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Repetitive passive movement (PM) affects corticospinal excitability; however, it is
unknown whether a duty cycle which repeats movement and rest, or subjects’ conscious
attention to movements, affects corticospinal excitability. We aimed to clarify the effect
of the presence or absence of a duty cycle and subjects’ attention on corticospinal
excitability. Three experiments were conducted. In Experiment 1, PM of the right index
finger was performed for 10 min. Three conditions were used: (1) continuous PM
(cPM) at a rate of 40◦/s; (2) intermittent PM (iPM) with a duty cycle at 40◦/s; and
(3) iPM at 100◦/s. In conditions 1 and 3, motor evoked potential (MEP) amplitude
was significantly reduced. In Experiment 2, PM was performed for 30 min: condition
1 comprised cPM at a rate of 40◦/s and Condition 2 comprised iPM at 40◦/s. MEP
amplitude significantly decreased in both conditions. In Experiment 3, PM was performed
for 10 min: condition 1 comprised paying attention to the moving finger during iPM
and Condition 2 was similar to Condition 1 but while counting images on a monitor
without looking at the movement finger, and Condition 3 comprised counting images
on a monitor without performing PM. MEP amplitude significantly increased only under
Condition 1. Thus, afferent input from movements above a certain threshold may affect
corticospinal excitability reduction. Furthermore, corticospinal excitability increases when
paying attention to passive finger movement.

Keywords: repetitive passive movement, duty cycle, conscious attention, motor evoked potential,
corticospinal excitability

INTRODUCTION

Corticospinal excitability decreases after passive movement (PM; Otsuka et al., 2017; Sasaki et al.,
2017); this is thought to be due to post-exercise depression (PED). PED due to PM results in no
changes to F waves, which are indicators of spinal cord excitability (Otsuka et al., 2017; Sasaki
et al., 2017), but it increases short interval intracortical inhibition (SICI), which is an indicator

Abbreviations: MEP, Motor evoked potential; TMS, Transcranial magnetic stimulation; PED, Post-exercise depression;
SICI, Short interval intracortical inhibition; SAI, Short-latency afferent inhibition; M1, Primary motor cortex; PES,
Peripheral electric stimulation; TBS, Theta burst stimulation; cTBS, continuance TBS; iTBS, intermittent TBS; PAS, Paired
associative stimulation; rTMS, Repetitive transcranial magnetic stimulation; EMG, Electromyography; FDI, First dorsal
interosseous; PM, Passive movement; S1, Primary somatosensory cortex; ANOVA, Analysis of variance; cPM, continuous
passive movement; iPM, intermittent passive movement; ifPM, intermittent fast passive movement.
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of suppressive circuits in the cortex (Sasaki et al., 2017).
Therefore, this phenomenon may be due to a decrease in the
primary motor cortex (M1) activity. However, corticospinal
excitability increases with PM (Macé et al., 2008) and remains
unchanged (Lotze et al., 2003). This fluctuation in corticospinal
excitability is thought to be influenced by differences in various
stimuli such as the duration of movement, speed of movement,
presence or absence of a duty cycle of repeated movement and
rest, and presence or absence of a subject’s active attention on
the movement.

In a previous study reporting that corticospinal excitability
increased after PM (Macé et al., 2008), the authors used palm
flexion and dorsiflexion of the wrist joint for 60 min with a duty
cycle consisting of 5–8 s of rest after every 10 movements. In
addition, their experiments were conditioned to focus on PM.
In another previous study using peripheral electric stimulation
(PES), intermittent stimulation with a duty cycle repeating
stimulation and rest at an intensity above the motor threshold
significantly increased corticospinal excitability (Chipchase
et al., 2011). Moreover, corticospinal excitability significantly
decreased with continuous theta burst stimulation (cTBS) but
increased upon intermittent TBS (iTBS; Huang et al., 2005).
From these previous studies, it appears that continuous and
intermittent intervention with duty cycles of repeated stimulus
and rest may have different effects on corticospinal excitability.
Therefore, we hypothesized that corticospinal excitability would
increase when setting a duty cycle in repetitive PM, and the
purpose of Experiment 1 was to clarify the effect of the
presence or absence of a duty cycle of repetitive PM on
corticospinal excitability.

In the Experiment 2, the influence of number of movements
was examined in order to clarify the effects of continuous
repetitive PM and intermittent repetitive PM on corticospinal
excitability. Therefore, the movement time was set to 30min, and
the number of the movements was increased.

In addition, attention and movement are closely related.
For example, directing attention to the stimulating side
during paired associative stimulation (PAS) intervention
significantly increases corticospinal excitability (Stefan et al.,
2004). However, corticospinal excitability does not change
when focusing on the hand opposite to the stimulating
side during PAS intervention (Stefan et al., 2004), and SICI
decreases when paying attention to fingers during movement
(Thomson et al., 2008). Furthermore, corticospinal excitability
increases without F wave changes when attention is paid
to the target hand during repetitive transcranial magnetic
stimulation (rTMS) intervention (Conte et al., 2007, 2008).
Additionally, attention to vibration stimulation increases
corticospinal excitability and decreases SICI; however,
corticospinal excitability does not change when attention is
not paid (Rosenkranz and Rothwell, 2004).

These previous studies suggested that attention to the
stimulated side during an intervention diminishes the activity of
suppressive circuits in the cortex and thus increases corticospinal
excitability. Therefore, in Experiment 3, we hypothesized that
directing attention to the PM of index fingers would induce
an increase in corticospinal excitability, and we aimed to

clarify the influence of paying attention to repetitive PM on
corticospinal excitability.

MATERIALS AND METHODS

Subjects
A total of 19 healthy adults (16 males; age, 24.7 ± 6.0 years
[mean ± standard deviation]; 17 right-handed) participated in
this study. Experiment 1 utilized 15 healthy adults (13 males;
age, 24.7 ± 6.6 years; 13 right-handed); Experiment 2 utilized
10 healthy adults (eight males; age, 24.0 ± 4.8 years; eight right-
handed); and Experiment 3 utilized 14 healthy adults (12 males;
age, 25.4 ± 6.6 years; 12 right-handed). No subjects had any
central neurological or psychological disorders. This study was
approved by the Ethics Committee of Niigata University of
Health and Welfare and was conducted in accordance with
the Declaration of Helsinki. All participants provided written
informed consent before participating in this research.

Electromyography (EMG)
The target muscle was the right first dorsal interosseous muscle
(FDI), which was monitored with disposable Ag/AgCl electrodes
in a belly−tendon montage. The earth electrode was wrapped
around the right forearm. Electromyography (EMG) data were
recorded using a surface electrode (Blue sensor, Metz) connected
to an amplifier (×100; A-DL-720-140, 4 Assist, Tokyo, Japan).
The amplified EMG signal was digitized using an A/D converter
(Power Lab 8/30, AD Instruments, Colorado Springs, CO, USA).
The sampling frequency was 4 kHz, and filtering was also
performed using a 20 Hz high-pass filter. Data was imported
into a personal computer and stored using analysis software
(LabChart 7, AD Instruments).

Motor Evoked Potential (MEP)
Measurement
Motor evoked potential (MEP) was measured by TMS as a means
of evaluating corticospinal excitability. AMagstim 200 (Magstim,
Dyfed, UK) and a figure 8 coil (diameter, 9.5 cm) were used
for MEP measurement. The coil was placed tangentially to the
scalp, and the handle part of the coil was placed tangentially at
approximately 45◦ behind the midline. The magnetic stimulation
site was the finger area on the left M1 and was defined as the site
(hot spot) where the MEP was most induced by the right FDI.
Magnetic resonance imaging and Visor 2 TMS Neuronavigation
(eemagine Medical Imaging Solutions GmbH, Berlin, Germany)
were also used for identification of the hot spot on the right FDI.
The position, direction and angle of the coil were made constant
before and after the intervention. The magnetic stimulation
intensity was defined as the intensity at which MEP amplitude
was induced to about 1 mV at rest. MEP was measured 15 times
before intervention (Pre) as well as immediately and 5 and 10min
after intervention (Post-0, Post-5, and Post-10, respectively). The
magnetic stimulation interval was set to 5–6 s.

Passive Movement
A custom-made PM control device (Takei Kiki kogyo, Niigata,
Japan) that can control motion speed and angle was used in all
three experiments.
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FIGURE 1 | Details of all experimental conditions. Details regarding time of movement, number of movement, angular velocity, and presence or absence of duty
cycle and attention of each experimental condition are indicated.

Experiment 1
Three PM conditions were used (Figure 1). The movements
examined were repetitive abduction–adduction movements of
the right index finger from 0◦ to 20◦ abductions of the
metacarpophalangeal (MP) joint for 10 min. Zero position
was defined as the intermediate position of the MP joint. In
Condition 1, angular velocity was 40◦/s and the movement
was continuously repeated (continuous PM−600; cPM_600). In
Condition 2, intermittent PM−240 (iPM_240), consisted of PM
for 4 s and rest for 6 s with an angular velocity of 40◦/s. In
Condition 3, intermittent fast PM−600 (ifPM_600), consisted of
4 s of movement followed by 6 s of rest was. However, to produce
the same number of movements as in Condition 1, the angular
velocity was set to 100◦/s.

Experiment 2
The PM condition were used and based on Condition 1 and
Condition 2 in Experiment 1; however, both movement times
were increased to 30 min (Figure 1). Therefore, in this case,
Condition 1 utilized a cPM (cPM_1,800), whereas Condition
2 was an iPM with duty cycle of 4 s of movement followed by
6 s of rest (iPM_720).

Experiment 3
Focusing on the presence or absence of the subject’s attention,
three conditions were utilized (Figure 1). Condition 2 of
Experiment 1 was slightly modified to produce Condition 1.
In this case (attention), the subject was asked to observe and
count the number of movements of the finger performing PM.
Movement was set to 3, 4, or 5 s followed by 6 s of rest, and each
of these cycles was randomly performed in 20 sets during the test.
Instructions to the subject were as follows: ‘‘Please look at your
right index finger and count how many times it moves. There
will be a break of 6 s between each set of movements, at which

point please tell me how many times your finger moved. Please
repeat this for 10 min.’’

In Condition 2 (no attention), PM was the same as in
Condition 1 but subjects were asked to count the number
of circles displayed on a monitor placed directly in front of
their faces.

The image sequence displayed on the monitor is shown in
Figure 2. Briefly, a perfect circle was presented for 0.5 s every 1 s
and randomly blinked 3–5 times. This was followed by a white
screen for 6 s and the process was then repeated. The subjects
were given the following instructions: ‘‘Please count the number
of blinking circles presented on the monitor. The screen will then

FIGURE 2 | Monitor display. The circle presentation time was set to 0.5 s,
whereas the circle presentation interval was set to 1 s. Three to five circles
were randomly presented 20 times each. The break time between groups of
circle displays was 6 s.
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FIGURE 3 | Experimental procedure. All the experiments were performed in the afternoon, and all participating subjects performed randomly assigned intervention
tasks on different days. In all experiments, 15 motor evoked potentials (MEPs) were measured before intervention (Pre), and immediately (Post-0) and 5 (Post-5) and
10 min (Post-10) after the intervention.

turn white for 6 s, and during that time, please tell me how many
times the circle flashed. Please repeat this for 10 min.’’

In the Condition 3 (control), no PM was performed, and
similar to Condition 2, the number of circles randomly displayed
on the monitor was counted.

Experimental Procedure (Figure 3)
In Experiments 1, 2, and 3, 15 MEPs were measured for Pre,
Post-0, Post-5, and Post-10 using TMS. All the experiments were
performed in the afternoon, and each condition was randomly
assigned on a different day. In all experiments, the subjects sat in
a reclining chair to which a headrest was attached, with their right
forearms on a table while maintaining a comfortable posture at
all times.

Data Analysis
LabChart 7 software (AD Instruments) was used for MEP
analysis. The maximum and minimum values of the 15 MEP
waveforms obtained before and after the intervention for each
condition were excluded, and the MEP amplitudes of the
remaining 13 waveforms were averaged. The peak-to-peak value
was then calculated as the MEP amplitude value.

Statistical Analysis
PASW statistical analysis software Ver. 21 (SPSS; IBM, Armonk,
NY, USA) was used for statistical analysis. Two-way repeated
measure analysis of variance (ANOVA) was used to compare
MEPs between INTERVENTION and TIME factors (Pre, Post-0,

Post-5, Post-10) in each experiment. Mauchly’s test of sphericity
was used to analyze the sphericity of the data obtained in each
experiment. When the Mauchly’s test of sphericity could not
be assumed, the Greenhouse–Geisser correction statistic was
used. When a main effect or interaction was observed, multiple

FIGURE 4 | MEP amplitude before and after the intervention at Experiment
1. Mean MEP amplitude (mean ± standard error; SE) Pre, Post-0, Post-5,
and Post-10. In the cPM_600 condition, MEP amplitude decreased
significantly between Post-0 and Post-5 compared with Pre (P < 0.01). In the
ifPM_600 condition, MEP amplitude decreased significantly between Post-0
and Post-5 compared with Pre (P < 0.05). In contrast, the iPM_240 condition
did not result in any significant change in MEP amplitude before or after the
intervention. Post hoc Bonferroni test. ∗P < 0.05, ∗∗P < 0.01.
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comparisons were performed using the Bonferroni method. The
level of significance was set at 5%.

RESULTS

Experiment 1
Changes in MEP over time are shown in Figure 4. Two-way
repeated-measures ANOVA showed a significant main effect
of the INTERVENTION factor (F(2,28) = 5.019, P = 0.014,
partial η2 = 0.264), of the main effect of the TIME factor
(F(2.036,28.500) = 5.443, P = 0.010, partial η2 = 0.280) and of their
interaction (F(6,84) = 3.277, P = 0.006, partial η2 = 0.190). Results
of post hoc test showed that there was significant decrease in
MEP in Post-0 and Post-5 compared with Pre in Condition 1
(P < 0.01) and 3 (P < 0.05), whereas there was no significant
change in MEP in Condition 2.

Experiment 2
Changes in MEP over time are shown in Figure 5. Two-way
repeated-measures ANOVA revealed a significant difference of
the main effect of the TIME factor (F(2.004,18.040) = 23.652,
P < 0.001, partial η2 = 0.724), but no of the main effect of

FIGURE 5 | MEP amplitude before and after the intervention at
Experiment 2. Mean MEP amplitude (mean ± SE) at Pre, Post-0, Post-5, and
Post-10 (upper panel). Two-way repeated measure analysis of variance
(ANOVA) showed that the main effect in the TIME factor was significant, and a
post hoc test was conducted on the average results for the two conditions
(lower panel). As a result, MEP amplitude decreased significantly between
Post-0, Post-5, and Post-10 compared with Pre (P < 0.01). Post hoc
Bonferroni test. ∗∗P < 0.01.

the INTERVENTION factor (F(1,9) = 1.729, P = 0.221, partial
η2 = 0.161) or their interaction (F(3,27) = 0.632, P = 0.601, partial
η2 = 0.066). Because the main effect of the TIME factor was
significant, post hoc test was performed using the average results
from the two conditions and found a significant decrease in MEP
in Post-0, Post-5, and Post-10 compared with Pre (P < 0.01).

Experiment 3
Changes in MEP over time are shown in Figure 6. Two-way
repeated-measures ANOVA showed a significant difference in
the main effect of the INTERVENTION factor (F(2,26) = 5.079,
P = 0.014, partial η2 = 0.281) and the interaction between
INTERVENTION and TIME (F(6,78) = 2.858, P = 0.014, partial
η2 = 0.180) but no significant difference in main effect of the
TIME factor (F(3,39) = 1.678, P = 0.188, partial η2 = 0.114).
Results of post hoc test showed that Condition 1 exhibited a
significant increase in MEP amplitude at Post-10 compared with
Pre (P < 0.01), but no significant MEP amplitude changes were
observed in Conditions 2 and 3.

The number counted in all conditions was 240. In
Conditions 1 and 3, only one person made a mistake in the count
number once. In Condition 2, no subject made a mistake in the
count number.

DISCUSSION

This study investigated the effect of the presence or absence
of a duty cycle, which provides movement and rest during
repetitive PM, and the influence of paying attention to PM
on corticospinal excitability. As a result, in Experiment 1,
corticospinal excitability decreased over 600 continuous
repetitive PMs and 600 intermittent PMs. However, corticospinal
excitability did not change over 240 intermittent repetitive
PMs. The cortical excitability temporarily declines after light
repetitive voluntary movement (Zanette et al., 1995; Teo et al.,
2012a; Miyaguchi et al., 2013, 2016, 2017) and repetitive PM

FIGURE 6 | MEP amplitude before and after the intervention at Experiment
3. Mean MEP amplitude (mean ± SE) at Pre, Post-0, Post-5, and Post-10.
When paying attention, the MEP amplitude increased significantly at Post-10
compared with Pre (P < 0.01). In contrast, when not paying attention and in
the control condition, there was no significant change in MEP amplitude
before and after the intervention. Post hoc Bonferroni test. ∗∗P < 0.01.
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(Miyaguchi et al., 2013; Otsuka et al., 2017; Sasaki et al., 2017).
During the PED period, spinal excitability does not change
(Zanette et al., 1995; Otsuka et al., 2017; Sasaki et al., 2017)
whereas SICI increases (Teo et al., 2012a; Sasaki et al., 2017).
Therefore, it is considered that the reduction of corticospinal
excitability after continuous or intermittent repetitive PMs
in this experiment was due to decreased M1 excitability as
previous reports (Otsuka et al., 2017; Sasaki et al., 2017). After
intermittent iterative PM with the duty cycle, corticospinal
excitability decreased with after a total of 600 movements
but did not after 240 movements. Therefore, a minimum
number of PMs may be required to induce corticospinal
excitability decline. The intermittent repetitive passive and
continuous repetitive movement conditions both contained
600 movements, and thus the proprioceptive afferent input
was equivalent to under both conditions. In contrast, in the
intermittent iterative PM, where movement occurred 240 times,
the inherent proprioceptive afferent input was possibly
insufficient to induce changes in corticospinal excitability.
Previous studies have reported that M1 acts not only in
voluntary movements but also in PMs (Weiller et al., 1996;
Terumitsu et al., 2009; Onishi et al., 2013). The activity of M1 is
thought to be induced by the proprioceptive somatosensory
input accompanying PM (Reddy et al., 2001). Moreover,
proprioceptive inputs from muscles and joints reach not only
the primary somatosensory cortex (S1) but also M1 (Lucier
et al., 1975; Zarzecki et al., 1978; Onishi et al., 2011). Therefore,
repetitive activity of M1 due to repetitive PM may have
changed corticospinal excitability. However, in order to induce
corticospinal excitability changes after PM, a minimum number
of repetitive activities of M1 may be necessary. Therefore, we
hypothesized that proprioceptive somatosensory input due to
a number of movement cycles above a certain threshold affects
corticospinal excitability, and Experiment 2 was performed to
test this.

Experiment 2 used two conditions from Experiment 1, those
being continuous repetitive PM, where corticospinal excitability
decreased, and intermittent repetitive PM, where corticospinal
excitability did not change, and movement time was increased
from 10 to 30 min. Therefore, continuous repetitive PM
consisted of 1,800 movements overall, whereas intermittent
repetitive PM consisted of 720 movements. As a result,
corticospinal excitability decreased in both conditions, indicating
that corticospinal excitability decreases with increasing numbers
of movements, even with intermittent repetitive PMs where
corticospinal excitability did not change with 240 movement
repeats. Therefore, it seems that changes in corticospinal
excitability do not depend on the presence or absence of
the duty cycle but rather are influenced by the number
of movements. It is reported that the cortical excitability
temporarily decreases after repetitive PM (Miyaguchi et al.,
2013; Otsuka et al., 2017; Sasaki et al., 2017). This phenomenon
is considered as PED and potential mechanisms of PED
include long-term depression, reduced neurotransmitter levels,
decreased excitability of intracortical glutamatergic networks, or
increased excitability of inhibitory GABAergic networks (Zanette
et al., 1995; Samii et al., 1996; Teo et al., 2012b). It is suggested

that the decline in MEP in Experiments 1 and 2 is due to PED.
However, the influence of movement number of PM engaging
in the neurophysiological mechanism remains unknown and this
is the limitation of our study. From now on, it is necessary
to clarify detailed evaluation and mechanism in movement
number of PM.

The results from the first two experiments suggested that
the presence or absence of a duty cycle does not affect
changes in corticospinal excitability. Therefore, in Examination
3, we examined the influence of paying attention to PMs
on corticospinal excitability. As a result, when attention was
paid to the moving finger during PM, corticospinal excitability
increased, whereas corticospinal excitability did not change
under conditions where attention was not directed to passive
finger movements. Macé et al. (2008) reported that corticospinal
excitability increases after 60 min of repetitive PM of the
wrist joint. In their study, subjects’ attention was directed to
the PM. In other earlier studies on the effect of attention on
corticospinal excitability, corticospinal excitability is significantly
increased by directing attention to the target hand during PAS
intervention (Stefan et al., 2004), during finger movements
(Thomson et al., 2008), during rTMS intervention (Conte et al.,
2007, 2008), and during vibration stimulation (Rosenkranz and
Rothwell, 2004). There is evidence that neural activity can be
affected by changes in attention at a low-level cortical output
stage in the M1 (Baker et al., 1999; Rösler et al., 1999). It
has been shown that attention related physiological events
may influence cortical plasticity changes in S1 (Buchner et al.,
1999), and results of the study by Stefan et al. (2004) extend
these observations to the motor cortex (Stefan et al., 2004). It
is also reported that short-latency afferent inhibition (SAI) is
decreased by attention (Mirdamadi et al., 2017). SAI (Tokimura
et al., 2000) provides a method to investigate the modulatory
effects of somatosensory afferent on motor cortex excitability.
In addition to GABAA, central cholinergic are involved in
generation of SAI (Ziemann et al., 2015). It is further reported
that SICI is decreased by attention. It is suggested that SICI
is involved in the inhibition mechanism of GABA system
(Ziemann et al., 1996a,b). Thus, the attention task in this
study might also have contributed to the reduction in GABA
system and choline system suppression circuit in M1. Therefore,
it is possible that corticospinal excitability increased in this
study as well as in the previous study when attention was
paid to passive finger movements. However, since detailed
mechanism is unknown in this research, further investigation
is necessary.

This study demonstrated that continuous repetitive PMs
and intermittent repetitive PMs consisting of a total number
of 600 movements reduced corticospinal excitability but a total
of 240 intermittent repetitive PMs did not. Furthermore,
1,800 continuous repetitive PMs and 720 intermittent
repetitive passive exercises decreased corticospinal excitability.
Therefore, corticospinal excitability was affected by afferent
input based on the number of movements above a certain
threshold. Furthermore, corticospinal excitability increased
when subjects directed their attention to the moving finger
during PM.
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