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ABSTRACT

The intronic splicing silencer (ISS) of CFTR exon 9
promotes exclusion of this exon from the mature
mRNA. This negative influence has important
consequences with regards to human pathologic
events, as lack of exon 9 correlates well with the
occurrence of monosymptomatic and full forms of
CF disease. We have previously shown that the ISS
element interacts with members of the SR protein
family. In this work, we now provide the identifica-
tion of SF2/ASF and SRp40 as the specific SR
proteins binding to this element and map their
precise binding sites in IVS9. We have also per-
formed a functional analysis of the ISS element
using a variety of unrelated SR-binding sequences
and different splicing systems. Our results suggest
that SR proteins mediate CFTR exon 9 exclusion by
providing a ‘decoy’ sequence in the vicinity of its
suboptimal donor site. The results of this study give
an insight on intron ‘exonization’ mechanisms and
provide useful indications for the development of
novel therapeutic strategies aimed at the recovery
of exon inclusion.

INTRODUCTION

The regulation of CFTR exon 9 splicing has been
extensively studied in recent years because of its clear
connection with CF disease (1-6). At present, several
splicing controlling regions have been characterized near
the 3’ and 5 boundaries of this exon. These include a
polymorphic TG(m)T(n) region near the 3'ss, a subopti-
mal donor site and a Polypyrimidine-rich Controlling
Element just downstream of the 5'ss (PCE) (7-9).
Moreover, additional controlling regions have been
identified inside the exon itself in the form of CERES
elements (10) and as an intronic splicing silencer region
(ISS) further away in the IVS9 intron sequence
(11) (Figure 1A). During the course of these studies

several trans-acting elements have also been identified as
binding specifically to these regulatory elements: TDP-43
to the (TG)m region near the 3’ss of the exon, which has
been recently shown to recruit hnRNP proteins near the
3’'ss (6,12,13), TIA-1 to the PCE that promotes exon
inclusion (9), and unidentified members of the SR protein
family to the ISS sequence (11) (Figure 1B).

The SR protein family (14-16) has been predominantly
studied in relationship with its involvement in alternative
and constitutive splicing control (17-22) and indeed may
have played a decisive role in the evolution of this process
(23,24). However, it has also been recently shown to
participate in a very wide range of functions that include
the maintenance of genomic stability (25-27), mRNA
export (28-31), mRNA surveillance (32) and protein
translation (33,34).

In splicing regulation, SR proteins are generally
considered to bind exonic splicing enhancer (ESE)
sequences (35-37) and in this way they generally promote
exon inclusion in the pre-mRNA molecule that is
processed by the spliceosome. This enhancement is
achieved in a variety of ways: by antagonizing the effect
of negative regulators such as hnRNP proteins (38—41), by
directly recruiting basic splicing factors such as Ul and
U2snRNPs to the exon acceptor and donor sites (42,43),
and by promoting spliceosome assembly through their RS
domains (20,21). Because of all these functions, SR
proteins represent one of the most important factors
that promote exon inclusion (44) and is not surprising that
an excess of SR proteins can compensate for complete
UlsnRNP inactivation and rescue correct splicing (45,46).

In general, most SR proteins share rather common
enhancer properties despite they have different sequence
binding abilities (47), protein domain compositional
differences (15) or nucleo cytoploasm shuttling properties
(48). However, this is by no means a rule. In fact, some SR
protein family members have also been recently identified
in connection with splicing repression. For example, a
novel SR protein designated SRp38 has been recently
demonstrated to posses splicing inhibitory activity in
mitotic cells or following heat shock treatment (49-51).
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Figure 1. (A) Shows a schematic diagram of the splicing controlling
regions of CFTR exon 9, both within the exon (CERES element) and
in the flanking IVS8 and IVS9 sequences: TG(m)T(n), PCE and ISS.
h3’int defines the IVS9 region that includes both the PCE and ISS
controlling elements. (B) Shows the trans-acting factors identified up to
now that bind to these elements. (C) Shows an immunoprecipitation
analysis of the h3'int region and of the fibronectin EDA ESE element
both in its wild-type (hTot) and mutated form (hA2e). The left, central
and right panels show the immunoprecipitation profiles obtained from
each RNA using mAb 96 (specific against SF2/ASF), mAb 1H4
(specific against the phosphorylated RS domain) and an anti-SC35
antibody.

In addition, another SR-protein like factor (SR-15) has
recently been described to possess general splicing
inhibitory activity in the HSV1 virus (52).

Most importantly, there are many examples of factors
that display either enhancer or repression activity in one
system can display the opposite behavior in different pre-
mRNAs. The SR proteins family is no exception to this
observation. Indeed, past research has led to the discovery
of a small number of splicing systems in which normally
enhancing SR proteins display a inhibitory activity on the
splicing process (53-60).

As previously mentioned, to this short list of examples
we have to add the reports that describe SR proteins as
general inhibitors of CFTR exon 9 splicing (11,61). To this
date, however, no clear identification/mapping or func-
tional binding sites for these inhibitory SR proteins has
been provided. In this work, we have aimed to cover this
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Figure 2. (A) Shows the sequence of the entire IVS9 (h3'int) sequence
from the last nucleotides of exon 9 (in capital letters) to the Ndel site
that was cloned in the TGI11TS5 original minigene. Also shown in this
diagram are the positions of the two mutated nucleotides that create a
unique Pstl site. In the ISS region, the sequences targeted by each of
the four antisense oligos (AS1-AS4) are underlined. (B) and (C) shows
the immunoprecipitation profiles of the h3'int sequence using
mADb 96 (B) and mAb 1H4 (C) monoclonal antibodies in the presence
of each of the four antisense oligos. The migration of SF2/ASF and of
SRp40 are marked with an arrow.

gap and investigate the functional reasons that underlie
this particular SR inhibitory activity.

EXPERIMENTAL PROCEDURES
Plasmid construction

Plasmid TG11T5 has been previously described by Niksic
et al. (7). Plasmid pES was obtained by deleting part of the
original IVS9 sequence in TGI11TS and inserting in its
place a PstI/Kpnl linker just before the Ndel cloning site
(Figures 2A and 3A). All the other plasmids used in this
study were obtained by cloning the sequence of interest in
the pES plasmid either in the PstI/Kpnl (PK series) or Pstl
site (P series). This was achieved by annealing two
complementary oligonucleotides containing the sequence
of interest and ligating according to standard protocols
(sequence of the oligonucleotides is available upon
request). In order to mutate the cryptic 3’ss sequence in
the TG11T5 context (mutant IVS9del3’ss) we used the two
following oligos: 5'ctctttttttttctaatttgtagtgd’ sense and
S'cactacaaattagaaaaaaaaagag3’ antisense.

In vitro transcription, UV cross-linking and
immunoprecipitation analysis

To generate the RNA probe of h3'int a corresponding
pBluescript II KS plasmid containing this sequence was
linearized with Ndel and transcribed with T7 RNA
Polymerase (Pharmacia Biotech) in the presence of
o*?P-UTP, according to standard procedures. The UV
cross-linking assay was performed by incubating
1 x 10°c.p.m.-labeled RNA probes with 100 pg of total
HeLa nuclear extracts (CilBiotech, Mons, Belgium) and
100 pug heparin in a 20-pl final reaction volume containing
20mM HEPES pH = 7.9, 72mM KCl, 1.5mM MgCl,,
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Figure 3. (A) Upper panel shows a schematic representation of the pES
hybrid minigene carrying the CFTR exon 9 along with intronic flanking
sequence. Black, shaded and white boxes represent alpha globin,
fibronectin and CFTR exons, respectively. The arrows indicate the
position of the primers used to amplify the processed mRNA species.
The dotted lines represent the expected splicing pattern that determines
exon 9 inclusion/exclusion. Lower panel shows a close-up view of the
nucleotide composition of the IVS9 sequence in the Pstl/Kpnl/Ndel
cloning region. The black box represents the exact position in
which the ASl1+ AS2 (pTB ASI + AS2PK) and AS3 + AS4
(pTB AS3 + AS4PK) sequences were inserted. (B) Shows a comparison
of the RT-PCR splicing profiles of these two constructs together with
the pES and TGIITS reference minigenes following transfection in
Hep3B cells. The position of the transcripts including exon 9 (ex9+)
and lacking exon 9 (ex9—) are marked on the right. The results of three
independent experiments were quantified using radioactive PCR and
are reported in (C) with SD values. (D) Shows a set of analogous
transfections in Hep3B cells using a set of plasmids in which each
individual AS1, AS2, AS3 and AS4 sequences was inserted in the Pstl/
Kpnl sites of the pES plasmid (pTB-ASIPK to pTB-AS4PK).
A quantification of the effect of these sequences on CFTR exon 9
inclusion is reported in (E).

0.78mM magnesium acetate, 0.52mM dithiothreitol,
3.8% glycerol, 0.75mM ATP and I mM GTP for 15min
at 30°C. Samples were transferred to HLA plate (Nunc,
InterMed) on ice and irradiated with 0.8J UV light for
Smin by using a BIO-LINK apparatus (Euroclone).
Unbound RNA was digested with 30pg of RNase
A (Sigma) for 30min at 37°C and incubated for 2h at
4°C on a rotator wheel with 150 ml of IP buffer (20 mM
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Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, 0.25% NP-40)
and 1 ml of monoclonal antibodies anti-SF2/ASF (mAb
96) (Zymed Laboratories Inc), anti-RS phosphorylated
domain (mAb 1H4) (Zymed Laboratories Inc) and an
anti-SC35 monoclonal antibody (Sigma). Each mixture
was then incubated with 30ml of Protein A/G-Plus
Agarose (Santa Cruz Biotechnologies) at 4°C overnight.
Beads were collected by centrifugation, washed four times
with 1.5ml of IP buffer and then loaded onto a SDS-10%
PAGE gel. Gels were run at a constant 30 mA for ~3.5h,
dried under vacuum, and exposed for 4 days with
a BioMax Screen (Kodak).

Transient transfection minigene splicing analysis in
Hep3B cells

Liposome-mediated transfections of 3 x 10° human hepa-
tocarcinoma Hep3B cells were performed using DOTAP
Liposomal Transfection Reagent (Alexis Biochemicals)
according to manufacturer instructions. After 18h the
transfectiom medium was replaced with fresh medium and
24 h later the cells were washed with PBS and RNA was
purified using RNAwiz (Ambion). RT-PCR reactions to
specifically amplify the minigene transcripts was per-
formed as previously reported (11). In order to quantify
the amplified fragments, the PCR reaction was performed
in the presence of a*?*dCTP and the samples run on a 5%
denaturing polyacrylamide gel. Radioactive intensity was
measured using a Cyclone (Packard). Transfection of a
siRNA reagent against TDP-43 were performed as
previously published (62).

RESULTS

Characterization of SR proteins binding to the ISS
element in IVS9

In order to better define which SR proteins are binding to
the ISS region we performed immunoprecipitation analy-
sis using, as substrate, the entire h3’int intronic region
(Figure 1A). Figure 1C shows an immunoprecipitation
analysis with HeLa nuclear extract of this RNA (h3'int)
together with two control RNAs from the fibronectin
EDA exon, one bearing a well-characterized ESE
sequence (hTot) and one where this sequence has been
deleted (hA2e) (63). Each RNA was labeled using
o*?P-UTP and incubated with ~150 pug of Hela nuclear
extract before being subjected to UV-crosslinking
and digestion with RNAse A. Samples were then run on
a 10% SDS-PAGE gel and exposed using BioMax
autoradiographic films. Immunoprecipitation was per-
formed using equal amounts of each UV-crosslinked
sample and following the addition of specific monoclonal
antibodies against SF2/ASF (Figure 1C, left panel,
mADb96), against the phosphorylated RS domain
(Figure 1C, center panel, mAb 1H4) and against the
SC35 protein (FigurelC, right panel). The mobility of the
SR proteins is indicated by arrows. The results show that
SF2/ASF and SRp40 are the major SR protein family
members binding to the h3'int region.
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Mapping of the SR protein-binding regions in h3'int using
small antisense oligos

In order to map the binding sites of each SR protein in
h3int we used in immunoprecipitation analysis a set of
antisense oligos which targeted the original ISS region
(Figure 2A, AS1-AS4). Figure 2A shows a schematic
diagram of the entire IVS9 sequence inserted in the
original TG11T5 plasmid (7) together with the sequences
targeted by the AS1-AS4 antisense oligos that cover the
originally mapped ISS region (11). Also shown in
this figure are the two single-point mutations introduced
in h3’int to create a unique Pstl cloning site that can be
used to remove this entire region from the template
minigene plasmid. Based on the results obtained in
Figure 1C, each oligo was then used in immunoprecipita-
tion analysis with mAb 96 and mAb 1H4 together with the
h3'int labeled RNA. As shown in Figure 2B lane 3, oligo
AS2 was the most efficient in inhibiting SF2/ASF binding
to h3'int whilst oligo AS1 was very efficient in blocking
SRp40 binding to this region (Figure 2C, lane 2). A lesser
amount of inhibition for SRp40 binding could also be
detected in the presence of the AS4 antisense oligo
(Figure 2C, lane 5). However, as the AS1 and AS4
sequence share considerable similarity (almost 50%,
especially in the ‘agaaatt’ central region) the AS4 oligo
may have cross-hybridized with the AS1 sequence block-
ing partially its interaction with SRp40 in vitro. This
hypothesis is consistent with the observed lack of
functional effects of the AS4 sequence alone on CFTR
exon 9 inclusion.

Functional importance of the different AS1 to AS4 sequences
on CFTR exon 9 inhibition

Figure 3A shows a schematic representation of the CFTR
exon 9 hybrid minigene construct lacking the ISS sequence
(pES). In this construct, the IVS9 sequence was shortened
by exploiting the creation of a novel Pstl site which was
directly joined to Ndel through a small linker that also
provided a unique Kpnl site. The unique Pstl/Kpnl sites
could then be used to insert different combination of the
AS1-AS4 sequences in the ISS position (Figure 3A, lower
panel, has a detailed scheme of the inserted fragment
position in the pES plasmid). Based on the results of the
immunoprecipitation analyses it was then decided to insert
in pES the two combinations of AS1 + AS2 (pTB
AS1 + AS2PK) and AS3 + AS4 (pTB AS3 + AS4PK).
Figure 3B shows the RT-PCR assays of these plasmids
(lane 3 and lane 4, respectively) following transfection in
Hep3B cells together with two control minigene con-
structs: the original TGI1TS5 (lane 1) and the pES
minigene (lane 2). The upper and lower bands correspond
to exon 9 inclusion (ex9+) and exclusion (ex9-—),
respectively. Quantification of these bands from three
independent experiments following radioactive
RT-PCR (Figure 3C) demonstrated that the SR-binding
ASI1 + AS2 region could entirely recover the ISS
inhibitory activity displayed by the original TGIITS5
minigene construct (compare lanes 1 and 3). On the
other hand, the AS3 + AS4 region that had no apparent
SR-binding ability could not display any inhibitory

activity with respect to the original pES plasmid (compare
lanes 2 and 4).

A similar pattern could also be observed when each
individual sequence was inserted in the pES plasmid
(Figure 3D). A quantitation of the inhibitory activity of
each sequence (Figure 3E) confirmed that only the ASI
and AS2 sequences (Figure 3D, lanes 2 and 3) could
inhibit CFTR exon 9 inclusion whilst AS3 and AS4 did
not cause any drop in CFTR exon 9 splicing efficiency
(Figure 3D, lanes 4 and 5). Moreover, the fact that the
AS1 and AS4 showed very distinct inhibitory activities
supports the conclusions drawn from the immunoprecipi-
tation experiments in Figure 2C.

Inhibitory effects of other SR-binding sequences on CFTR
exon 9 inhibition

In consideration of the fact that ISS activity strongly
correlates with AS1 + AS2 it was of interest to determine
whether different SR protein-binding sequences were also
capable of inhibiting CFTR exon 9 inclusion. To this end,
it was decided to test the activity of two unrelated
SR-binding sequences that have been extensively char-
acterized by our laboratory: the ESE region of the
fibronectin EDA exon (63) and the ISE region (ApolISE)
of the Apo AII intron 3 (64) (Figure 4A). The advantage
of using these sequences is represented by the fact that
they all possess different combinations of SR protein-
binding abilities (Figure 4A) and also that in their
respective contexts they functionally behave as ESE and
ISE elements, respectively. These additional polypurinic
sequences were then cloned in the Pstl and Kpnl sites of
the pES plasmid and transfected in Hep3B cells. Figure 4B
and C show that both the EDA ESE sequence
(pTB-EDAPK, lane 1), and the ApoISE sequence (pTB
ApoISEPK, lane 2) were capable of inhibiting CFTR exon
9 inclusion in a way comparable with that observed with
pTB AS1 + AS2PK (lane 3) and higher than the pES
plasmid alone (lane 4).

For the sequences that can bind SF2/ASF, the func-
tional specificity of SR protein binding on the inhibitory
activity was also investigated by overexpressing this
particular SR protein in transfected cells (Figure 4D). As
shown in this figure, the increased levels of CFTR exon 9
inhibition for constructs pTB AS1 + AS2PK (Figure 4D,
lanes 3 and 4) and pTB-EDAPK (Figure 4D, lanes 5 and 6)
is comparable to that observed for the TG11T5 plasmid
(Figure 4D, lanes 1 and 2) and greater than the one
observed for the pES plasmid alone (Figure 4D lanes 7 and
8). In addition, SC35 overexpression does not result in
increased levels of CFTR exon 9 skipping in the pTB
AS1 + AS2PK plasmid (Figure 4D, lanes 9 and 10). This
result is consistent with the immunoprecipitation results
shown in Figure 1. We have also tried overexpression of
SRp55 and SRp75 that also induced CFTR exon 9
skipping to different degrees (data not shown), in keeping
with the SR protein response profile obtained in the
original study by Pagani et al. (11). The binding experi-
ments did not show reproducible direct interaction of these
proteins with h3’int, although at times bands compatible
with SRp55 and SRp75 were visible (Figure 1C, middle
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Figure 4. (A) Upper panel shows a comparison between the AS1 + AS2
sequence and the heterologous polypurinic sequences from the
EDA ESE and the Apo AIl ISE elements. The column on the right
shows the SR protein-binding specificity of all these sequences as
previously determined by immunoprecipitation analysis. The EDA
ESE and Apo ISE sequences were then inserted in the pES plasmid
(as shown in the lower panel), thus creating constructs pTB EDAPK
and pTB ApoISEPK, respectively. The levels of CFTR exon 9 inclusion
displayed by these three plasmids in Hep3B cells and compared with
that of the pES and pTB AS1 + AS2PK constructs is reported in (B).
A quantification of three independent experiments is reported in (C).
(D) Shows the response of the TGIITS, pTB ASI + AS2PK,
pTB EDAPK and pES plasmids to SF2/ASF overexpression, and of
the response of the pTB ASIl + AS2PK construct to SC35 over-
expression, following transfection in Hep3B cells.

panel). The lack of correlation between this absence of
binding in IP assays and functional experiments may be
due to the well-known non-specific effects of SR protein
overexpression or to indirect interactions with the ISS
sequence. Further studies will be needed to clarify these
differences. In any case, taken together, these data further
reinforce our conclusion that the AS1 + AS2 sequence
contains all the functional properties of the originally
mapped ISS element.

The results in Figure 4 conclusively show that both the
EDA ESE and the Apo AII ISE sequences were capable of
acting as ISS elements in the CFTR exon 9 context.
Therefore, it was of interest to determine whether the
exon 9 AS1 + AS2 ISS sequence and the Apo ISE sequence
were capable of acting as ESEs in a heterologous splicing
context. To this end, we cloned the ASI + AS2 and
ApolSE sequences in the dsx-XH reporter system (65,66)
(Figure S1). This is a well-known in vitro splicing system in
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which processing of the IVS3 intron from the Drosophila
doublesex (dsx) gene is dependent on the sequences inserted
at the 3’ end of the construct. As shown in Figure S1, both
the AS1 + AS2 and ApolSE sequence display higher ESE
activity than the control AS3 + AS4 sequence.

Changing ISS/ISE to ESE activities in the pES context
by providing a heterologous donor site

In order to further test these potential enhancer activities
of AS1 + AS2 and ApolSE in the CFTR exon 9 context it
was then decided to insert in the pES plasmid a donor
sequence that could be used as a viable 5'ss to promote
‘exon’ inclusion. This was achieved by simply cloning the
AS1 + AS2, ApolSE, and EDA ESE sequences in the Pstl
site of the pES plasmid. Figure SA shows that this cloning
procedure, as opposed to cloning in the Pstl/Kpnl sites,
provided any Pstl-inserted sequence with a downstream
donor site sequence possessing a score of 0.76 according to
the NNSPLICE predictor program (67). The results of
this cloning procedure on the resulting pTB AS1 + AS2P,
pTB ApoISEP and pTB EDAP plasmids are reported in
Figure 5B, lanes 1, 3 and 5, respectively. In all three cases,
the cloning in the Pstl site alone resulted in the appearance
of an extra band which, when sequenced, was shown to
consist in a ‘mini-exon’ sequence that exploited the newly
inserted 5'ss and a cryptic 3’ss in the h3int sequence
(Figure 5B, lower panel). Interestingly, the intensity of this
extra band in the pTB AS1 + AS2P and pTB ApolSEP is
markedly different, with the pTB ASI + AS2P splicing
profile still retaining some of the ex9+/ex9— splicing
forms. This is consistent with the different ESE abilities
displayed in the dsx-XH plasmid (Figure S1), where the
ApolSE sequence is a much more efficient ESE (66%)
than the AS1 + AS2 sequence (20%).

These results also suggested that the action of the ISS
element could be dependent on the presence of the naturally
occurring cryptic 3’ss in CFTR IVS9, perhaps through the
recruitment of a non-productive spliceosomal complex in
this position. However, mutating this 3’ss sequence from
‘ag’ to ‘aa’ in the natural TGIITS context (mutant
IVS9del3’ss) did not significantly affect the efficiency of
CFTR exon 9 inclusion (Figure 5C). This result ruled out
the possibility that this acceptor-like sequence alone could
be playing a role in wild-type ISS functioning.

Improving acceptor site recognition of CFTR exon 9 results
in context-specific effects on the splicing pattern

To better assess the context-dependent effects of these
different SR protein-binding sequences in the vicinity of
CFTR exon 9 we then improved the definition of this exon
by removing TDP-43 through siRNA treatment
(Figure S2). As previously demonstrated, TDP-43 is a
major inhibitory splicing factor that specifically recogniz-
ies the TGm polymorphic locus in IVS8 (6,12), and its
specific removal from the transfected cell can offset many
splicing inhibitory effects, including those mediated by the
ISS (62). It was therefore interesting to test the effect of
removing this factor on the splicing patterns of the pTB
AS1 + AS2P, pTB ApolISEP and pTB EDAP minigenes.
Figure S2 shows that removal of TDP-43 in these different
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Figure 5. (A) Shows a comparison of the different splice site

composition when the AS1 + AS2, EDA and ApolSE sequences are
cloned in the Pstl/Kpnl sites (upper panel, PK plasmid series) as
opposed to the Pstl site alone (lower panel, P plasmid series). The
differing splice site composition in the region surrounding the point of
insertion is indicated by arrows, with the conserved 3'ss ‘ag’ and
S'ss ‘gt’ nucleotides highlighted in bold. (B) Shows a comparison of the
splicing profiles between P and PK plasmids carrying the AS1 + AS2,
EDA and ApolSE sequence following transfection in Hep3B cells. The
asterisk shows the extra band that is observed in the plasmids carrying
the heterologous donor site downstream of the inserted sequence
(pTB AS1 + AS2P, pTB EDAP and pTB ApoISEP). The lower panel
shows a schematic diagram of the new splicing event indicated by the
asterisk whilst the position of the transcripts including exon 9 (ex9+)
and lacking exon 9 (ex9—) are marked on the right. (C) Left panel
shows a transfection analysis of a TGIITS mutant (IVS9del3’ss)
carrying a ‘ag’ to ‘aa’ mutation in the cryptic 3'ss sequence. The CFTR
exon 9 inclusion levels are comparable to those detected for the
TGI11TS wild-type plasmid (C, right panel).

contexts can have very different outcomes depending on
the type of enhancer sequence present in the ISS position.

Inhibitory effects of a C/A-rich YB-1 binding sequence
in the ISS position

Finally, it was interesting to assess whether the inhibitory
effects mediated by these different G/A-rich sequences in
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Figure 6. (A) Shows the sequence of the YB-1-binding motif inserted in
the Pstl/Kpnl restriction sites of the pES plasmid (pTB YBIPK).
(B) Left panel shows a comparison of the levels of CFTR exon 9
inclusion in the TGI1TS, pES and pTB YBIPK plasmids following
transfection in Hep3B cells. The position of the transcripts including
exon 9 (ex9+) and lacking exon 9 (ex9—) are marked on the right. The
results of three independent experiments as quantified by radioactive
RT-PCR are reported in (B), right panel. The effect of cloning the YB-
1 sequence only in the Pstl site of the pES plasmid (pTB YB-1P) as
opposed to the Pstl/Kpnl sites (pTB YB-1PK) is shown in (C). The
schematic diagram on the left shows the composition of the unique
splice product observed in lane 1 whilst the position of the transcripts
including exon 9 (ex9+) and lacking exon 9 (ex9—) are marked on
the right.

the ISS position could also be mimicked by a non-
polypurinic sequence with well-known splicing enhancer
effects. Therefore, an A/C-rich enhancer sequence from the
alternatively spliced exon v4 of the CD44 gene was inserted
in the ISS position (Figure 6A) (68). This sequence was
identified by Stickeler et al. (68) as the binding site of YB-1,
a member of the family of multifunctional cold shock
domain proteins (CSD proteins). As shown in Figure 6B,
cloning this YB-1 binding sequence in the Pstl/Kpnl sites
of the pES plasmid (pTB YB-1PK) can successfully mimick
the effect of the original ISS activity in TG11TS5 (compare
lanes 1 and 3). Analogously, when this sequence is cloned
in the Pstl site only of the pES plasmid to obtain the pTB
YB-1P construct (thus providing a downstream donor site
capable of supporting exon recognition) the splicing
pattern is totally shifted towards the inclusion of a
miniexon containing only the YB-1 sequence (Figure 6C,
compare lanes 1 and 2).
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Figure 7. This figure shows a schematic diagram of different splicing
systems in which SR proteins have been observed to behave as
inhibitors of exon inclusion. (A) Shows the CE9 element characterized
in the hnRNP A1l gene, (B) to the ISE element observed downstream of
b-tropomyosin exon 6A, (C) to the 3RE element present in Adenovirus
and (D) to the NRS element present in Rous Sarcoma Virus. Finally, a
working model of the way SR proteins may inhibit CFTR exon 9
recognition is reported in (E).

DISCUSSION

CFTR exon 9 splicing is a complex event in which several
cis-acting elements located in both intronic and exonic
sequences play an important role (6-8,10). In particular,
an ISS sequence in IVS9 has been previously shown by
Pagani ef al. (11) to represent a negative element towards
its inclusion in the final mRNA molecule.

Our work has shown that this region specifically binds
two members of the SR protein family, SF2/ASF and
SRp40, which are normally associated with binding to
enhancer elements that promote exon inclusion. Because
of this, the CFTR ISS is one of the relatively few splicing
systems in which SR proteins behave as suppressors of
splicing. It is therefore interesting to compare its
functioning with other systems in which SR proteins
have also been identified as negative splicing regulators
(53-60) (Figure 7).

In the hnRNPA1 gene ISS, a particular SR protein
(SRp30c) can recognize the silencer element (CE9) and
directly down-regulate exon recognition (53) (Figure 7A).
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Most importantly, CE9 cannot compromise the assembly
of U2-dependent complexes on the 3’ss of hnRNP Al
exon 8 (69) and cannot function as an enhancer element in
a heterologous system (53). Although the molecular
mechanism of CE9 functioning remains unclear, this
represents an important functional difference with respect
to the CFTR exon 9 ISS, because the AS1 + AS2
sequence can function as an enhancer sequence in a
heterologous splicing system.

A second type of inhibition has also been found in the
case of what is really a ISE element localized downstream
of b-tropomyosin gene exon 6A (57). In this case,
competition occurs between a SR protein enhancer
factor (SF2/ASF) and another SR protein that has no
enhancer effect in this system (SC35) (Figure 7B). Also
this model does not seem to apply to the CFTR exon 9 ISS
working model for a number of reasons. First of all,
mapping of the SF2/ASF and SRp40-binding sites on
the CFTR ISS sequence has shown that they are
physically distinct, making competition between the two
highly unlikely (unlike the case of the ISE element of
b-tropomyosin exon 6A where the binding sites of
SF2/ASF and SC35 actually overlap). In addition, our
observation that heterologous SR-binding sequences with
rather different splicing specificities (EDA ESE and Apo
ISE elements) and even a YB-1 binding sequence can
restore CFTR ISS function in the absence of its natural
sequence would tend to rule out any specific effects by
particular SR proteins.

A higher degree of similarity can be found between
CFTR exon 9 ISS and the action of the IIla repressor
element (3RE) originally described in Adenovirus (58)
(Figure 7C). In fact, just like CFTR exon 9 ISS, also the
3RE sequence was observed to function as an enhancer
element when inserted in a heterologous splicing system,
showing that the mechanisms of action of 3RE is wholly
dependent on context. From a functional point of view,
the inhibitory mechanism mediated by 3RE was initially
thought to reside in the physical inhibition of U2snRNP
binding to the IIIa 3'ss, because of its nearness to the Illa
acceptor site (~30nt) (58). More recently, the inhibitory
activity of SF2/ASF on IIla splicing has been specifically
identified as residing in its second RNA binding domain,
RBD2, although the exact mechanism still remains to be
defined (70). It is difficult to determine whether physical
hindrance may also represent the mode of action for
CETR ISS as this sequence is localized rather far away
from the CFTR exon 9 5'ss (~80-100nt). Given this
limitation, the potential physical hindrance between
UlsnRNP binding to the natural donor site and
SF2/ASF and SRp40 binding to ASI + AS2 secems
unlikely.

Another SR-mediated inhibitory situation is repre-
sented by the Negative Regulator of Splicing (NRS) of
the Rous Sarcoma Virus (Figure 7D). In this case,
together with SR protein SF2/ASF (71), the NRS can
also bind a UlsnRNP molecule (60), a Ull snRNP
molecule (72) and hnRNP H (73). Interestingly, also this
sequence can function as an enhancer element when
inserted in the dsx-HX in vitro splicing system (59).
However, the mechanism of action of the NRS sequence
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cannot be explained by physical hindrance because it is
localized very far away from the 3’ss that is inhibited.
Recent research has shown that the exact mechanism
through which splicing inhibition occurs may probably
reside in the formation of non-productive complexes
between the NRS inhibitory splicing complex, the 3'ss of
the src¢ exon, and the polyadenylation process (60,74).
In addition, it has been suggested that RNA polymerase I1
can ‘tether’ emerging splice sites in the pre-mRNA (75).
In this case the NRS might also act as a disturbing
presence for the recognition of the natural 5'ss.

The CFTR exon 9 ISS is an excellent example of the
importance of sequence-context in determining the action
of cis-acting sequences (76). In the natural situation, the
heterologous 5'ss sequence is absent hence no IVS9 intron
sequences may be ‘exonized’. Nonetheless, the presence of
the exon enhancer-like complexes formed by SR proteins
or YB-1 in the ISS may create a situation in which the
UlsnRNP molecule approaching CFTR exon 9 would
remain ‘undecided’ between binding to the wild-type
suboptimal site and waiting for an indication from the
SR/YB-1 proteins present in the ISS of a better target
immediately downstream (Figure 7E). This is consistent
with the fact that the outcome of TDP 43 removal depends
on the strength of the ISS-SR interactions. Weak SR
interactions and removal of TDP 43 lead to complete
recovery of CFTR exon 9 inclusion while strong SR
interaction results in the inclusion of a super-exon 9
sequence by selecting exclusively the new 5'ss downstream
of the ISS (see Fig. S2). This data suggests that the ISS may
act as a sort of ‘decoy’ system hampering recognition of the
exon 9 5'ss. The result of this stalemate would be a net
decrease in CFTR exon 9 donor site recognition and,
consequently, in a lesser inclusion of CFTR exon 9 in the
mature mRNA. In this respect, therefore, a critical issue
might be represented by the processing speed of the RNA
polymerase II molecule in presenting the ISS sequence
after having transcribed the CFTR exon 9 region, and
these issues are currently being investigated in our
laboratory.

Finally, from a pathological point of view, the
importance of having mapped exactly the binding sites
for the SR trans-acting factors that are responsible for this
inhibitory action can provide researchers with a useful
target to inhibit their action, for example, by antisense
oligonucleotide approaches (77,78).
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