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Abstract

Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and
compare them to the standard-of-care protocol.

Methods and Materials: We integrated a patient-specific biomathematical model of glioma proliferation, invasion and
radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to
construct individualized, biologically-guided plans for 11 glioblastoma patients. Patient-individualized, spherically-
symmetric simulations of the standard-of-care and optimized plans were compared in terms of several biological metrics.

Results: The integrated model generated spatially non-uniform doses that, when compared to the standard-of-care
protocol, resulted in a 67% to 93% decrease in equivalent uniform dose to normal tissue, while the therapeutic ratio, the
ratio of tumor equivalent uniform dose to that of normal tissue, increased between 50% to 265%. Applying a novel metric of
treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized plans would
have a significant impact on delaying tumor progression, with increases from 21% to 105% for 9 of 11 patients.

Conclusions: Patient-individualized simulations using the combination of a biomathematical model with an optimization
algorithm for radiation therapy generated biologically-guided doses that decreased normal tissue EUD and increased
therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma.
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Introduction

Glioblastoma (GBM) is a primary brain neoplasm characterized

by rapid growth and extensive invasion of the surrounding brain,

with a median survival time of 14.6 months from diagnosis [1].

Upon clinical presentation, patients often undergo magnetic

resonance imaging (MRI) for preliminary radiographic diagnosis.

In most cases, another MRI is obtained for surgical planning,

followed by a treatment regimen that includes surgery, radiother-

apy and chemotherapy. The standard-of-care consists of confor-

mal radiation delivery (35 daily fractions of 1.8 Gy for a total of

63 Gy) to the bulk tumor plus a 2–3 cm margin to include invasive

disease. This treatment approach results in dose plans that are

spatially uniform over the target volume and do not account for

patient-specific biological heterogeneity. That is, this approach

includes the irradiation of large volumes of normal brain tissue

that has been invaded by an unknown but low cell density of

tumor cells. Thus, depending on the patient-specific degree of

diffuse invasion of these margin areas peripheral to the abnor-

mality seen on clinical imaging, the amount of normal tissue

irradiated may or may not correlate with the extent of tumor cell

burden found in the margin.

Recent advances in radiotherapy planning and treatment

delivery, such as intensity-modulated radiation therapy (IMRT)

and stereotactic body radio therapy, have made it possible to

deliver spatially non-uniform doses with very steep gradients

between high and low dose regions, capable of improved normal

tissue sparing. When combined with patient-specific biological

information, these treatment modalities have the potential for

substantially improved therapeutic ratios, i.e. the ratio of dose to

tumor versus dose to normal brain [2–6].
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In this work, we use a proliferation-invasion-radiotherapy

(PIRT) model [7] of GBM growth and response to therapy to

account for patient-specific tumor proliferation and invasion

kinetics combined with a multi-objective evolutionary algorithm

(MOEA) for IMRT optimization [8] to demonstrate the potential

to improve tumor control while reducing dose to normal tissue

relative to the standard-of-care. Specifically, we applied the

methodology presented in Holdsworth et al (2012) [8] with a

more realistic set of optimization inputs, to a cohort of 11 GBM

patients, and compared patient-individualized, optimized IMRT

plans with standard-of-care plans. Across this cohort of GBM

patients with diverse imaging patterns, we predicted the benefit of

the patient-individualized, optimized plans in terms of normal

tissue dose, therapeutic ratio and simulated treatment benefit.

Figure 1. Parameter generation for the patient-specific biomathematical model. 1. Determine radial measurements from serial T1Gd and
T2/FLAIR magnetic resonance imaging. 2. Compute the invisibility index (D/r) from intra-study T1Gd and T2/FLAIR radial measurements. 3. Compute
the radial velocity (2

ffiffiffiffiffiffiffi
Dr
p

) from serial T1Gd or T2/FLAIR radial measurements.
doi:10.1371/journal.pone.0079115.g001

Table 1. Optimization Restrictions.

Maximum Fraction/Dose Region

5 Gy Peak Fraction Inside T2/FLAIR

2.5 Gy Peak Fraction Outside T2/FLAIR

65 Gy Peak Dose Outside T2/FLAIR

0.4–1.4 Gy EUD* Fraction Outside T1Gd

*Patient-specific.
doi:10.1371/journal.pone.0079115.t001
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Materials and Methods

Ethics
This study, and the written, informed consents obtained from all

patients were approved by the local institutional review boards at

the University of Washington and the University of California Los

Angeles.

Equivalent Uniform Dose (EUD)
There are many biological metrics that can be used to quantify

dose-volume effects in the brain and compare radiation doses with

different spatial distributions. In this manuscript, we chose to use

equivalent uniform dose (EUD) as it emphasizes changes in the

overall sensitivity of the whole brain to large changes in fraction

size. However, the algorithm presented discussed here can easily

accommodate any metric or other criteria.

EUD is defined to be the uniform dose that yields the same cell-

density-weighted surviving fraction as the non-uniform dose [9].

To compute this, we solve for the EUD such that:

PN
i~1

civiS(a,b,di)~
PN
i~1

civi

� �
S(a,b,EUD) ð1Þ

where ci, vi and di represent the cell density, volume and fraction

size, respectively, at the spatial location indexed by i where

N = 1000, the number of spatial locations in x.

PIRT Model
Following [7,10] our patient-specific mathematical model for

gliomas proliferation, invasion and response to radiotherapy is

formalized as a reaction-diffusion equation for the spatio-temporal

evolution of tumor cell density (c) in terms of the net rates of

proliferation (r), invasion (D) and radiosensitivity (a,b):

Lc

Lt

z}|{of tumor cells
rate of change

~ +:(D+c)
zfflfflfflfflffl}|fflfflfflfflffl{of tumor cells

net migration

z rc 1{
c

kt

� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{of tumor cells
net proliferation

{ R(x,t,di)c 1{
c

kt

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{radiation therapy
loss due to

ð2Þ

where

R~
0, between fractions or no therapy

1{S a,b,di(x,t)½ �ð Þ, during fraction delivery

�
ð3Þ

In words, the rate of change of the glioma cell density c (cells/

mm3) at time t and location x is determined by the net dispersal of

glioma cells at a rate D (mm2/year) and net proliferation of glioma

cells at a maximum rate of r (year21). The net proliferation is

saturated when the local tumor cell density reaches the carrying

capacity kt where

kt~
1 cell

4=3p(10 mm)3

103 mm

1 mm

� �3

~
1 cell

4=3p(10 mm)3

109 mm3

1 mm3

� �
~2:4|105 cells

mm3

ð4Þ

is the maximum theoretical density assuming a tumor cell radius of

10 mm [11]. The radiation loss term R(x, t, di) is the fraction of

cells killed from radiation since

S~e{adi (x,t){bdi (x,t)2 ð5Þ

represents the fraction of cells surviving from a dose d and fraction

i from the linear-quadratic (LQ) radiation dose-response model

[12]. The LQ model relates the dose in units (Gy) delivered to a

region of tissue to a survival probability with parameters a (Gy21)

and b (Gy22). Consistent with [7], we assume a/b= 10 Gy for

early responding tumor tissue and 3 Gy for late responding tissues

(normal brain) [12].

The PIRT Model assumes that glioma growth and invasion can

be described by a diffusion process with coefficient D and

proliferation rate r, where r is understood to represent the net

change in population from cell reproduction and death. In the

absence of the therapy response term, equation 2 is known to have

a traveling wave solution that approaches a constant velocity,

v~2
ffiffiffiffiffiffiffi
Dr
p

, in agreement with observed linear radial growth in

both low-grade and high-grade gliomas [13,14].

Following [13], [14], [7] and [15], to parameterize the model,

we associate the enhancing regions on post-contrast T1-weighted

(T1Gd) and T2-weighted (T2) or FLAIR MR imaging with

surfaces of 0.80 kt and 0.16 kt tumor cell isodensity, respectively.

While clinical target volumes determined from T2 and FLAIR

imaging can differ in practice [16], both modalities are used

interchangeably in this study, subject to their availability. Any

differences in the segmented volumes would result in slightly larger

effects than what is observed for intra-modality measurement

uncertainty. We can compute the velocity of radial growth (n) by

evaluating serial imaging for a single MR modality, and by taking

into account both T1Gd and T2/FLAIR imaging on a single day

we can infer the gradient of tumor cell density peripheral to the

imaging abnormality, represented by the ratio of diffusion to net

proliferation (D/r). This ratio is a patient-specific ‘‘invisibility

index’’ that characterizes subclinical disease burden relative to the

imaging abnormality and results in a ‘‘tip of the iceberg’’ view of

clinical imaging where tumors with larger proportions of cells

below the imaging threshold, will have a larger invisibility index,

and are considered more ‘‘diffuse’’. Those with a higher

percentage of tumor cells above the imaging threshold will have

a small invisibility index and are considered to be relatively

‘‘nodular’’. This characterization has prognostic implications for

survival and response to radiotherapy [13] and is fundamental to

generating patient-specific, biologically-optimized radiotherapy

plans. Figure 1 illustrates the process of computing the net rates

of proliferation (r) and diffusion (D) from routinely available MRI

and a more detailed discussion of this model can be found in [13],

[14], [7] and [15].

Normal brain tissue is modeled as a fixed volume not subject to

radiation-induced cell killing or repopulation, and is computed at

the time that radiotherapy begins. Normal tissue cell density (n) is

defined to be the inverse of the tumor cell density (c) subject to the

ratio of normal tissue carrying capacity to the tumor tissue

carrying capacity (NK = kn/kt) so that n = NK(12c). The maxi-

mum normal tissue carrying capacity, kn = 1.46105 cells/mm3, is

computed by assuming an average of 261011 cells in a 1.46106

mm3 brain [11].

Multi-Objective Evolutionary Algorithm (MOEA) for IMRT
Optimization

We integrated the MOEA, as in [8], to generate deliverable

IMRT plans that meet defined restrictions and are Pareto-optimal

with respect to all decision criteria, i.e. plans for which any change

Patient-Specific Radiotherapy for Glioblastoma
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to improve performance for one decision criteria will decrease

performance for another [8]. Unlike the work presented in

Holdsworth et al (2012) however [8], we applied a different set of

decision criteria and optimization restrictions to generate more

clinically acceptable dose distributions for a cohort of patients.

Specifically, we provided the following two decision criteria to

represent relevant clinical goals:

1. Minimize EUD to normal brain tissue.

2. Minimize the number of viable tumor cells after seven days of

PIRT model simulation.

From the set of pareto-optimal plans, we chose the plan that

results from giving equal importance to both decision criteria.

More details of the MOEA can be found in [8].

Optimization Restrictions
In addition to the decision criteria, we included several

restrictions, summarized in table 1, to generate dose fractions

that are comparable to the standard-of-care. Outside of the T2/

FLAIR region, the total daily dose was limited to a peak of 2.5 Gy

since the normal tissue toxicity for daily fractions that exceed this

dose is unpredictable [17]. We also required that the per fraction

EUD to normal tissue outside of the T1Gd enhancing region be

less than or equal to the standard-of-care, ensuring that the total

dose remains well below the TD 5/5 tolerance dose; the dose

resulting in a 5% probability of complication within five years

[18]. Within the T2/FLAIR volume, each dose fraction was

limited to a peak of 5 Gy resulting in total doses of over 100 Gy to

the center of target. In practice, these dose restrictions could be

modified at the discretion of the clinician.

Patients
Six males and six females with a mean and median age of 57 and

60 years respectively, at the time of histologically diagnosed GBM

(WHO grade IV) [19], consented to this study with approval by the

local institutional review boards. This study includes the cohort

studied in [7] and 3 additional patients, bringing the total number to

12, all of whom received radiation therapy and had at least two pre-

treatment and one post-radiotherapy pair of T1Gd and T2/FLAIR

MRI observations. All patient-specific model parameters were taken

directly from or computed as described in [7] (table 2). For

consistency, we chose to use the a determined from the post-

treatment imaging for this study instead of using the relationship

established in [7] to compute a from r using pre-treatment data. For

a given patient, one plan will be better than another for all non-zero,

reasonable values of a, since the same a is used when simulating for

both the standard-of-care and the optimized plan and these plans are

compared using EUD. Tumor volume increased following radio-

therapy for patient 4, demonstrating no quantifiable benefit from

radiotherapy and resulting in a negligible radiosensitivity: a= 0.

From a modeling perspective, this corresponds to a situation in

which the tumor growth rate is sufficiently large to overwhelm the

response from radiotherapy resulting in positive net growth. This

case presents a challenge to the ideas of BED and EUD and for that

reason, we excluded this patient from this analysis, leaving 11

patients as the focus of our analysis.

Standard-of-Care Doses
Unless otherwise stated in the patients’ radiology reports, the

standard-of-care plans were approximated based on the Stupp

protocol [1,7] with patients received an initial dose of 54 Gy in 30

fractions to the pre-treatment T2/FLAIR enhancing abnormality

with a 2.5 cm margin, immediately followed by a boost dose of

9 Gy in 5 fractions defined by the pre-treatment T1Gd enhancing

abnormality plus a 2 cm margin. Treatment was applied in equal

fractions of 1.8 Gy on weekdays only and dose contours are fixed

for the duration of treatment. The dose to the target included

random variation of up to 5% of the prescribed dose to allow for

patient setup errors. We approximated beam attenuation by

assuming that the dose outside of the target contour decreases in

proportion to the (radius at target edge)2/(radius outside of

target)2 plus 3.5%/cm consistent with 6 MV x-ray fluence in

tissue.

Simulation of Optimized IMRT
Similar to [8], simulations incorporated MOEA-optimized dose

fractions for each week of treatment by passing patient-specific

PIRT model parameters and tumor cell density as inputs to the

MOEA which returns a daily dose as described above. Tumor

growth and response to this dose fraction was simulated for the

next five days of treatment followed by two untreated weekend

days. This process was repeated until the course of treatment

ended. To ensure comparability to the simulated standard-of-care

doses, optimized doses were converted to spherical symmetry

before assessing the decision criteria and simulation. Simulations

were run in accordance with the methodology presented in [7],

except MATLAB’s pdepe function was replaced by in-house

implementation of Crank-Nicolson numerical scheme [20]. Space

is discretized in spherical symmetry where each spatial location xi

in x indicates a point from the center of the tumor along a radius

out to a maximum of 8 cm in intervals of.08 mm.

Prognostic and Novel Metrics of Response
A novel metric of response called Days Gained (DG) was

computed for each patient [15,21]. The DG score for each patient

is the number of days between the post-radiation time-point and

the time-point on the model-predicted, untreated growth trajec-

tory where the tumor size is equal to the post-treat tumor size, as

illustrated in figure 2. This metric of response takes into account

both patient-specific tumor growth kinetics and the direct effects of

radiotherapy, and larger DG scores have been shown to be

correlated with a progression-free and overall survival advantage

[15,21]. Other metrics, such as tumor control probability are not

Figure 2. Computation of the Days Gained metric. The Days
Gained score is the number of days between the post-radiation
observation time-point and the time-point on the model-predicted,
untreated growth trajectory where the tumor size is equal to the post-
treat tumor size. The observations may be actual MRI observations or a
chosen simulated time-point.
doi:10.1371/journal.pone.0079115.g002
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correlated with survival and ignore patient-specific relative rates of

response [22].
Parameter Sensitivity Analysis

We have estimated our inter-observer variability in tumor

volume delineation to be 0.5 mm in spherically equivalent radius.

Using this uncertainty in our data we computed the minimum and

maximum D and D/r values possible given the measurement

error and ran additional simulations, for each patient with these

values. We also varied the ratio of LQ parameters a/b by +/2

20% to assess the sensitivity of our results to variations in the

radiobiological parameters. The variation in input parameters as

well as the impact on the results is illustrated in the form of error

bars where appropriate in the results.

Results

The optimized plans deliver the maximum dose to the

proliferating rim of the tumor, less dose to the center of the

tumor and a decreasing gradient of dose on the periphery (figure 3).

The spatial distribution of the optimized plans is determined

primarily by the patient-specific invisibility index (D/r), as patients

with more nodular tumors (low D/r and thus a steeper gradient of

cell invasion) receive more peaked optimized doses while those for

patients with more diffuse tumors (high D/r and thus a shallower

gradient of cell invasion) are more spread out along the invasive

gradient of the outer edge of the tumor (figure 3). This is further

illustrated by looking at the radial distance between the 50%

isodose radius and the 50% tumor cell isodensity radius, which is

positively correlated with D/r for the optimized plans (Pearson’s

correlation r = 0.98 and p = 9e-8) (figure 4), diffuse tumors (higher

D/r) receive optimized doses with shallower gradients and larger

high-dose volumes relative to tumor cell density. Parameter

Figure 3. Simulated tumor and normal cell densities with clinical and optimized total dose. Patients are ordered according to tumor
diffusivity, from least to greatest and the cell densities are taken at the pre-treatment timepoint. Dose in units Gray is on the left axis while cell density
relative to the tumor cell carrying capacity is on the right side. The spatial distribution of the optimized plans is determined primarily by the patient-
specific invisibility index (D/r), as patients with more nodular tumors (low D/r, e.g. Patient 12) receive more peaked optimized doses while those for
patients with more diffuse tumors (high D/r, e.g. Patient 3) are more spread out along the invasive gradient of the outer edge of the tumor. Patients 2
and 5 show a cell density of zero in the center of the tumor due to subtotal resections.
doi:10.1371/journal.pone.0079115.g003

Figure 4. Spatial distribution of optimized plans versus the
invisibility index. The radial distance between the 50% isodose radius
and the 50% tumor cell isodensity radius versus the invisibility index (D/
r) for the optimized plans. The horizontal error bars illustrate the range
of patient-specific D/p values possible given the observed uncertainty
in radial tumor measurements. The vertical error bars represent the
minimum and maximum distance from simulations using the expected,
minimum and maximum D/p values. The marker is plotted in the center
of the range and the center values are positively correlated with
Pearson’s correlation r = .98 with p-value = 9e-8, demonstrating that
tumors with higher invisibility indices receive optimized doses with
shallower gradients and larger high-dose volumes relative to tumor cell
density.
doi:10.1371/journal.pone.0079115.g004

Patient-Specific Radiotherapy for Glioblastoma
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variation (visualized as the uncertainty bars around each data

point in Figure 4 and 5) had a minimal effect on the dose shape

with an average shift in 50% isodose radius of 3.2 mm and a

maximum of 11 mm.

In 9 of 11 patients, the EUD to tumor decreased significantly

(2%–41%), but is not correlated with the degree of diffuse

invasion (D) specific that patient (Figure 5a). When compared to

the standard-of-care, the optimized doses resulted in a 67% to

93% decrease in normal tissue EUD outside of the T1Gd

enhancing region (figure 5B). Both the standard-of-care and

optimized doses result in normal tissue EUD that are positively

correlated with the net rate of invasion D (Pearson’s correla-

tion = 0.742, 0.765, p = 0.009, 0.005, respectively) (figure 5B). An

average variation of 500 cGy was observed to result from

parameter uncertainty (bars in Figure 5A and B). This large

decrease in normal tissue EUD drives an increase in therapeutic

ratio for all patients with increases ranging from 50% to 265%

(figure 5C). As in [15,21], we estimated the treatment effect of the

standard-of-care and optimized plans in terms of our Days

Gained response metric and found a measurable improvement in

9 of 11 patients with a statistically significant improvement in the

mean Days Gained from optimized therapy (p = .0014,

Figure 5D). The reduction in dose to normal tissue is emphasized

further when looking at a dose-volume histogram comparing an

optimized dose to the standard-of-care for representative patient

10 (Figure 6). Only 2% of normal tissue volume outside of the

T1Gd abnormality receives a higher dose than the standard-of-

care for this patient.

Figure 5. Metrics of treatment and response versus the diffusion coefficient, D, for both the standard-of-care (black) and optimized
plans (grey) for all patients with corresponding linear regression lines and Pearson’s correlation coefficients and p-values where
appropriate. A. Equivalent Uniform Dose (EUD) to tumor. 9 of 11 patients received lower tumor EUD, but there is no correlation with the PIRT
model parameters. B. Equivalent Uniform Dose (EUD) to normal brain tissue outside of the T1Gd enhancing region. Although smaller in the
optimized plans, the normal tissue EUD for both plans is positively correlated with the diffusion coefficient D with Pearson’s correlations r = 0.742 and
0.765; p = 0.009 and 0.005, for the standard-of-care and optimized plans respectively. C. Therapeutic ratio: the ratio of the tumor EUD to that of
normal tissue. Therapeutic ratio for both plans is negatively correlated with the diffusion coefficient D with Pearson’s correlations r = 20.78 and
20.84; p = 0.004 and 0.001, for the standard-of-care and optimized plans respectively. D. Days Gained, the model-predicted, untreated growth time
between first post-radiation tumor size and that predicted by the model prior to treatment, for both the standard-of-care and optimized plans for all
patients.
doi:10.1371/journal.pone.0079115.g005

Figure 6. Dose-volume histogram showing the total dose
delivered to normal brain tissue outside of the T1Gd
abnormality for optimized and standard-of-care plans for
patient 10. The lines intersect at 62 Gy and 2% of the normal tissue
volume, demonstrating that only 2% of the normal tissue receives a
higher dose from the optimized plan.
doi:10.1371/journal.pone.0079115.g006
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Discussion

Despite tremendous effort to improve the prognosis of patients

with glioblastoma over the past five decades, very little progress

has been made to improve median survival. To this end, we have

focused our research efforts to understanding the underlying

kinetics of disease progression and have developed a means to

improve upon the standard-of-care radiation protocol using a

mathematical model and algorithm for radiotherapy optimization.

The current one-size-fits-all approach in radiation treatment of

glioblastoma ignores patient-specific tumor kinetics by adding

standard margins in an attempt to capture subclinical disease,

resulting in significant volumes of normal brain tissue receiving

large doses and limiting the dose delivered to the tumor.

By utilizing a patient-specific approach for radiotherapy plan

generation, we found that the relative diffuse extent of each tumor,

expressed as the ratio of PIRT model parameters, D/r, drives the

non-uniform spatial distribution of the optimized plans (Figure 4).

For example, in Figure 3, nodular patient 6 and diffuse patient 7

appear similar on T2/FLAIR MRI leading to almost identical

clinical standard-of-care treatment volumes (red curve), but they

have very different rates of cell diffusion (D = 10.82 and 50.71

mm2/yr, respectively) and invisibility indices (D/r = 0.79 and 3.65

mm2, respectively). The peak of the optimized doses for each

patient is between 100 and 130 Gy, about twice the maximum

dose for the standard-of-care, so the optimized 50% isodose region

corresponds roughly to the standard-of-care high-dose region.

While the peak dose is high relative to the standard-of-care, it is

not necessarily prohibitive in the context of previous dose

escalation studies that have shown no increase in normal brain

toxicity with peak doses up to 90 Gy [23]. The use of such high

doses has traditionally been avoided due to increased risk of

radiation necrosis, but the selection of such doses in the

optimization process may indicate one of the reasons for the poor

control of gliomas. It also highlights the need for better models of

brain response to radiation so that the decision model can better

balance these competing goals.

As illustrated in figure 4, the radius of the high-dose region for

each optimized plan relative to the 50% tumor cell density radius

is much larger for the high D/r patient and grows linearly relative

to D/r across the entire cohort. This correlation held when

accounting for tumor radius measurement error of 0.5 mm and a

20% variation in the ratio of LQ model parameters a/b (figure 4).

For all patients, the high-dose region encompasses the 50% tumor

cell density radius and therefore the majority of the tumor,

including the most proliferative and radiosensitive regions. In the

center of the tumor, where the cell density approaches the carrying

capacity of the tissue and little to no model-predicted radiation

effect and proliferation occur, typically due to hypoxia or necrosis,

the optimized doses deliver less than the maximum dose. The

optimization places little importance to this area since there is no

relative benefit in terms of the decision criteria. Since the

algorithm is dose-limited by regions of normal tissue, the

optimization focuses on delivering the highest dose to the

proliferating rim of the tumor, where it has the largest effect

(figure 3).

The combination of restrictions and decision criteria provided

to the MOEA resulted in optimized plans that reach high peaks

inside the T1Gd enhancing region but are much lower in the

surrounding normal brain tissue than the standard-of-care. In

areas where the model predicts little to no normal tissue, the

optimization algorithm will seek the maximum possible dose that

can be delivered given any local and distant restrictions. Very

steep dose gradients are deliverable using IMRT, so the dose

remains very low outside of the center of the tumor while the dose

in the center is escalated, avoiding extended low-dose regions that

are common when using IMRT to treat standard targets with

large margins. The narrower margins result in significantly

reduced normal tissue and tumor EUD (9 of 11 patients) and

increased therapeutic ratio (figure 5C). The combination of high

peak doses and lower EUD to tumor is the result of the tumor cell

density decreasing much slower than the volume increases further

away from the center of the tumor. Since EUD is a volume-

weighted metric, this low-density, high-volume region is a non-

trivial contributor to tumor EUD and results in lower tumor EUD

despite high peak doses. The Days Gained scores for all but 2

patients improve, suggesting that the optimized plans succeed in

delivering a much more effective spatial distribution of dose, even

with reduced EUD to tumor.

The location of the high-dose region is appropriate since dose

escalation studies have demonstrated that approximately 90% of

failures occur ‘‘in-field’’, defined as having at least 80% of the

recurrence volume inside the high dose region [23,24]. There is a

small region of mostly normal tissue (between the T1Gd and T2/

FLAIR boundaries) that receives a very large dose (,2% above

60 Gy), and these areas should be considered when designing the

treatment volumes to avoid eloquent areas. From a dose escalation

perspective, the optimized plans are an improvement over those

used in clinical studies that include whole-brain irradiation or non-

patient-specific dose distributions [23,25].

The integrated model takes advantage of patient-specific growth

kinetics, metrics of response at multiple points in time and an

adaptive optimization process to generate plans that deliver dose

to tumor much more efficiently than the standard-of-care and

current state-of-the-art ‘‘dose-painting’’ approaches. While the

focus in this manuscript is a comparison with the current standard-

of-care, the optimized doses presented here could be compared to

other experimental dosing strategies that also take advantage of

PIRT model-predicted tumor cell density to determine target

boundaries.

Conclusions

The diffusely infiltrative nature of glioma presents a challenge to

dose optimization as the benefit of additional dose to the target is

balanced by the cost of increased toxicity to the normal tissue. This

work highlights the potential of using a mathematical model and a

multiobjective evolutionary algorithm for intensity-modulated

radiation therapy optimization to generate individualized radia-

tion treatment plans. Simulations of the PIRT model using a

MOEA for IMRT optimization generated patient-specific,

biologically-guided plans that outperformed the standard-of-care

in silico by delivering lower normal tissue EUD, improved

therapeutic ratios and higher Days Gained scores. The strong

relationship between the diffusion coefficient D and both normal

tissue EUD and therapeutic ratio (figure 5) identifies patients with

a higher risk of normal tissue complications who may be targets for

alternative treatment strategies.

While this model is promising, it relies on many simplifying

assumptions such as instantaneous, radiation-induced cell death, a

radio-response parameter that may include the effects of

concurrent chemotherapy, radiation necrosis and pseudoprogres-

sion. In addition, the patient population to which this model can

be applied is limited to patients without extensive surgery due to

the difficulty in modeling resection in spherical symmetry.

Additional parameters can be added to account for the above

and this analysis can be undertaken in a three-dimensional,

anatomically correct brain to model larger resections, incorporate
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grey and white matter distributions, actual tumor location and

dose to anatomical structures as typically addressed in clinical

treatment planning. The optimized plans can then be compared

directly to the clinical plans and adjusted accordingly. The

decision criteria can also be improved to include spatially-defined

biological endpoints, dose to specific structures or any other

quantifiable, clinically relevant metrics. With these further

improvements, we believe this method has great potential to

provide insight into and improve the standard-of-care radiation

therapy protocol.
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