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Peripheral immunophenotyping reveals
lymphocyte stimulation in healthy women living
with hereditary breast and ovarian cancer syndrome

József Ágoston Balog,1,2,10 Klaudia Horti-Oravecz,3,4,10 Dorottya Kövesdi,5 Anikó Bozsik,3,6 Janos Papp,3,6

Henriett Butz,3,6,7,8 Attila Patócs,3,6,8 Gábor János Szebeni,1,2,9,11,12,* and Vince Kornél Grolmusz3,6,8,11,12,13,*
SUMMARY

Germline pathogenic variants in BRCA1 and BRCA2 (gpath(BRCA1/2)) represent genetic susceptibility for
hereditary breast and ovarian cancer syndrome. Tumor-immune interactions are key contributors to
breast cancer pathogenesis. Although earlier studies confirmed pro-tumorigenic immunological alter-
ations in breast cancer patients, data are lacking in healthy carriers of gpath(BRCA1/2). Peripheral blood
mononuclear cells of 66 women with or without germline predisposition or breast cancer were studied
with a mass cytometry panel that identified 4 immune subpopulations of altered frequencies between
healthy controls and healthy gpath(BRCA1) carriers, while no difference was observed in healthy
gpath(BRCA2) carriers compared to controls. Moreover, 3 (one IgD-CD27+CD95+ B cell subpopulation
and two CD45RA-CCR7+CD38+ CD4+ T cell subpopulations) out of these 4 subpopulations were also
elevated in triple-negative breast cancer patients compared to controls. Our results reveal an activated
peripheral immune phenotype in healthy carriers of gpath(BRCA1) that needs to be further elucidated
to be leveraged in risk-reducing strategies.

INTRODUCTION

Breast cancer is a common disease with a high degree of heterogeneity. Although the majority of these tumors expresses estrogen- and/

or progesterone-receptors and are termed hormone-responsive (HRBC), cancers lacking these receptors as well as the HER-2 antigen

are known as triple negative (TNBC). Historically considered immunologically neutral, recent advancements in molecular pathology re-

vealed that more aggressive subtypes, including TNBCs, exhibit a considerable amount of immune cell infiltration.1 Higher frequencies

of adaptive immune cells (CD8+ T cells, and B cells) are markers of better prognosis in multiple types of breast cancer, while the abun-

dance of specific members of the myeloid lineage (myeloid-derived suppressor cells [MDSCs] and M2 macrophages) are considered to

signal worse prognosis.1,2 Using single-cell mass cytometry, our group showed that low-dose cisplatin reduced the accumulation of

MDSCs in a murine 4T1 TNBC model.3 Proliferating CD8+ T cells have been described as a characteristic of the TNBC microenviron-

ment4 and their potentiation by the PD-1 immune checkpoint inhibitor (ICI) pembrolizumab has been shown to exert a clear benefit

regarding an increased rate of patients achieving pathological complete response compared to chemotherapy alone in the neoadjuvant

setting.5 Even without the occurrence of metastases, breast cancer significantly alters the peripheral immune phenotype.6,7 Several lines

of evidence have confirmed the association of the elevated rate of immunosuppressive regulatory T cells (Tregs),8,9 of CD8+ T cells with

stimulated/exhausted phenotype10,11 and of MDSCs8,12 in the peripheral blood of breast cancer patients, while other studies signaled

phenotypic changes toward memory phenotypes in B cells13 and noncytotoxic CD56bright populations in the natural killer (NK) cell

compartment.6,14
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Hereditary breast and ovarian cancer syndrome (HBOC) is a common cancer predisposition syndrome, with approximately half of the cases

related to germline pathogenic variants in BRCA1 (gpath(BRCA1)) and BRCA2 (gpath(BRCA2)).15,16 Women carrying gpath(BRCA1/2) have a

�70% risk of developing breast cancer and�20–60% risk of developing ovarian cancer throughout their lifetime.16 gpath(BRCA1)-associated

breast cancers usually occur at an earlier age with a predominance of the TNBC phenotype, while women with gpath(BRCA2) are typically

diagnosed later in their life and a larger proportion of them develop HRBC.16 Tumors with pathogenic variants of BRCA1 (path(BRCA1))

andBRCA2 (path(BRCA2)) share distinct homologous recombination deficiency-relatedgenomic scars,17,18 but also have differences in effect-

ing the genomic architecture of breast cancers with the probably causative association of path(BRCA1) with the small tandem duplication

mutator phenotype.17 Concerning the breast cancer tumor microenvironment, a recent study confirmed that BRCA1-deficient TNBCs

were enriched in an immunoregulatory gene set as compared to BRCA1-proficient cancers.19 In another study, Samstein et al. aimed to

analyze if somatic BRCA1/2 status correlated with the clinical outcome of ICI therapy.19 In an exploratory pan-cancer cohort of 95 patients,

they have found that thosewith path(BRCA2) associatedwith improved overall survival, also suggesting an altered immunemicroenvironment

based on the BRCA1/2 status.19

The high probability of breast cancer development can even justify risk-reducing surgical procedures to remove healthy breast tissue in

women carrying gpath(BRCA1/2); therefore, large efforts are dedicated to alternative approaches to tailor personalized risk management.

Recent research studies were directed to detect preneoplastic lesions and systemic biomarkers in healthy women with gpath(BRCA1/2).

Several lines of evidence confirmed that luminal progenitor cells are the cells-of-origin in gpath(BRCA1)-related tumorigenesis20–23 and a

recent study highlighted the pathogenetic contribution of the premalignant stromal compartment via the production of tumorigenic factors

in preneoplastic breast tissues in healthy women with gpath(BRCA1).20 Moreover, it was shown that immune cell densities are elevated in

normal breast tissues of women with gpath(BRCA1/2).24

Since the evaluation of the peripheral immune phenotype in healthy women with gpath(BRCA1/2) has not yet been implemented, in the

present study we aimed to perform multiparametric single-cell mass cytometry experiments to investigate this issue. By comparing the pe-

ripheral immune phenotype of healthy women with and without gpath(BRCA1/2) and that of treatment-naive HRBC and TNBC patients we

found several differences in the frequencies of naive and stimulated T and B cells. Our results show that even without cancer, carriers of

gpath(BRCA1), but not of gpath(BRCA2) exhibit a stimulated peripheral immune phenotype that may mirror preneoplastic antitumor

mechanisms.

RESULTS

Analysis of main immune cell populations

Altogether 10,382,648 CD45+ live cells (average 157,312 G 46,950 cells/sample) originating from 66 individuals (20 healthy women without

hereditary cancer predisposition, 12 healthy women with gpath(BRCA1), 10 healthy women with gpath(BRCA2), and 12-12 women with

HRBC and TNBC, Figure 1A and Table S1) were subjected to the analysis. Study cohorts were age-matched and the number of analyzed cells

in each group did not differ (Figure S1). Following clustering and manual curation, 10 independent main immune clusters were identified

including B cells, plasmablasts, CD4+, CD8+, gd and double-negative T cells, monocytes, myeloid (mDC) and plasmacytoid (pDC) dendritic

cells, andNK cells (Figures 1B and 1C).Monocytes were the onlymain immune population exhibiting altered frequency between study groups

and weremore frequent in cancer patients as compared to controls (Figure 1D); however, no individual marker showed a difference in expres-

sion between study groups within monocytes.

Phenotypic differences in B cells reveal a shift to an activated state in healthy gpath(BRCA1) carriers

Subclustering of B cells revealed 14 subclusters (SCs) with IgD expression being one of the main differentiating factors between SCs

(Figures 2A–2C). SCs 5, 7–10, and 12 are IgD� and SCs 1–4, 6, 11, and 13–14 are IgD+ (Figures 2A and 2C). We compared the relative abun-

dance of each SC within the B cell compartment and found that SC01 and SC08 differed significantly between the study groups (Figures 2D–

2F). SC01 is the most abundant B cell SC characterized by an IgD+/CD185(CXCR5)+/CD197(CCR7)+/CD11c�/CD95� phenotype reflecting

a large naive B cell population being recruited toward lymphoid follicles. This SC is less frequent in the healthy gpath(BRCA1) group

compared to healthy controls (Figure 2E). SC08 on the other hand is an IgD�/CD27+/CD95+/CD11c+/CD38+ B cell subset exhibiting

the highest median CD95 expression within B cell SCs (Figures 2A and S2A). This SC corresponds to a class-switched memory B cell pheno-

type and was found to be more frequent in healthy women living with gpath(BRCA1) as well as in cancer cohorts compared to healthy con-

trols (Figure 2F).

To assess if these changes within healthy women based on germline BRCA1 status are maintained within the TNBC group, we performed

subgroup analyses within the TNBC samples and compared those to the samples of healthywomenwith or without gpath(BRCA1). In this size-

limited subgroup analysis, we have found no difference within the TNBC cohort based on germline BRCA1 status (Figures 2G and 2H). How-

ever, we confirmed the higher frequency of SC08 in gpath(BRCA1) carriers regardless of cancer status but not in TNBC patients without

gpath(BRCA1), raising the possibility that germline BRCA1 status might strongly affect the frequency of SC08 (Figure 2H).

Next, we checked whether there are any marker expression changes between each study group. Interestingly, CD27 expression on B cells

was elevated in healthy gpath(BRCA1) carriers, reflecting a more pronounced memory B cell phenotype in this study group (Figure 2I).

To investigate phenotypic differences between study groups regarding SC01 and SC08, we analyzed marker expressions restricted to

these SCs. In SC08, elevated CD95 levels were confirmed in TNBC patients compared to healthy controls (Figure S2B), also reflecting a

more activated SC08 phenotype in this disease group.
2 iScience 27, 109882, June 21, 2024



Figure 1. Identification and characterization of major immune cell clusters

(A) Graphical representation of the study procedure. Abbreviations: LN2,liquid nitrogen; PBMC, peripheral blood mononuclear cells.

(B) t-SNE plot of the identified 10 immune cell population.

(C) Heatmap of median expression of each surface marker in each main immune cell cluster and frequencies of each main immune cell cluster in each study

sample.

(D) Frequencies of monocytes in each study groups. Median frequencies (dashed lines) and interquartile range (between dotted lines) are included on violin plots.

Asterisks correspond to statistical significance: p < 0.05* by Kruskal-Wallis test.

See also Figures S1, S3, and S4; and Table S1.
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Two CD38-expressing CD4+ T cell subpopulations are more frequent in healthy gpath(BRCA1) carriers

Subclustering of CD4+ T cells yielded 15 SCs that formed three larger groups based on the similarity of the investigated marker expressions

(Figures 3A and 3B). The most abundant SC, SC03, together with members of SC02 forms the CD45RA+/CD45RO� naive cell cluster, while

the majority of the less frequent SCs represent a memory phenotype being CD45RO+/CD45RA� (Figures 3C and 3D). A smaller group

including SCs 9, 10, 13, and 15 is distinguishedmainly based on their pronounced CD57 expression (Figure 3E). Among the SCs with memory
iScience 27, 109882, June 21, 2024 3



Figure 2. Phenotyping of B cells and their distribution in the study cohorts

(A) Median expression of the investigated markers in each of the 14 subclusters and the frequency of each subcluster.

(B and C) UMAP representation of the B cell subclusters color coded by subclusters (B) and by IgD expression (C).

(D) Density heatmap of B cell subclusters in each study group.

(E and F) Frequencies of SC01 (E) and of SC08 (F) in each study groups.

(G and H) Subgroup analyses of TNBC compared to healthy control and healthy gpath(BRCA1) carriers demonstrating frequencies of SC01 (G) and SC08 (H).

Frequencies of healthy individuals (also displayed on E and F) on these panels are included for optimal comparison.

(I) Median expression of CD27 on B cells in various study groups. Median values (dashed lines) and interquartile range (between dotted lines) are included on all

violin plots. Asterisks correspond to statistical significance: p < 0.05*; <0.01**; <0.001*** by one-way ANOVA test (E and G) or Kruskal-Wallis test (F, H, and I).

See also Figure S2.
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phenotype, SC08 and SC11 weremore frequent in healthy gpath(BRCA1) carriers as well as in patients with TNBC (Figures 3G and 3H). These

two SCs exhibit a similar, CD45RO+/CD38+/CD95+ phenotype, with SC08 also expressing the highest levels of PD-1 (Figures 3A and 3F).

Subgroup analysis in the TNBC cohort revealed that the abundance of SC11 was predominantly elevated in TNBC patients with

gpath(BRCA1) suggesting a significant germline genetic contribution on the frequency of this SC (Figures 3I and 3J). No difference was

observed regarding median marker levels between study cohorts in the whole CD4+ T cell population; however, the levels of

CD197(CCR7) on SC11 cells showed high variability with a striking decrease in the TNBC group compared to healthy controls (Figure 3K).

Moreover, PD-1 expression on SC11 cells was higher in healthy gpath(BRCA1) carriers and in cancer patients compared to healthy controls

(Figure 3L).

Phenotyping of additional immune subpopulations yielded no differences in subcluster frequencies between study groups.

In order to investigate if the observed differences were confounded by environmental and lifestyle factors, we performed further analyses

to assess the distribution of these factors between study groups. We found no difference regarding which time of the year the samples were

collected or where the study subjects lived within the country (Figures S3A and S3B). Moreover, in the cases of the HRBC and TNBC groups,
4 iScience 27, 109882, June 21, 2024



Figure 3. CD4+ T cell phenotypes in the study cohorts

(A) Median expression of the investigated markers in each of the 15 subclusters and the frequency of each subcluster.

(B–F) UMAP representation of the CD4+ T cell subclusters color coded by subclusters (B) by CD45RA (C), CD45RO (D), CD57 (E), and PD-1 (F) expressions.

(G and H) Frequencies of SC08 (G) and of SC11 (H) in each study groups.

(I and J) Subgroup analyses of TNBC compared to healthy control and healthy gpath(BRCA1) carriers demonstrating frequencies of SC08 (I) and SC11 (J).

Frequencies of healthy controls (also displayed on G and H) on these panels are included for optimal comparison.

(K and L) Median expression of CD197 (CCR7) and CD279 (PD-1) on SC11 cells in various study groups. Median values (dashed lines) and interquartile range

(between dotted lines) are included on all violin plots. Asterisks correspond to statistical significance: p < 0.05*; <0.01**; <0.001*** by Kruskal-Wallis test

(G and I) or one-way ANOVA (H and J–L).
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data were available for additional comparisons. In these latter examinations, no differences were found between the highest level of educa-

tion, smoking status, alcohol consumption, body mass index (BMI) and physical exercise, which would have confounded our results

(Figures S3C–S3G).

Correlation analysis of immune subpopulation frequencies proposes a functional link between activated T and B cells

To investigate the interdependence between immune subpopulations, we performed a correlation analysis between each of the 10 main im-

mune populations and their SCs (Figure 4A). As expected, SCs of the same main immune populations correlated well with each other (e.g.,

lower frequencies of naive CD8+ populations with higher frequencies of stimulatedCD8+ T cells), with additional correlative patterns between

CD4+ and CD8+ SCs. Focusing on the 4 immune subpopulations with significant alterations between study groups, the B cell subpopulation

SC08 displayed the highest levels of correlation with other significantly altered subpopulations (Figure 4B). SC08 and SC11 CD4+ subpopu-

lations and plasmablasts were the three immune populations most strongly correlating with this SC, underlining the potential functional link

between these CD4+ T cell and B cell populations.

DISCUSSION

Germline pathogenic variants inBRCA1 andBRCA2 are themost frequent genetic defects resulting in HBOCwith an estimated lifelongbreast

and ovarian cancer risk of 70% and 20–60%, respectively. Homologous recombination deficiency and genomic instability are hallmarks of

HBOC-associated tumors priming these lesions as targets for antineoplastic immune response. ICI therapies potentiating this intrinsic
iScience 27, 109882, June 21, 2024 5



Figure 4. Correlation analysis of immune cell populations

(A) Heatmap of pairwise Spearman’s R correlation coefficient values between each investigated immune cell population. In eachmain immune cell population the

first column/row corresponds to themain immune population frequency in the CD45+ cells, while following columns/rows correspond to each subcluster (SC01/

SCNN).

(B) Correlation between frequencies of subclusters with significant alterations between study groups. R values displayed on each graph correspond to correlation

analysis performed on all samples. Blue triangles correspond to B cell SC08 vs. CD4+ T cell SC08 analysis, while brown and green triangles correspond to B cell

SC08 vs. CD4+ T cell SC11 and B cell SC08 vs. plasmablasts analyses, respectively. Asterisks correspond to statistical significance: p < 0.05*; <0.001*** by

Spearman’s correlation.
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immune activation have been successfully introduced in TNBC.5 However, cancer-mediated immunoediting influences the effectiveness of

immune response explaining the disappointing clinical results of ICI in ovarian cancer.25 Although previous studies described luminal progen-

itor cells as cells-of-origin in gpath(BRCA1)-related breast tumorigenesis,20–22 no study has been conducted to investigate the systemic immu-

nological characteristics of HBOC.

Therefore, we performed amass cytometry study to compare the peripheral immunephenotype of healthy women carrying gpath(BRCA1/2)

with that of healthy women without HBOC and breast cancer patients. We detected an elevated proportion of monocytes in cancer patients,

which confirms earlier findings.8 By analyzing immune cell SCs in each study group we detected two B cell and two CD4+ T cell SCs with altered

frequency, all of which demonstrated abundance changes in healthy gpath(BRCA1) carriers and TNBC patients, while neither of the SC fre-

quencies differed in healthy gpath(BRCA2) carriers. This mirrors a significantly different immunogenic landscape of BRCA1- and BRCA2-related

tumorigenesis that correspond to the clinical observation of gpath(BRCA1) predisposing to immunologically active TNBC phenotype while

gpath(BRCA2) predisposes to immunologically more neutral HRBC.16

In particular, the largest, IgD+ B cell SC demonstrated decreased frequency in healthy gpath(BRCA1) carriers compared to controls. Deep

phenotyping of this SC revealed elevated CXCR5 and CCR7 expression and decreased CD95 and CD11c expression reflecting a naive B cell

phenotypebeing recruited to secondary lymphoid follicles for germinal center reaction.26 The lower frequency of the naive cell subpopulation
6 iScience 27, 109882, June 21, 2024
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correlates with a larger frequency of a CD95+/CD11c+ class-switched memory B cell population in healthy gpath(BRCA1) carriers.27–29 This,

together with the observed higher median CD27 expression within B cells jointly confirms a more stimulated B cell phenotype in this study

group. Additionally, it was interesting to find that the elevated SC08 frequency in gpath(BRCA1) carriers compared to controls was upheld in

TNBC patients with this genetic predisposition, signaling a strong linkage of this subpopulation with gpath(BRCA1).

Within CD4+ T cells, two CD45RA�/CCR7+/CD38+ subpopulations (SC08 and SC11) demonstrated elevated frequencies in healthy

gpath(BRCA1) carriers as well as in TNBC patients. These SCs correspond to an activated, central memory T helper phenotype. CD38

is an NAD+ glycohydrolase and is widely considered as an activation marker on T cells.30,31 CD38 expression on CD4+ T cells has been

shown to correlate with reduced proliferation and increased proinflammatory cytokine-producing (TNFa, IFNg, and IL-2) capabilities31,32

and T cell differentiation30 and was found to be elevated in chronic viral infections.33 Clinically, a CD4+CD38+ subpopulation in the periph-

eral blood as well as in the tumor tissue has been shown to exert poor prognosis in metastatic melanoma patients undergoing ICI ther-

apy.34,35 These results point to an orchestrated crosstalk between CD4+ T cells and other immune populations involved in adaptive and

innate immunity.

To investigate this possible crosstalk, we performed correlation analysis between SC frequencies and found that theCD95+/CD11c+ class-

switched B cell SC correlated positively with the two CD4+CD38+ central memory SCs. This points to a potential mechanistic link that needs to

be elucidated in further studies. A widely studied crosstalk between CD4+ T cells and B cells is that of follicular helper T cells (Tfh), helping

B cell proliferation, survival, and differentiation in a variety of diseases including in cancer-associated tertiary lymphoid structures.36 However,

the two CD38+ SCs in our study do not express canonical Tfh markers CXCR3 and CXCR5. Nevertheless, we hypothesize that altered cytokine

production of these SCs might affect the activation of certain memory B cell populations.

A collaborative international initiative analyzing the contributors of interindividual variations in the peripheral immune phenotype

concluded that the main factors driving these differences are age and household.37 Since all our study subjects lived in different households,

similarly represented different regions in Hungary and study groups were age-matched, we can confirm that these factors did not confound

the presented alterations. Moreover, additional analyses regarding environmental, socioeconomical, and lifestyle factors did not detect sig-

nificant differences between HRBC and TNBC patients that would have confounded our results.

In conclusion, this is the first study investigating the peripheral immune phenotype of healthy women living with gpath(BRCA1/2). We

report an altered CD4+ T cell and B cell phenotype in healthy gpath(BRCA1) carriers largely shared in TNBC patients and consisting of higher

frequencies of stimulatedphenotype. Correlations between these altered immune cell subpopulations link to a viableCD4+ T cell-B cell cross-

talk that needs to be further investigated to tailor immune-mediated risk-reducing strategies in women with HBOC.
Limitations of the study

It is important to note the limitations of this study. As a single-center examination of limited sample size, the results of our study cannot be

directly extrapolated to the general HBOC population. Confirmatory studies in independent cohorts as well as further mechanistic investiga-

tions into the proposed CD4+ T cell-B cell crosstalk in HBOC are needed to validate our results. Moreover, the cross-sectional nature of our

study design prevented us to analyze how stable the detected alterations are through time. Since all cancer patients involved in this study

underwent surgery and pharmacological treatments and a significant proportion of healthy gpath(BRCA1/2) carriers underwent risk-reducing

surgical interventions, these questions should be analyzed in further studies specifically aiming to dissect longitudinal sample collections.

However, analyzing the peripheral immune phenotype in longitudinal samples from 177 individuals, Carr et al. showed that only 1.4% of

the total variation between samples are attributable to intraindividual variation between visits.37 This stability of the peripheral immune

phenotype within individuals is consistent throughout additional landmark studies.37–40 An additional limitation of the study is the low sample

size in the subgroup analyses in the TNBC cohort. Further studies should analyze the peripheral immune phenotype in gpath(BRCA1) carriers

with and without TNBC.
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anti-human-CD194 (CCR4) (L291H4) - 152Sm Standard BioTools Cat. No.: 201325

anti-human-CD25 (BC96) - 153Eu Standard BioTools Cat. No.: 201325

anti-human-CD27 (O323) - 154Sm Standard BioTools Cat. No.: 201325

anti-human-CD57 (HNK-1) - 155Gd Standard BioTools Cat. No.: 201325

anti-human-CD183 (CXCR3) (G025H7) - 156Gd Standard BioTools Cat. No.: 201325

anti-human-CD185 (CXCR5) (J252D4) - 158Gd Standard BioTools Cat. No.: 201325

anti-human-CD28 (CD28.2) - 160Gd Standard BioTools Cat. No.: 201325

anti-human-CD38 (HB-7) - 161Dy Standard BioTools Cat. No.: 201325

anti-human-CD56 (NCAM) (NCAM16.2) - 163Dy Standard BioTools Cat. No.: 201325

anti-human-TCRgd (B1) - 164Dy Standard BioTools Cat. No.: 201325

anti-human-CD294 (BM16) - 166Er Standard BioTools Cat. No.: 201325

anti-human-CD197 (CCR7) (G043H7) - 167Er Standard BioTools Cat. No.: 201325

anti-human-CD14 (63D3) - 168Er Standard BioTools Cat. No.: 201325

anti-human-CD3 (UCHT1) - 170Er Standard BioTools Cat. No.: 201325

anti-human-CD20 (2H7) - 171Yb Standard BioTools Cat. No.: 201325

anti-human-CD66b (G10F5) - 172Yb Standard BioTools Cat. No.: 201325

anti-HLA-DR (LN3) - 173Yb Standard BioTools Cat. No.: 201325

anti-human-IgD (IA6-2) - 174Yb Standard BioTools Cat. No.: 201325

anti-human-CD127 (A019D5) - 176Yb Standard BioTools Cat. No.: 201325

Cell-ID Intercalator - 103Rh Standard BioTools Cat. No.: 201325

anti-human-CD45 (HI30) - 106Cd Standard BioTools Cat. No.: 3106001B

anti-human-CD45 (HI30) - 110Cd Standard BioTools Cat. No.: 3110001B

anti-human-CD45 (HI30) - 111Cd Standard BioTools Cat. No.: 3111001B

anti-human-CD45 (HI30) - 112Cd Standard BioTools Cat. No.: 3112001B

anti-human-CD45 (HI30) - 113Cd Standard BioTools Cat. No.: 3113001B

anti-human-CD45 (HI30) - 114Cd Standard BioTools Cat. No.: 3114001B

anti-human-CD45 (HI30) - 116Cd Standard BioTools Cat. No.: 3116001B

anti-human-CD366 (Tim-3) (F38-2E2) - 159Tb Standard BioTools Cat. No.: 3159037B

anti-human-CD95 (FAS) (DX2) - 162Dy Standard BioTools Cat. No.: 3162038B

anti-human-CD223 (LAG-3) (11C3C65) - 165Ho Standard BioTools Cat. No.: 3165037B

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

anti-human-CD279 (PD-1) (EH12.2H7) - 175Lu Standard BioTools Cat. No.: 3175008B

anti-human-CD134 (OX40) (ACT35) - 142Nd Standard BioTools Cat. No.: 3142018B

Biological samples

66 PBMC samples this paper

Chemicals, peptides, and recombinant proteins

Gentra Puregene Blood DNA Isolation Kit Qiagen Cat. No.: 158389

BRCA MASTR Plus Dx kit Agilent Technologies Cat. No.: PR7000-1420

TruSight Hereditary Cancer Panel Illumina Inc Cat. No.: 20029551

BigDye Terminator kit Thermo Fisher Scientific Cat. No.: 4337455

Pancoll solution PanBiotech GmbH Cat. No.: P04-601000

RPMI-1640 Capricorn Cat. No.: RPMIA

Penicillin/ streptomycin Capricorn Cat. No.: PS-B

Fetal Bovine Serum Euroclone Cat. No.: ECS0180L

glutamine Capricorn Cat. No.: GLN-B

Maxpar Cell Staining Buffer Standard Biotools Cat. No.: 201068

TrueStain FcX� Fc receptor blocking solution BioLegend Cat. No.: 422302

formaldehyde solution Pierce�, Thermo Scientific Cat. No.: 28908

Fix & Perm solution Standard BioTools Cat. No.: 201067

Cell Acquisition Solution Standard BioTools Cat. No.: 201240

Deposited data

Mass cytometry dataset this paper, Mendeley Data https://doi.org/10.17632/pkx5wn7cb3.1

Software and algorithms

Graphpad Prism Dotmatics version 8.0.1. https://www.graphpad.com/

MASTR Reporter software Agilent Technologies Cat. No.: PR7000-1420

DRAGEN environment Illumina Inc Cat. No.: 20060397,

https://www.illumina.com/products/

by-type/informatics-products/

dragen-secondary-analysis.html

CyTOF software v.07 Standard Biotools Cat. No.: FLDM-400338, version: 7.0.8493

Cytobank Premium analysis platform Beckman Coulter Cat. No.: C47384 https://www.beckman.

com/flow-cytometry/software/

cytobank-premium

flowcore Ellis B et al.41 https://bioconductor.org/packages/

release/bioc/html/flowCore.html

CATALYST Crowell H et al.42 https://bioconductor.org/packages/

release/bioc/html/CATALYST.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vince Kornél Grol-

musz (grolmusz.vince@oncol.hu).
Materials availability

This study did not generate new unique reagents.
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Data and code availability

� Originalmass cytometry data has been deposited onMendeley Data (https://doi.org/10.17632/pkx5wn7cb3.1) and is publicly available

as of the date of publication. The DOI is listed in the key resources table.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Wedesigned and executed a cross-sectional study. All study subjects wereWhite Hungarian females and study groups werematched for age

(healthy controls nn = 20, healthy gpath(BRCA1) carrier n= 12, healthy gpath(BRCA2) carrier n= 10, HRBCpatient n= 12, TNBCpatient n= 12,

Table S1 and Figure S1A). Only individuals without fever, respiratory or gastrointestinal infections at the time of sample collection and during

the preceding two week time frame were involved. Moreover, subjects with prior diagnosis of any autoimmune diseases and those under the

treatment of immune-modulating treatments (e.g., local or systemic corticosteroid treatments) were excluded. Individuals included in the

study were informed of the study procedure and signed an informed consent form. The study was approved by the Scientific and Research

Ethics Committee of the Medical Research Council of Hungary (ETT-TUKEB 53720-7/2019/EÜIG).

METHOD DETAILS

Patients and genetic analysis

Healthy women referred to genetic counseling and testing and women diagnosed with breast cancer were included at the Department

of Molecular Genetics, National Institute of Oncology between April 1, 2021 and March 31, 2022. Following genetic counseling and

informed consent, DNA was isolated from peripheral blood using Gentra Puregene Blood Kit (Qiagen, Hilden, Germany), according

to the manufacturer’s recommendations. In breast cancer patients, the germline mutational analysis of BRCA1 and BRCA2 was analyzed

by next-generation sequencing. Libraries were constructed by either BRCA MASTR Plus Dx kit (Agilent Technologies, Santa Clara, CA,

USA) or TruSight Hereditary Cancer Panel (Illumina Inc, San Diego, CA, USA), sequencing was run on a MiSeq instrument (Illumina Inc,

San Diego, CA, USA) and bioinformatic analyses have been performed either using the MASTR Reporter software (Agilent Technologies,

Santa Clara, CA, USA) or the DRAGEN environment (Illumina Inc, San Diego, CA, USA). In healthy individuals analyzed through cascade

testing for the familial pathogenic variants, PCR-amplified amplicons were subjected to gold standard Sanger dideoxy sequencing using

BigDye Terminator kit (Thermo Fisher Scientific, Waltham, MA, USA) followed by capillary electrophoresis detection on an Applied Bio-

systems 3500 Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA) instrument. Variant interpretation was performed following

the ACMG/AMP guideline43 and variants were cross-checked in the ENIGMA consortium database (https://brcaexchange.org). The per-

formed genetic analyses confirmed gpath(BRCA1) in 6 out of 12 TNBC patients and gpath(BRCA2) in 3 out of 12 HRBC patients

(Table S1).

Twenty healthy women who were found to be negative for the respective familial germline pathogenic variant constituted the healthy

control group, while healthy women with germline pathogenic variants in BRCA1 and BRCA2 (n = 12 and n = 10, respectively) were also

included. The lack of breast and ovarian cancer in healthy women carrying pathogenic germline variants in BRCA1 and BRCA2 was

confirmed with mammography and/or ultrasound screening and transvaginal ultrasonography within 1 year. Additionally, we included

12-12 women diagnosed with hormone-responsive breast cancer (HRBC) and TNBC. All cancer patients were treatment-naive and

did not undergo surgical resection at the time of inclusion and sample accrual. Baseline characteristics of the study subjects are detailed

in Table S1. Individuals included in the study were informed of the study procedure and signed an informed consent form. The study was

approved by the Scientific and Research Ethics Committee of the Medical Research Council of Hungary (ETT-TUKEB 53720-7/

2019/EÜIG).

PBMC isolation

Peripheral bloodmononuclear cells (PBMCs) were isolated by density gradient centrifugation.44 Briefly, 9mLwhole bloodwas layered on 5mL

of Pancoll solution (PanBiotech GmbH, Germany) within 4 h of venipuncture and was centrifuged at 800g for 20 min. PBMCs were washed

twice with PBS (centrifugation at 300g for 10 min) and a high degree of viability (>90%) was confirmed with trypan blue staining. PBMCs

were aliquoted and cryopreserved in a 90% FBS-10% DMSO solution in liquid nitrogen storage.

Cell preparation for mass cytometry

Cryotubes were thawed in a 37�C water bath for 2 min and cells were transferred into 9 mL 37�C warm complete RPMI-1640 cell culture

media (cRPMI) containing 100 U/ml penicillin and 100 mg/mL streptomycin (Merck, USA), 10% FBS (Euroclone), 2mM glutamine (200mM

100x diluted Capricorn), and centrifugated at 370g for 6 min at room temperature (RT).45 PBMCs were washed one more time with

10 mL cRPMI and cells were counted using a standard counting chamber and viability was determined with trypan blue exclusion. 3 3

106 PBMCs/sample were plated on 96-well repellent plate (GreinerBio-One Ltd.) separately in 200 mL cRPMI and rested 2h in an incubator

with 5% CO2 at 37
�C. Rested cells were collected and washed twice with Maxpar Cell Staining Buffer (MCSB, Standard Biotools, San Fran-

cisco, CA, USA).
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Cell barcoding and antibody staining

The Maxpar Direct Immune Profiling Assay46,47 was complemented with the addition of antibodies against cytotoxical marker CD95 and four

immune checkpoint molecules (CD366/Tim-3, CD223/LAG-3, CD279/PD-1 and CD134/OX40) as ICI therapies are becoming widely used on-

copharmacological agents especially in TNBC.5

Cells were resuspended in 200 mL MCSB and transferred into 1.5 mL centrifuge tube. Subsequently, 800 mL MCSB was added, and centri-

fuged at 370 g at RT for 6 min. Cells were suspended in 47.5 mL MCSB supplemented with 2.5 mL TrueStain FcX 1:20 (V/V%) Fc receptor block-

ing solution (BioLegend, San Diego, CA, USA) and incubated at RT for 10 min. After 10 min incubation in the cell culture incubator, 8 patient-

derived samples were barcoded individually by adding 50-50 mL of different metal-tagged (89Y, 106Cd, 110Cd, 111Cd, 112Cd, 113Cd, 114Cd,
116Cd) CD45 antibodies (clone: HI30; Standard Biotools, San Francisco, CA, USA) at a final concentration of 1:100 (V/V%) per antibody and

incubated at 4�C for 30 min. The CD45 live cell barcoding was described previously by Fish et al.48 Cells were washed two times with

1 mLMCSB, centrifuged at 370 g at RT for 6 min after which they were resuspended in 1 mLMCSB and counted. 5x105 cells from each patient

were pooled into a 5 mL centrifuge tube, centrifuged at 370 g at RT for 6 min. Cells were resuspended in 275 mL MCSB and stained with

1:100 (V/V%) of 5 markers (Standard Biotools, San Francisco, CA, USA): anti-human CD366/Tim-3 (clone F38-2E2)-159Tb; anti-human CD95/

Fas (clone DX2)-162Dy; anti-human CD223/LAG-3 (clone 11C3C65)-165Ho; anti-human CD279/PD-1 (clone EH12.2H7)-175Lu; anti-human

CD134/OX40 (clone ACT35)-142Nd and transferred into a single tube of Maxpar Direct Immune Profiling Assay (Standard Biotools, San Fran-

cisco, CA, USA) and incubated at RT for 30 min (key resources table). Cells were washed with 2 mLMCSB two times, centrifuged at 370 g at RT

for 6 min. Cells were fixed in 1.6% formaldehyde solution (Pierce, Thermo Scientific, Waltham, MA, USA) and incubated at RT for 10 min.

Stained and fixed cells were centrifuged at 800 g at RT for 6 min and resuspended in 800 mL Fix & Perm solution supplemented with

1:1000 (V/V%) 191Ir-193Ir DNA intercalator (all from Standard Biotools, San Francisco, CA, USA) for overnight incubation.49,50
Mass cytometry data acquisition and preprocessing

Samples were washed three times with 4 mL MCSB, (centrifugation at 800g, RT for 6 min) before being filtered through a 30 mm CellTrics

gravity filter (Sysmex, Görlitz, Germany). The cell concentrations were adjusted to 8x105/mL in Cell Acquisition Solution (CAS, Standard Bio-

tools, San Francisco, CA, USA). Finally, EQ four-element calibration beads (Standard Biotools, San Francisco, CA, USA) were added at a

1:10 ratio (V/V%) and acquired on a properly tuned Helios mass cytometer with WB injector (Standard Biotools, San Francisco, CA, USA).

We acquired min 1.2 3 106 events from the pooled samples (�3 3 105 events/individual PBMC sample) to identify rare cell subsets. The

generated flow cytometry standard (FCS) files were randomized and normalized with the default setting of the internal FCS-processing

unit of the CyTOF Software (Standard Biotools, San Francisco, CA, USA, version: 7.0.8493).
QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing

Randomized and normalized FCS files were uploaded to the Cytobank Premium analysis platform (Beckman Coulter). Exclusion of normal-

ization beads, dead cells, debris, doublets and manual debarcoding were performed (Figure S4). There were no significant differences in cell

counts between the examined groups (Figure S1B). The FCS files with the CD45 positive living singlets were exported, deposited on Men-

deley Data and further analyzed in R.

Compensation methodology, FlowSOM clustering and dimensionality reduction were adapted from Crowell et al.51,52 FCS files were in-

tegrated, compensated and transformed utilizing the CATALYST and flowCore R packages.41,42 After signal spillover compensation, CyTOF

marker intensities were inverse hyperbolic sine transformed (arcsinh) with cofactor 5. For the main population definition, we carried out self-

organizing-map basedmethod (FlowSOM) clustering on compensated and transformed files.53 We identified 10 different clusters which were

separately subclustered with another round of FlowSOM. Cluster annotation by manual curation of the 10 main immune cell types were per-

formed using the relative expression levels of CD3, CD4, CD8a, CD11c, CD14, CD19, CD20, CD56, TCRgd and HLA-DR. Dimensionality

reduction and visualization were performed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. A total of 300,000 cells

and 35 markers (key resources table) were used to create the peripheral human immune system t-SNE map. On every identified main pop-

ulation, we carried out subclustering with FlowSOM and visualized it using Uniform Manifold Approximation and Projection (UMAP). Each

UMAP represented 3000 cells/sample.
Statistical analysis

Median signal intensities, cell frequencies and subpopulation frequencies were analyzed with GraphPad Prism 8.0.1. The normality of distri-

butions were testedwith D’Agostino & Pearson test and passed if all groups’ alpha value were under 0.05. Normally distributed datasets were

compared with ordinary one-way ANOVA or Brown-Forsythe ANOVAwhen the standard deviations were not equal. For non-parametric anal-

ysis, Kruskal-Wallis test was applied. Significance tests were corrected for multiple comparisons by controlling for the False Discovery Rate

(FDR) with a two-stage Benjamini, Krieger and Yekutieli approach with an FDR cutoff of 10%. Correlation analyses were performed using

Spearman’s method. Comparisons of categorical values were performed using Fisher’s exact test. Differences are considered significant

at p < 0.05*; <0.01**; <0.001***.
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