Enterobacteriaceae and SREBF2 were involved 
in reducing SIRT1, a lipid biosynthesis suppressor 
gene.

Discussion

The current study demonstrated that in individuals 
with NAFLD who consume an HC diet (but not 
a LC diet), alterations in the composition of the gut 

microbiome are associated with NAFLD activity. In 
particular, the abundances of three key microbial 
families (Veillonellaceae, Ruminococcaceae, and 
Enterobacteriaceae) differed among the NAS sub-
groups within the HC group, such that a set of these 
microbes served as an accurate tool for diagnosing 
NASH in the HC group. However, HC consump-
tion did not impact the gut microbiome composi-
tion in the absence of NAFLD, according to an 
independent non-NAFLD cohort. In the transcrip-
tomic analysis of human liver tissues from the 

Figure 6. Noninvasive multidimensional prediction of nonalcoholic steatohepatitis (NASH) using three microbial families and 
potential clinical variables in all subjects as well as the high carbohydrate (HC), and low carbohydrate (LC) intake groups 
(non-NASH vs. NASH). The receiver-operating characteristic (ROC) curve was designed for detecting NASH among study subjects with 
biopsy-proven NAFLD. Area under receiver-operating characteristic curves (AUROC) analyses including clinical variables (BMI, age, and 
sex) (blue) vs. those also including the three microbial families (Enterobacteriaceae, Ruminococcaceae, and Veillonellaceae) in addition to 
clinical variables (BMI, age, and sex) (red) plotted for the diagnosis of NASH in (a)all subjects as well as, (b) the HC, and (c) LC groups. 
P values were calculated using the DeLong test.

Figure 7. The causal relationships among nonalcoholic steatohepatitis (NASH)-related microbes, transcripts, and clinical 
factors in the high carbohydrate (HC) and low carbohydrate (LC) intake groups. Causal inference of inverse, normally 
transformed microbiome families (Ruminococcaceae and Enterobacteriaceae), transcripts (SREBF2, SIRT1, and mTOR), and clinical 
variables (ALT, AST, adipo-IR, HOMA-IR, insulin, FFA, and BMI) were calculated using kernel causality analysis; significant causal 
correlations were visualized using Cytoscape. Causality of variables in the (a) HC and (b) LC groups. Solid line indicates a positive 
correlation and the dashed lines indicates a negative correlation. The thickness of the line indicates the degree of statistical significance 
(thin: less significant P values; thick: more-significant P values). Abbreviations: SIRT1, silent mating type information regulation 2 
homolog 1; mTOR, mechanistic target of rapamycin kinase; SREBF2, sterol regulatory element-binding transcription factor 2; GGT, 
gamma-glutamyl transferase; HOMA-IR, homeostasis model assessment of insulin resistance; adipo-IR, adipose tissue insulin resistance; 
BMI, body mass index; FFA, free fatty acids; ALT, alanine transaminase; AST, aspartate transaminase.
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subjects with biopsy-proven NAFLD, we found 
four differentially expressed genes (G6PC, SIRT1, 
HCFC1, and SREBF2) between non-NAFLD con-
trols and NASH subjects who consumed HC. We 
then explored the direction of causality of the three 
microbial families, eight clinical markers, and three 
transcriptomes using kernel causality analysis.

HC consumption was positively correlated with 
an insulin resistance phenotype in subjects with 
biopsy-proven NAFLD. Given the very high pro-
portion of energy intake from carbohydrates in the 
HC group, it is plausible that chronic high con-
sumption of carbohydrates worsens insulin 
resistance.21 According to a Japanese population- 
based study, high consumption of white rice, 
a primary carbohydrate source in East Asia, was 
positively associated with the risk of type 2 DM.22In 
addition, a high HC-intake-to-energy ratio was 
positively associated with a high prevalence of 
NAFLD.23 Mechanistically, several studies have 
reported a close relationship between hepatic stea-
tosis and hepatic insulin resistance.24–26, Although 
a causal relationship among HC consumption, 
NAFLD, and DM remains to be elucidated, the 
results from our kernel causality analysis offer 
some clues to the relationship among these 
conditions.

In the current study, differences in three 
NAFLD-associated microbial taxa were identified 
in the HC group by multivariate analysis. In 
a recent study, we reported that the 
Veillonellaceae and Ruminococcaceae families con-
tribute to significant fibrosis in nonobese subjects 
with NAFLD,11 while the Enterobacteriaceae family 
was not significantly altered by fibrosis severity 
after adjustment for DM.11 This relationship iden-
tified among the Enterobacteriaceae family, DM, 
and an HC diet was supported by the current 
study findings that the surrogate markers of dia-
betes were associated with HC consumption in 
NAFLD subjects. Indeed, several studies have 
found that the abundance of Enterobacteriaceae is 
enriched in adipose tissue and plasma samples from 
individuals with DM27 and in feces from NAFLD 
subjects.28,29 Our results led to the conclusion that 
Enterobacteriaceae forms a close multifactorial 
association with DM and NAFLD. In addition, the 
functional analysis indicated that the microbial car-
bohydrate uptake system (specifically, the 

phosphotransferase system) was enriched in the 
NAFLD subgroup within the HC group. This result 
was consistent with a recent study that two strains 
belonging to the family Enterobacteriaceae strongly 
compete for carbohydrate, even leading to coloni-
zation resistance.30 Thus, the enrichment of the 
abundance of Enterobacteriaceae with worsening 
NAFLD severity observed in the HC group might 
be attributed to ample opportunities for carbohy-
drate utilization.

An association between the Ruminococcaceae 
family and NASH has been identified in several 
human studies.29,31 Children with NASH showed 
a significant reduction in the abundance of 
Ruminococcaceae compared with healthy children;-
29 additionally, a UK study also found that the 
abundance of Ruminococcaceae decreased in 
patients with biopsy-proven NASH.31 In the cur-
rent study, the genus faecalibacterium in the family 
Ruminococcaceae may largely account for the 
decreased abundance of Ruminococcaceae in 
patients with advanced NAFLD in the HC group. 
Indeed, hepatic DNL is significantly decreased by 
the short-chain fatty acids produced by 
faecalibacterium32 and the abundance of 
Faecalibacterium prausnitzii has been linked to 
liver fat accumulation as measured by magnetic 
resonance spectroscopy.33 These results highlight 
the dynamic crosstalk between Ruminococcaceae, 
DNL, and NAFLD severity.

Alterations in the gut microbiome according to 
NAFLD severity in the HC group were confirmed 
by comparing the gut microbiome composition of 
the NAFLD cohort with that of the non-NAFLD 
cohort. The gut microbiome composition of the 
non-NAFLD cohort, unlike that of the NAFLD 
cohort, stratified by the HSI in the HC group was 
not significantly altered by the HSI. This indicates 
that the contributing factor to the alteration of the 
gut microbiome composition is the interaction 
between NAFLD severity and an HC diet rather 
than their individual effects. On the other hand, 
univariate and multivariate analyses of the gut 
microbiome in the NAFLD cohort showed that 
the abundance of Veillonellaceae was not signifi-
cantly enriched with worsening NAFLD severity 
in the HC group. However, the abundance of 
Veillonellaceae significantly increased with high 
HSI (>30) in the HC group of the non-NAFLD 
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twin cohort. Thus, we speculate that the enrich-
ment of the abundance of Veillonellaceae in the 
HC group is related with hepatic steatosis but not 
with severe NASH. Although several previous stu-
dies reported the association between 
Veillonellaceae and NAFLD,11,34 further studies on 
the colonization of Veillonellaceae during the cer-
tain stages of NAFLD under HC consumption are 
warranted.

To investigate whether HC consumption alters 
hepatic DNL-related gene expression, we per-
formed liver transcriptomic analysis in 90 subjects 
with biopsy-proven NAFLD. Among the 37 genes 
that encode proteins involved in DNL, we identified 
three central DNL regulators (SREBF2, SIRT1, and 
mTOR) that are significantly associated with NASH 
pathogenesis as well as carbohydrate metabolism. 
Compared with non-NASH patients (the N0 sub-
group), definite NASH patients (N2) in the HC 
group showed higher expression of SREBF2 and 
lower expression of SIRT1; overall, NASH patients 
(N1 and N2 subgroups) in the LC group showed 
higher expression of mTOR.

The expression of SREBF2, the gene encoding 
sterol regulatory element-binding protein 2 
(SREBP2), was upregulated upon increasing 
NAFLD severity in the HC group. SREBPs can acti-
vate the transcription of genes involved in the synth-
esis of cholesterol, fatty acids, and phospholipids.35,36 

The association between SREBF2 and NASH is well 
established: SREBF2 mRNA levels are three times 
higher in NASH patients than in healthy controls, 
and acyl-CoA cholesterol acyltransferase was 1.5- 
fold increased.37 Thus, chronic carbohydrate con-
sumption may stimulate SREBP expression and the 
subsequent upregulation of hepatic DNL, leading to 
excessive lipid accumulation and the onset of 
NAFLD. We also demonstrated that the diet- 
induced increase in hepatic SREBF2 expression was 
positively associated with the abundance of 
Enterobacteriaceae. Although a direct interaction 
between SREBP2 and Enterobacteriaceae has not 
yet been established, our results provide novel 
insights into the gut microbe mediation of DNL, 
which occurs via regulation of hepatic gene expres-
sion in relation to an HC diet.

The expression of SIRT1, a potential inhibitor 
of hepatic DNL, decreased with increasing NASH 
severity in the HC group. The function of SIRT1 

in preventing liver fat accumulation is well estab-
lished in both mice and humans.38,39 A loss-of- 
function model using SIRT1-knockout mice dis-
played hepatic insulin resistance as well as 
increased hepatic lipogenesis;38 hepatocytes differ-
entiated from human induced pluripotent stem 
cells with deletion of SIRT1 exhibited a NASH 
phenotype, including steatosis and inflammation.-
39 Due to its responsiveness to hepatic insulin, 
SIRT1 is regarded as a potential therapeutic target 
for treating type 2 DM.40 Thus, reduced expres-
sion of SIRT1 may be derived from impaired 
hepatic lipid and glucose homeostasis.

In the current study, mTOR, an insulin-signaling 
regulator41and a key player in adipogenesis,42 was 
expressed at higher levels in patients with advanced 
NAFLD in the LC group. The LC group consumed 
a relatively high-fat diet and contained a higher 
proportion of obese people than the HC group. 
An in vivo study using adipose tissue-specific 
mTORC1-knockout mice revealed that loss of 
mTORC1 induces resistance to high-fat diet- 
induced obesity.43 Moreover, mTORC1 is highly 
activated in the liver of diet-induced obese animals 
with impaired insulin signaling.44,45 Activation of 
mTOR is associated with the development of meta-
bolic syndrome and NASH in humans and 
animals.46Thus, there seems to be an intricate rela-
tionship among mTOR, obesity, and NASH, sug-
gesting that the increased mTOR expression 
observed in individuals with NASH in the LC 
group might be attributed to the high prevalence 
of obesity in this group.

Finally, we integrated clinical, microbial, and 
transcriptomic data to identify causality among 
variables involved in the etiology of NAFLD asso-
ciated with HC and LC diets. As expected, the 
surrogate markers of insulin resistance displayed 
positive causal effects on NASH biomarkers. 
Moreover, GGT was the causal agent that reduced 
SIRT1 expression in the HC group. GGT is inver-
sely associated with insulin sensitivity,47 and insu-
lin resistance induces hepatic DNL in NAFLD.9 In 
addition, Enterobacteriaceae play a central role in 
regulating DNL-associated genes by stimulating 
SREBF2 and inhibiting SIRT1 expression. 
A previous study using germ-free and specific 
pathogen-free mice demonstrated that intestinal 
microbes promote hepatic fatty acid metabolism 

e2078612-12 H. KANG ET AL.



via the transcription of DNL-associated genes, 
including SCD1 and ELOVL5, which are modulated 
by SREBP1C.48 Moreover, knockdown removal of 
SIRT1 in mice alters the gut microbiota, leading to 
intestinal inflammation,49 which may partly explain 
the crosstalk between the hepatic transcriptome 
and the intestinal microbiota. Thus, impaired insu-
lin sensitivity due to extreme HC consumption and 
lipid accumulation-associated liver damage may 
result from the inactivation of DNL suppressors 
through microbial reshaping.

The current study utilized the nested case- 
control data from a well-characterized biopsy- 
proven NAFLD cohort, providing the unique 
insight that the progression of NAFLD in the HC 
group is a modulating factor for the alteration of 
the gut microbiome and that these changes in the 
gut microbiome contribute to host hepatic metabo-
lism in an Asian population. Nevertheless, this 
study has several limitations. First, the cross- 
sectional design of our study may preclude us 
from drawing a number of causal mechanistic 
insights between nutrition and NAFLD. However, 
we adopted the robust statistical methods to 
address this issue. We compared the gut micro-
biome data obtained from 16S rRNA amplicon 
sequencing between subjects with HC and LC 
diets and also scrutinized hepatic transcriptomic 
data to identify underlying mechanisms. 
Moreover, we attempted to verify the causality of 
defined factors using kernel causality analysis. 
Although kernel causality analysis is a useful 
method to gain an insight into nonexperimental 
causality and has been used for a long time in 
various fields including the field of 
microbiology,50further interventional studies, 
including animal experiments and human clinical 
trials, are warranted to validate our findings on the 
macronutrient-centered gut-liver axis. Second, the 
pathogenesis of NAFLD in the LC group remains 
unclear. Due to the typical dietary pattern of an 
Asian NAFLD population,51,52 even the LC group 
in the current study consumed a relatively high 
level of carbohydrates (63.7%) compared with 
Western NAFLD populations (~44–46%).53,54 

Thus, it was difficult to clearly distinguish between 
the effects of HC and LC diets in the current study; 
nevertheless, we identified obesity as the main con-
tributing factor to NAFLD severity in the LC group.

In summary, based on a multidisciplinary 
approach, we highlight that habitual HC consump-
tion may be associated with adverse hepatic meta-
bolism and NAFLD severity, which result from 
alterations in the gut microbiome. In particular, 
we demonstrated that HC intake is significantly 
associated with insulin resistance markers and 
may lead to a prominent shift in microbial diversity 
and the abundance of specific taxa according to 
NAFLD activity. We also confirmed that the addi-
tion of microbial taxa may significantly improve the 
prediction of NASH in the HC group. Therefore, 
the enrichment of pathogenic intestinal microbiota 
and the depletion of protective gut microbiota by 
increased NAFLD severity in the HC group seem to 
be associated with host hepatic metabolism through 
the transcriptional activation of hepatic DNL.

Methods

Study population and liver histology

This cross-sectional study was performed using the 
ongoing Boramae NAFLD cohort 
(NCT02206841).11,55,56 This study was performed 
in accordance with the ethical guidelines of the 
1975 Declaration of Helsinki for the participation 
of human subjects. This study protocol was 
approved by the Institutional Review Board of 
Boramae Medical Center (IRB No. 26–2017-48). 
All study subjects provided written informed con-
sent. The liver specimens were obtained using 16 G 
disposable needles, then fixed in 4% formalin and 
embedded in paraffin. The specimens with 20 mm 
in length and 3 mm in thickness were stained with 
hematoxylin and eosin and Masson’s trichrome. 
Liver histology was assessed using the NAFLD 
activity scoring system.57 The combination of 
scored steatosis, lobular inflammation, and bal-
looning was considered for categorizing study sub-
jects. Patients with an NAS of 0–2 were classified as 
non-NASH (N0), those with an NAS of 3–4 were 
classified as having borderline NASH (N1), and 
those with an NAS of 5–8 were classified as having 
definite NASH (N2).58 Participants with type 1 DM 
and advanced fibrosis (≥F3) were excluded from 
this study. Clinical, biochemical, and genetic para-
meters were evaluated as previously described 
elsewhere.11,55,56
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Dietary analysis

Usual dietary intake was assessed using 103 
items from a food frequency questionnaire 
(FFQ).59 The frequency of servings during the 
last year was classified into nine categories: 
never, once a month, 2–3 times a month, 1–2 
times a week, 3–4 times a week, 5–6 times 
a week, once a day, twice a day, and three 
times a day. Portion size was categorized as 
small, medium, or large. Each individual’s 
daily nutrient intake was calculated using 
CAN-Pro 5.0 (The Korean Nutrition Society, 
Seoul, Korea). The calculated daily absolute 
amount of carbohydrate intake (g) was con-
verted to energy consumed from carbohydrate 
by multiplying by four calories. Carbohydrate 
consumption as a proportion of daily energy 
intake was determined by dividing calories 
from carbohydrate by the total energy intake.

Biomarker measurements

The HOMA-IR and adipo-IR were measured as 
described in previous studies.60,61 Liver biopsy was only 
indicated for study subjects who had at least two risk 
factors. The risk factors included high TG levels, low 
high-density lipoprotein cholesterol levels, abdominal 
obesity, hypertension, DM or insulin resistance, and 
clinically suspected NASH or hepatic fibrosis.55,56

Microbiome data extraction from external cohorts

Curated metagenomic data from the NAFLD cohort 
were utilized in this study.11 Raw data sequencing was 
processed using the QIIME pipeline (v 1.8.0).62 

Selection and assignment of operational taxonomic 
unit (OTU) were performed using the gg_13_5 
Greengenes database at 97% similarity level.63 

Representative sequences were selected and aligned 
using the UCLUST software and the PyNAST 
algorithm.64 OTUs were assigned to taxa using the 
ribosomal database project classifier.65, 66 Chimeric 
sequences were removed using the ChimeraSlayer 
algorithm.66 The relative abundance tables at the 
family and genus levels were used for the microbiome 
analysis. All of the relative abundance tables were 
filtered at the 0.001% abundance level and 50% persis-
tence level.

Non-NAFLD cohort analysis

A total of 682 subjects were recruited from the 
Healthy Twin study, which was part of the 
Korean Genome Epidemiology study.67 The HC 
and LC groups in this current study were cre-
ated in concordance with the main study. 
Control and NAFLD risk groups were deter-
mined according to the HSI.68 Detailed informa-
tion on the sample collection, 16S rRNA 
sequencing targeting the V4 region, and bioin-
formatics processing is described elsewhere.69 In 
the current study, processed operational taxo-
nomic unit tables at the family and genus levels 
were utilized for comparing the compositions of 
the gut microbiomes.

Host genotyping

Single nucleotide polymorphisms (SNP) genotyping 
of the entire study population was performed using 
TaqMan 50 nuclease assays (Life Technologies, 
Carlsbad, CA) or Sanger sequencing (Macrogen, 
Inc, Seoul, South Korea) according to the manufac-
turer’s protocol. Hardy-Weinberg equilibrium was 
analyzed using the chi-square test. The following 
SNPs were selected and have been previously 
described:55,70 PNPLA3_rs738409 C > G,71 

TM6SF2_rs58542926 C > T,72SREBF2_rs133291 
C > T,70 MBOAT7_rs641738 C > T,73 and 
HSD17B13_rs72613567 adenine insertion 
(A-INS).74

Liver transcriptome analysis

Total hepatic RNA was extracted using TRIzol 
reagent (Invitrogen, Carlsbad, CA), according to 
the manufacturer’s protocol. RNA quality was 
determined using the BioAnalyzer (Agilent 
Technologies, Inc., Santa Clara, CA). The mean 
RNA integrity number (RIN) was 8.35 (4.5–9.5). 
cDNA library construction was performed using 
a TruSeq Stranded Total RNA Sample Prep Kit 
(Illumina, Inc., San Diego, CA). Libraries were 
sequenced using the Illumina platform. Raw data 
in fastq format were processed using STAR75 and 
HTseq.76 After performing a quality control of the 
raw counts, normalization of raw count data was 
undertaken using DESeq2.77
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Bioinformatic and statistical analyses

Statistical comparisons between the HC and LC 
groups were conducted with the Kruskal-Wallis test 
and Dunn’s multiple comparisons test using 
GraphPad Prism software ver 8.0d (GraphPad 
Software, San Diego, CA). Four indices of alpha diver-
sity were calculated with OTU tables at the genus level 
using the Vegan package in R.78 This package was also 
used to display NMDS plots of beta diversity. The 
distance between genera was calculated using the 
Bray-Curtis distance method, and differences between 
subgroups were evaluated using the analysis of simila-
rities (ANOSIM) function. Random forest analysis 
was conducted using the RandomForestUtils package 
in R79 to determine which microbial families were 
predictive of NASH. To exclude the potential con-
founding factors (age, BMI, and sex) for identifying 
specific taxa associated with NASH at the family level 
associated with NASH in the HC and LC groups, 
multivariate association analysis was performed 
using the MaAsLin2 package in R.19 The functional 
pathway analysis was conducted using PICRUSt2, and 
the KEGG database was used to infer the 
metagenomes.80 LEfSe with a threshold LDA score 
of 2.0 was performed to identify the pathways that 
significantly differed between the non-NASH (N0) 
and NASH (N1 and N2) subgroups in the HC and 
LC groups, respectively (Galaxy platform, https://hut 
tenhower.sph.harvard.edu/galaxy)81. To estimate the 
predictive power of the three microbial families 
(Ruminococcaceae, Veillonellaceae, and 
Enterobacteriaceae), AUROC analysis was performed 
using the pROC and multipleROC package in R.82 For 
causal inference between variables, kernel causality 
analysis was used. The principal concept of the kernel 
causality method is to invest kernel regression in both 
directions of two variables; the variable with the larger 
correlation coefficient is considered the ‘kernel 
cause’.83 This kernel cause was measured using the 
generalCorr package in R84 and visualized using 
Cytoscape (v3.8.0).85
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