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Our ever-changing modern environment is a significant contributor to the increased
prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM).
Although the modern era has ushered in numerous changes to our daily living conditions,
changes in “what” and “when” we eat appear to disproportionately fuel the rise of T2DM.
The pancreatic islet is a key biological controller of an organism’s glucose homeostasis
and thus plays an outsized role to coordinate the response to environmental factors to
preserve euglycemia through a delicate balance of endocrine outputs. Both successful
and failed adaptation to dynamic environmental stimuli has been postulated to occur due
to changes in the transcriptional and epigenetic regulation of pathways associated with
islet secretory function and survival. Therefore, in this review we examined and evaluated
the current evidence elucidating the key epigenetic mechanisms and transcriptional
programs underlying the islet’s coordinated response to the interaction between the
timing and the composition of dietary nutrients common to modern lifestyles. With the
explosion of next generation sequencing, along with the development of novel informatic
and –omic approaches, future work will continue to unravel the environmental-epigenetic
relationship in islet biology with the goal of identifying transcriptional and epigenetic targets
associated with islet perturbations in T2DM.

Keywords: epigenetics, pancreatic islet, type 2 diabetes mellitus, high-fat diet, ketogenic diet, low-protein diet,
intermittent fasting, time-restricted feeding
INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the major health challenges facing today’s society and
projected to afflict nearly 1 in 3 people by year 2050 (1). T2DM is associated with a drastic increase in
population morbidity/mortality, and more recently, has been shown to exacerbate adverse outcomes
associated with COVID-19 (2). For these reasons, it is imperative to improve our understanding of the
molecular mechanisms driving the increasing prevalence of T2DMwhich can lead to the development
of novel therapeutic and preventative approaches. The pathophysiology of T2DM is mediated by
complex interactions among diverse environmental and genetic susceptibilities (3), which ultimately
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culminate in the development of pancreatic islet failure
characterized mainly by compromised b-cell insulin secretory
function and loss of b-cell numbers. Although underlying
genetics contribute to the pathogenesis of T2DM, environmental
and epigenetic factors appear to be the primary drivers of this
disease (4). Specifically, recent evidence suggests that modern
changes in diet macronutrient composition (i.e., increased intake
of saturated fats and refined sugars) along with disrupted circadian
timing of food intake due to misalignment of circadian light/dark
and fasting/feeding cycles has contributed to the induction of
pancreatic islet failure and an overall increase in the predisposition
to T2DM.

Indeed, pancreatic islets are constantly challenged by alterations
in the timing and macronutrient composition of our diets to
maintain adequate hormonal outputs for proper regulation of
systemic glucose homeostasis. Specifically, the islet is required to
integrate signals related to nutrient and energy status, circadian
timing, and incoming neurohormones – all which can directly tune
epigenetic, transcriptional, and physiological outputs. Glucose, for
instance, directly suppresses (via increased ATP : AMP ratio) the
AMP-activated protein kinase (AMPK) nutrient sensing pathway
which controls transcriptional effectors critical to islet function such
as the hepatocyte nuclear factor 4 alpha (HNF4a) (5, 6). During
fasting and glucose restriction, AMPK-mediated phosphorylation/
suppression of HNF4a prevents ectopic insulin secretion, in part,
by thwarting transcriptional activation of the ATP-sensitive
potassium channel, Kir6.2, required for depolarization-induced
insulin secretion (7). Glucose-mediated activation of the
mammalian target of rapamycin (mTOR) signaling pathway,
meanwhile, initiates epigenetic/transcriptional programs that
accelerate insulin processing and b-cell proliferation to meet the
increased insulin demand (8). Hyperactivation of both mTOR and
AMPK signaling can lead to b-cell failure highlighting the need for
rhythmicnutrient cycles inorder tomaintainb-cell function (9, 10).
Several metabolic intermediates such as acetyl-CoA and NAD+ are
also co-factors required for histone acetylation and deacetylation,
respectively,which in turn controls transcription factor recruitment
and gene transcription (11). NAD+ mediated activation of the
histone deacetylase sirtuin 1 (SIRT1), for example, is required in
islets to transcriptionally inhibit uncoupling protein 2 (UCP2) via
inactivation of the UCP2 promoter (12). UCP2 suppression is
required to maintain GSIS given its role in uncoupling oxidative
glucose metabolism (12), highlighting the tight link between
metabolism, epigenetics, and islet function.

The circadian clock mediates the interaction between diet and
the epigenome both at the organismal level through neurohormonal
control over feeding behavior (13) and at the cellular level through
direct transcriptional/epigenetic modulation (14). Molecularly, the
circadian clock is encoded by a transcriptional-translation feedback
loop (TTFL) which is driven by heterodimeric binding of the clock’s
core transcription factors brain and muscle ARNT-like 1 (BMAL1)
and circadian locomotor output cycles kaput (CLOCK) to
palindromic E-box DNA binding motifs (14). Transcriptionally,
BMAL1:CLOCK directly controls rhythmic patterns in gene
expression of negative clock elements (Per) and cryptochrome
(Cry), secondary transcription factors (i.e., D site of albumin
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promoter), and tissue specific functional effectors (15). Nutritional
status and feeding time can shift transcriptional activation of this
process via nutrient-stimulated signaling (16). For example,
activation of insulin signaling in the liver during feeding has been
shown to reset the circadian clock via mTOR-dependant Period
activation, highlighting how the circadian clock is required to
interpret and respond to incoming nutritional signals (17). Given
this, genetic and environmental (i.e., shift work, inflammation)
disruption of the b-cell circadian clock results in impaired GSIS
and b-cell dysfunction due, in part, to impairments in rhythmic
transcription of insulin secretion/exocytotic machinery (18–22).
Outside of its direct transcriptional role, BMAL1 and CLOCK can
also modify the epigenome both by acting as a pioneer transcription
factor to recruit histone acetyltransferases (i.e., p300, CREB-binding
protein), histone methyltransferases (i.e., mixed lineage leukemia 1),
histone demethylase lysine-specific demethylase 1A (LSD1), and
other transcription factors which cooperatively work together to
promote gene activation (23) and by acting as histone
acetyltransferase itself (CLOCK) (24). Taken together, the
circadian clock acts a biological controller that integrates and
responds to nutritional and behavioral input by precisely
timing transcriptional/epigenetic programs to meet dynamic
cellular demands.

Failed adaptation to this dynamic environment results in islet
dysfunction due to impairments in these fundamental cellular
processes (i.e., circadian rhythms, nutrient metabolism,
mitochondrial function) which control the epigenome,
undoubtably contributing to the development T2DM (25–28).
Elucidating the physiological and molecular events that underly
the islet’s response to various macronutrients and the overall
timing of food intake has guided the chase for targeted T2DM
therapies and novel preventative strategies; however, the
progress has been limited because of the complex gene
regulatory networks underlying these processes (29). The rapid
development and adoption of genomic and epigenomic
techniques are beginning to alter this narrative and are
providing novel mechanistic insights into the regulatory
mechanisms underlying the islet’s adaptation to various
nutritional stimuli (30). As such, this review will examine the
transcriptional and epigenetic mechanisms underlying the b-cell
and islet response to the timing and composition of dietary
macronutrients specifically overviewing current literature
investigating islet adaptation to high-fat (HF) diets, high-sugar
(HS) diets, ketogenic diets, low-protein diets, and time-restricted
feeding/fasting-type diets (Table 1).
ISLET FUNCTIONAL AND EPIGENETIC
RESPONSE TO HIGH-FAT,
HIGH-SUGAR DIETS

The world’s current nutritional environment is dominated by
inexpensive and easily accessible high saturated fat and high
refined sugar/carbohydrate, energy dense, foods (52, 53). Both
excess refined sugars (i.e., sucrose and fructose) and saturated
March 2022 | Volume 13 | Article 842603
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fats have been implicated as causal factors in the development of
obesity and T2DM; however, their relative contribution to
pancreatic islet failure in T2DM is still under investigation
(54–56). Despite differing perspectives on the dietary etiology
of T2DM, long-term ingestion of a diet rich in saturated fatty
acids and/or refined sugars has been clearly demonstrated to lead
to increased visceral adiposity (57, 58), reduced energy
expenditure (59, 60), peripheral insulin resistance (61, 62), and
pancreatic islet dysfunction (39, 63–66). Enumerating the
physiological, molecular, and genetic consequences of these
dietary stressors on peripheral metabolic tissues may allow us
to develop targeted therapies to reverse the effects of diet-induced
metabolic dysfunction. While we will specifically focus on the
islet’s response to HF and HS diets, please refer to Imamura et al.
for an overview of the systemic effects of these diets (67).
Frontiers in Endocrinology | www.frontiersin.org 3
The physiological mechanisms underlying islet adaptation to
HF and HS diets have been thoroughly investigated over the last
40 years. It is important to note that the vast majority of rodent
studies on this topic utilized only male mice partly due to the
attenuation of deleterious metabolic effects of HF diets in female
rodents (68). From rodents to canines and humans, prolonged
HF feeding (typically containing 40-60% fat and ~20%
carbohydrates) leads to a significant increase in basal insulin
secretion (basal hyperinsulinemia) which demonstrates a
positive correlation with saturated fatty acid intake and the
extent of insulin resistance (69–72). Along with basal
hyperinsulinemia, chronic HF diet has been also shown to
reduce glucose-stimulated insulin secretion (GSIS) despite an
absolute increase in insulin release and islet insulin content (31,
63, 64). The functional effects on GSIS with HF diet occur in
TABLE 1 | Overview and comparison of the islet’s physiological, transcriptional, and epigenetic response to dietary interventions.

Dietary
Interventions

Islet Phenotype Transcriptional Adaptations Epigenetic Adaptations References

High fat diet/High
fat + high sugar
diet

1. Increased basal insulin
and glucagon secretion

2. Decreased b-cell and
a-cell function

3. Increased b-cell
proliferation and mass

4. Increased b-cell
apoptosis

1. Rapid increase in cell cycle and proliferation
transcripts

2. Decreased b-cell identity, oxidative metabolism,
insulin secretion, and exocytosis transcripts

3. Increased immaturity (dedifferentiation), glycolytic,
ER stress, and inflammatory transcripts

4. Increased transcriptional entropy
5. Similar transcriptional signature (by PCA) between

HF and HFHS

1. Increased bivalency of Polycomb regulated
promoters and enhancers

2. Increased H3K27ac at loci regulating
glycolytic and proliferative gene networks

3. miRNA and lncRNA mediated increase in
cell cycle and decrease of b-cell identity
transcripts

(31–38)

High sugar diet 1. Increased basal
glucagon secretion

2. Reduced b-cell and a-
cell function

3. Reduced b-cell mass

Unknown Unknown (39–41)

Ketogenic diet 1. No change in basal
insulin secretion

2. No change in b-cell
function

3. No change in b-cell
proliferation, mass, or
apoptosis

1. Decreased cell cycle, ER stress, and inflammatory
transcripts

2. Increased insulin secretion and exocytosis
transcripts

3. Similar transcriptional signature (by PCA) between
ketogenic and control islet

1. miRNA mediated decrease in cell cycle
and increase in mitochondrial metabolism
transcripts

(32, 42, 43)

Low protein/
BCAA diet

1. Reduced basal insulin
secretion

2. No change in b-cell
function

Unknown Unknown (44–46)

Time-restricted
feeding

1. Reduced basal insulin
secretion

2. Increased circadian b-
cell function

3. No change in b-cell
proliferation and mass

1. Increased protein/insulin processing, insulin
secretion, kinase signalling and metabolic transcripts
during feeding

2. Increased lipid metabolism, inflammatory, and
nutrient sensing transcripts during fasting

3. Maintenance of core circadian clock transcripts and
overall circadian rhythm in gene expression

1. Increased H3K27ac during feeding
2. Maintenance of circadian rhythmicity in

chromatin accessibility
3. LSD1 recruitment and H3K4me1

demethylation of feeding activated loci
4. Increased DBP activity at H3K27ac

marked insulin secretory loci

(47, 48)

Alternate day
fasting

1. Reduced basal insulin
secretion

2. Increased b-cell
function

3. Reduced b-cell
apoptosis

1. Reduced p53 and IL-6 activity
2. Increased p62 activity during fasting

Unknown (49, 50)

Prolonged fasting 1. Increased b-cell
proliferation and
regeneration

2. Reduced b-cell
apoptosis

1. Increased b-cell identity and immaturity transcripts Unknown (51)
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parallel to adaptive increases in b-cell mass and b-cell
proliferation potentially accounting for the noted increases in
absolute insulin secretion and content in rodents (73, 74).
Importantly, the observed decline in b-cell function and
increase in b-cell mass with HF diet in rodents is not
accelerated or significantly altered upon the replacement of
carbohydrates with 20% sucrose in a typical HF, high sugar
(HFHS) diet (32). HS diets (10-60% sucrose or fructose, 3-10%
fat) have also been demonstrated to induce b-cell dysfunction
due to impairments in first-phase GSIS (39–41) and increased b-
cell apoptosis (39, 75). Other endocrine cell types of the islet,
particularly the pancreatic a-cell, are also affected by long-term
HF and HS diets as highlighted by the development of basal
hyperglucagonemia and impaired glucose-induced suppression
of glucagon secretion with both dietary interventions (31, 76, 77).
As highlighted below, our understanding of the physiological,
transcriptional, and epigenetic changes of the non b islet cells are
currently lacking and additional studies will be needed to
understand their contribution to the homeostatic response to
dietary interventions associated with T2DM.

The effects of HF and HFHS diets on islet function and mass
are associated with distinct changes in the islet’s transcriptional
programs. At the initial onset of HF diet, the islet transcriptionally
activates compensatory proliferative and protein biosynthesis
pathways to increase overall insulin production and secretion
(31). Indeed, within one-week of HF diet transcripts associated
with cell proliferation are upregulated (e.g. cyclin dependent kinase
1 [Cdk1], cell division cycle associated 2 [Cdca2], cyclin B1 [Ccnb1])
to increase b-cell mass (33). This early transcriptional response
requires both demethylation of E-box binding motifs and
recruitment of MYC proto-oncogene (Myc), and likely other
factors, to promoter/enhancer regions of genes regulating cell
replication. Indeed, the circadian transcription factor BMAL1
which canonically binds to E-box motifs has also been
demonstrated to be required for compensatory b-cell expansion
in response to HF diet (19). Although there is an overall increase
in b-cell number and insulin transcriptional levels with HF diet,
the islets are characterized by an immature transcriptional
signature highlighted by declines in identity factors such as
neuronal differentiation 1 (Neurod1) and forkhead box A2
(Foxa2) along with impairments in glucose oxidation (i.e.,
glucokinase) and mitochondrial function (31). These are
features also observed in failing, dedifferentiating b-cells in
T2DM which results in decoupling of glucose intake from
insulin secretion (25, 78). In fact, Dhawan et al. observed
hypermethylation of the promoters of glucokinase (Gck) and
urocortin 3 (Ucn3) with concurrent hypomethylation of
glycolytic enzymes/dedifferentiation markers hexokinase 1 and 2
(Hk1/2) and lactate dehydrogenase (Ldha) in immature b-cells
mirroring the early transcriptional changes with HF diet (79).

Continued long-term (> 10 weeks) HF-diet feeding eventually
leads to islet transcriptional decompensation and eventual failure
with enrichment for pathways regulating inflammatory and
adaptive immune response, such as CXC chemokine receptor
(CXCR) signaling, which has previously reported as a key feature
of long-term vs short-term HF diet administration in other
Frontiers in Endocrinology | www.frontiersin.org 4
metabolic tissues due, in part, to increased immune cell
infiltration and activation (31, 80). Importantly, activation of
CXCR signaling has recently been demonstrated to facilitate b-
cell functional failure and may contribute to b-cell demise with
long-term HF diet ingestion (81). As previously noted, it is well
documented that female rodents are protected from the long-
term effects of HF feeding (82, 83). Consistent with this notion,
transcriptional analysis of purified control and HF b-cells
revealed that more than 50% of differential transcripts were sex
dependant (82). HF-fed male b-cells were characterized by
suppression of genes critical for oxidative phosphorylation and
enrichment for islet amyloid polypeptide (Iapp), both features of
failing b-cells in humans with T2DM (25, 65, 84). In contrast,
female b-cells exhibited strong sex-specific differential
expression of insulin synthesis and ER-stress related transcripts
including act ivation of the endoplasmic ret iculum
oxidoreductase 1 beta (Ero1b) which is required for proinsulin
processing and is directly correlated with the islet’s insulin
secretory capacity (85). Lastly, the addition of dietary sucrose
to a HF diet was found to not significantly alter the islet’s gene
signature (by principal component analysis) and pathway
activation/suppression relative to a control, low fat low sugar
diet, likely underlying the similarities observed in islet function
and mass between HF and HFHS diets (68). Although there are
also likely to be similarities between the islet’s transcriptome in
response to a HS diet versus HF diet, we currently lack any
insight into this area and is an important avenue for
future investigation.

Bulk islet analysis prevents identification of cell specific
changes, including from b-cells, in response to different islet
stressors such as diet. The recent advent of single cell
technologies (86), endocrine sorting protocols (87), and
fluorescent reporter models (88) have begun to address this
challenge, providing a window into cell-specific transcriptome
within the islet. Single-cell RNA-sequencing of short-term (1-
week) HF fed islets identified 11 subpopulations of b-cells, along
with populations of other islet cell types including a-cells (89).
Amongst the captured b-cells, more than two-thirds (67%) of b-
cells exhibited minimal differences in gene expression compared
to their control counterparts, highlighting that the majority b-
cells are initially ‘agnostic’ to HF diet – a feature lost with bulk
analysis. This relative proportion of this agnostic b-cell group
may contribute to the heterogeneous islet response to HF diet
observed in rodents (90). The remaining b-cell populations
exhibited downregulation of genes important for ER stress
response with activation of inflammatory pathways, while
minor populations exhibited activation of b-cell proliferative
pathways and suppression of immune activation which likely
drives the differential analyses observed in bulk findings (90).
The a-cell transcriptional signature, previously unstudied in the
context of HF feeding, was similarly resistant to transcriptional
changes by HF diet with nearly half of captured a-cells not
responding. Amongst the remaining ‘responders’, a major
subpopulation of HF diet exposed a-cells had an immature
islet transcriptional signature with increased Neurogenin 3
(Ngn3) and reduced Ero1b levels (91, 92). Although the
March 2022 | Volume 13 | Article 842603
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functional significance and origin of this subpopulation remains
unclear, it may precipitate the a-cell dysfunction and
hyperglucagonemia typically observed with HF diet
interventions (31, 76). As such, additional studies are urgently
needed to reveal and target subpopulations of endocrine cell
types driving metabolic dysfunction in response to HF-feeding.

Underlying the transcriptional dynamics associated with HF
and HFHS feeding are highly active cis-regulatory elements (i.e.,
promoters, enhancers, repressors), a dynamic chromatin
landscape, and single nucleotide polymorphisms (SNPs) which
synergize to promote activation and repression of genetic
networks (93). By integrating bulk and single-cel l
transcriptomics of b-cells from mice fed a HF diet with genome-
wide islet chromatin states, investigators are beginning to elucidate
how reprogramming of the epigenome contributes to HF diet-
induced b-cell dysfunction (34). Using this approach, a
subpopulation of dedifferentiated HF diet fed b-cells were
determined to contain significantly more bivalent genetic loci
compared to control b-cells specifically in Polycomb regulated
domains. Bivalent regions are characterized by open regions of
chromatin with both activator (histone H3 lysine 4 trimethylation;
H3K4me3) and repressor (histone H3 lysine 27 trimethylation;
H3K27me3) marks with low transcriptional activity indicated by
the absence of RNA polymerase 2 signal in part due to Polycomb
mediated silencing. This suggests that a population of HF diet-
exposed b-cells have high transcriptional entropy which signals
that a cell-type has lost its functional identity and may underly b-
cell dedifferentiation process commonly associated with b-cell
failure in T2DM (94, 95). Ectopic hyperacetylation of histone
H3 lysine 27 (H3K27ac), a histone modification associated with
active enhancer and promoter regions, within bivalent, Polycomb
repressed loci has been proposed as a causal factor driving b-cell
dedifferentiation (94). Supporting this notion, it was recently
identified that bivalent promoter and enhancer regions of the b-
cell dedifferentiation marker aldehyde dehydrogenase 1 member
a3 (Aldh1a3) was found to be significantly hyperacetylated with
HF feeding and directly correlated to its transcriptional ‘de-
repression’ (35). Globally, HF diet fed islets exhibit several-fold
more hyperacetylated loci compared to hypoacetylated loci. This
may be rooted in impairments to the histone deacetylase SIRT1
which is attenuated with inflammation and lipotoxicity common
to HF feeding (20, 96). Importantly, a majority of the
hyperacetylated regions from the HF islets were in proximal
active enhancer regions (<5kb from transcriptional start site
[TSS]), particularly in promoter regions of glycolytic and
proliferative genes permitting recruitment and activation of
transcription factors and other transcriptional regulators
required for b-cell expansion with HF diet (19, 33, 35, 36, 97,
98). The current evidence has begun to enumerate howHF feeding
directly rewires the islet transcriptional and epigenetic
environment toward an immature, dedifferentiated phenotype;
however, future work is required to establish a direct link between
epigenetic modifications and islet dedifferentiation/failure
in T2DM.

A majority of single nucleotide polymorphisms (SNPs) lie in
cis-regulatory regions and can significantly impact chromatin
Frontiers in Endocrinology | www.frontiersin.org 5
accessibility and architecture (99). In a series of studies, the Attie
group aimed to enumerate expression quantitative trait loci
(eQTL) which drive transcriptional, translational, and
phenotypic response to a HFHS diet (45% fat, 34% sucrose) in
an outbred mouse colony modeling human genetic diversity
(100–102). By simultaneously capturing in vivo and ex vivo
insulin secretory phenotypes, the islet’s transcriptome/
proteome, and the 150,000 SNPs across ~500 outbred mice,
the studies revealed several potential genetic drivers of HFHS
induced b-cell dysfunction. They determined that several insulin
secretory traits (basal insulin secretion, GSIS, insulin content)
were highly driven by genetics involving several SNPs/loci which
correlate with genome wide association study (GWAS) hits
associated with T2DM in humans. For example, Keller et al.
found that there was an eQTL hotspot at ~30 Mb on
chromosome 1 associated with basal insulin secretion, among
other secretory traits (100). This was mapped to protein tyrosine
phosphatase non-receptor type 18 (Ptpn18) which exhibited a
positive correlation between its expression and total insulin
secretion. Genetic inactivation of Ptpn18 prevented HFHS
induced basal hyperinsulinemia leading to improved glucose
tolerance and insulin sensitivity. These findings illustrate how
the underlying genetic landscape directly controls both the
transcriptional and phenotypic response of pancreatic islets
due to diet-induced stress.

There is accumulating evidence that non-coding RNAs
(ncRNA), including micro RNAs (miRNA) and long non-
coding RNAs (lncRNA), play a critical role in the maintenance
of islet function and identity (as reviewed by Eliasson and
Esguerra (103)) through regulation of the islet’s transcriptional
and epigenetic landscape. miRNAs are 20-24 nucleotide, single
stranded RNAs that can modify gene expression through direct
silencing and interference with post-transcriptional RNA
molecules (104). Indeed, differential activation of the miRNA-
ome has been demonstrated to be a contributing factor in the
islet’s response to HF diet (37, 105). miR-802, the top-most
upregulated miRNAs with HF diet, for instance was found to
repress the b-cell identity transcription factor neuronal
differentiation 1 (Neurod1) and was postulated to play a key
role mediating HF-induced b-cell dedifferentiation (105). Several
miRNAs have also been implicated as causal factors driving b-
cell expansion with HF diet (37, 106–108). For example, Jacovetti
et al. found that suppression of miR-338-3p is required for
activation of survivin (Birc5) which is necessary for b-cell
expansion due to its multifaceted role as an inhibitor of cell
death and positive regulator of cell division (109). Similar to
miRNAs, lncRNAs (>200 nucleotides) also have been found to
modulate b-cell function and survival through control of
epigenetic, transcription and post-transcriptional landscape
(110). Mirroring the role of miRNAs in b-cell dedifferentiation
due to HF diet, PDX1 Associated lncRNA (PLUTO), which is
required for Pdx1 activation (111) and 1810019D21Rik (ROIT)
which is required for NK6 Homeobox 1 (Nkx6.1) transcriptional
activation were identified as two of the top-most downregulated
lncRNAs with HF feeding (38). LncRNAs such as XLOC_010971
(b long intergenic noncoding RNA 2, blinc2) and XLOC_013310
March 2022 | Volume 13 | Article 842603
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(b long intergenic noncoding RNA 3, blinc3), have also been
identified as potential mediators of b-cell decompensation with
HF feeding. Respective gain- and loss-of-function studies of
blinc2 and blinc3 highlighted previously unrecognized role of
these lncRNAs in the negative regulation of b-cell survival via
activation of nuclear factor-kB’s (NF-kB) nuclear translocation,
a key step in b-cell apoptosis due to diabetogenic stress (112).
This suggests that HF-induced changes to lncRNAs expression
may contribute to b-cell demise and decompensation with long-
term HF feeding. In summary, the islet’s lncRNA landscape is
significantly perturbed with diet-induced metabolic dysfunction
which can potentially modulate adaptation in both pancreatic b-
cell function and mass.
ISLET RESPONSE TO THE
LOW-CARBOHYDRATE, HIGH-FAT
KETOGENIC DIET

The ketogenic diet, consisting of ~70-80% fat, 1-10%
carbohydrates and 10-20% protein, has recently re-emerged as
a promising dietary therapy for T2DM nearly 100 years since it
was first coined by Mayo Clinic physician Dr. Russel Wilder in
1921 as a therapy for epilepsy and later diabetes (113, 114).
Modern clinical studies for the most part have reproduced the
metabolic benefits of inducing a nutritional state of ketosis by
demonstrating that a ketogenic diet effectively reduces body
weight, lowers glycemia, and attenuates hyperinsulinemia in
obese, T2DM subjects (115–117). For instance, Michalczyk
et al. found that hyperinsulinemic, obese women who followed
a ketogenic diet for 12-weeks exhibited a 54% reduction in
fasting insulin with a 20% lowering of fasting glucose relative
to baseline (117). Spurred by this clinical phenotype, several
groups have investigated the islet’s physiological and genetic
adaptation to a ketogenic diet in both basal and diabetic states
(32, 118–121). Compared to a control low-fat, high-carbohydrate
diet, the ketogenic diet induced glucose intolerance due to
prevailing hypoinsulinemia and significantly reduced b-cell
(and a-cell) mass (118, 119, 122). When compared to a
traditional HF or HFHS diet; however, Her et al. demonstrated
that 12-weeks of ketogenic diet attenuated hyperinsulinemia,
enhanced b-cell secretory function, and in turn restored
euglycemia (32). Similar effects have been observed for other
models of diabetes including the leptin deficient ob/ob model
(120), the Akita model of impaired insulin folding (121), and
even the type 1 diabetes, streptozotocin (STZ) model (123).

Based on the noted effects of a ketogenic diet on islet function
and mass, Her et al. also compared the islet’s transcriptional
signature in response to a ketogenic diet relative to HF and
HFHS diets (32). Using PCA analysis, the transcriptional
signature of ketogenic islets was found to be more closely
related to control islets compared to HF or HFHS islets with
only 15% of genes were commonly regulated between ketogenic
and HF/HFHS diets. Moreover, gene-set enrichment analysis
revealed that ketogenic feeding significantly attenuated
transcripts associated with cell division and activated genes
Frontiers in Endocrinology | www.frontiersin.org 6
regulating insulin secretion, relative to HF and HFHS diet
islets mirroring the phenotypic features of the ketogenic islet.
Ketogenic islets were also characterized by significant reduction
in the expression of genes critical for immune activation and ER
stress relative to control, low-fat diet highlighting its potential
role in protecting the islet from chronic inflammation and the
unfolded protein response common to obesity and T2DM (26,
124). In line with these findings, Tattikota et al. found that 4-5
weeks of ketogenic diet attenuated b-cell proliferation in ob/ob
islets, in part, due to restoration (20-fold) of miR-184 expression,
which is a potent inhibitor of cellular proliferation by disrupting
Myc signaling (42, 125). miRNAs have also been suggested to
play a key role in enhanced mitochondrial metabolism with
ketogenic diet, a key step in GSIS which is dysfunctional with HF
diet (43, 126). Specifically, miR-125b was shown to be
significantly downregulated with ketogenic diet and was
demonstrated to directly target mitochondrial fission process 1
(Mtfp1), among other mitochondrial and lysosomal transcripts.
Inhibition of Mtfp1 has been shown to result in mitochondrial
fragmentation, a phenotypic trait of the T2DM islet (127), and
therefore suppression of miR-125b may contribute to the
maintenance of glucose oxidation and insulin secretion
observed with ketogenic diets (128). Despite limited insights
into the epigenetic effects of ketogenic diets on the islet, these
initial studies have begun to provide potential mechanistic
insights underlying the therapeutic benefits of ketogenic diet
in T2DM.
ISLET RESPONSE TO PROTEIN- AND
BRANCHED-CHAIN AMINO ACID (BCAA)
RESTRICTED DIETS

Amino acids play a multifactorial role in maintenance of islet
survival and function by acting as building blocks for islet
machinery, serving as signaling molecules for nutrient sensing
pathways, and by directly inducing nutrient-stimulated insulin
and glucagon secretion (129). As such, dietary protein and amino
acid intake can tremendously impact both the function and
development of the endocrine pancreas, depending on the
cellular need for amino acids. Specifically, protein restriction
during gestation and maturation can have long-term detrimental
effects on the islet (130–132). In contrast with the need for
dietary protein in normal b-cell development and maturation, an
over-supply of protein and amino acids, particularly branched-
chain amino acids (BCAA) leucine, isoleucine, and valine, is
associated with the development of T2DM (133). In turn, diets
with reduced BCAA content have been demonstrated to restore
euglycemia mainly through improvements in insulin sensitivity
in both obese/diabetic rodents and humans (44, 45). This is
accompanied by a reduction in b-cell insulin hypersecretion with
Karusheva et al. reporting a 30% decrease in post-prandial
insulin secretion in T2DM subjects following 4-weeks of a diet
lacking BCAA (134). Consistently, it was found that rodents fed a
BCAA and amino acid (AA) low diet for 3-weeks had reduced
overall insulin secretion due to a decrease in b-cell metabolic flux
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and corresponding increased glucose-stimulated Ca2+ oscillatory
efficiency (44). More recently, Cummings et al. extended this
work and observed a ~2-fold decrease in plasma insulin 5-weeks
following a switch from a HFHS diet to either a BCAA or AA
deficient diet which was associated with reduced b-cell
mitochondrial membrane potential (a marker of basal
hyperinsulinemia) (45, 46). Although the islet’s genetic and
epigenetic adaptations to a BCAA/AA low diet remain
largely unexplored, these phenotypic studies suggest the
need to understand the molecular mechanisms underlying
improvements in islet function associated with BCAA/AA-
restricted diets.
ISLET RESPONSE TO TIME-DEPENDENT
REGULATION OF FOOD INTAKE

Periodic fasting and, in turn, fasting mimicking diets have gained
rapid popularity as potential therapeutic strategies for a wide
array of metabolic and degenerative diseases. In contrast with
absolute caloric restriction (CR) which limits daily nutritional
energy by as much as 50% without altering meal timing or
frequency, periodic fasting-type diets consists of extended
periods ranging from 12 h to weeks without any caloric intake
with subsequent ‘caloric-blind’ feeding periods lasting as little as
a few hours (135). Although caloric restriction has been
demonstrated as a therapeutically beneficial approach to
restore islet function in both diabetic mice and humans (136–
138), adherence to prolonged periods of caloric restriction has
been challenging in humans (139). In support of fasting-type
diets, Gil and Panda demonstrated that erratic and extended
feeding patterns in humans significantly contribute to obesity
which when normalized with prolonged fasting resulted in
reduced body weight and improved health (140). Fasting can
be divided into two distinct subtypes: intermittent fasting (IF)
and periodic fasting (PF). IF is defined as 12 h to 2 days of fasting
followed by ad libitum feeding periods that last between a few
hours and 5 days. As such, IF is comprised of several fasting
regimens such as alternative day fasting (ADF) (24 h fasting: 24 h
feeding), 5:2 diet (2 days fasting: 5 days feeding), and time-
restricted feeding (tRF) (12 to 18 h fasting: 6 to 12 h feeding).
Meanwhile, PF is defined by 2 or more days of fasting, lasting up
to several weeks, with long ad libitum refeeding intervals
spanning at least 1-week. PF also encompasses fasting
mimicking diets (FMD) which are made up of ~10-50% typical
calories and consist of high fat (>50%) with low protein (<10%)
and carbohydrate (<40%) content. In line with isocaloric PF,
FMD last 2 or more days and are interspersed with at least 7 days
of ad libitum feeding. The therapeutic interest in IF and PF is not
an entirely new concept with Otto Folin and W. Denis
demonstrating in 1915 that prolonged fasting ameliorated
obesity and metabolic syndrome (141). Although recent studies
have re-emphasized the therapeutic benefits of fasting, the
molecular mechanisms underlying beneficial effects of these
diets on the islet are only starting to be elucidated more than
100 years later.
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While IF and PF have been clearly shown to ameliorate
metabolic dysfunction across several tissues (i.e., liver, adipose,
brain), we will focus specifically on the pancreatic islet’s
physiological and, in turn, epigenetic response to fasting. For a
comprehensive overview of the effects of IF and PF on whole
organism physiology, please refer to Longo et al. (142). Prolonged
fasting-type diets have been demonstrated to enhance b-cell
health, primarily by limiting chronic insulin demand during
metabolic stress. The benefits of acutely reducing insulin
secretion on b-cell health and function for T2DM gained
prominence in the 1970s when Greenwood, Mahler, and Hales
suggested that b-cell overstimulation leads to impaired GSIS when
they found that diazoxide treatment, a potent inhibitor of insulin
secretion, restored b-cell function in T2DM subjects (143). This
was followed by a series of studies demonstrating that “b-cell rest”
or acute inhibition of insulin secretion, could restore b-cell
function (first phase insulin secretion), insulin/Ca2+ pulsatility,
and insulin content in obesity and T2DM (144–148). Chronic b-
cell stimulation common to high fat feeding/obesity (149) and
circadian disruption (21, 22) result in both b-cell dysfunction and
apoptosis which have been shown to be reversed by ADF (49, 150),
tRF (47, 151, 152), and a FMD (153). Specifically, a 12-week ADF
regimen protected mice from HF diet induced b-cell dysfunction
and failure (49), which was associated with enhanced GSIS,
restored islet insulin content, and reduced apoptosis contingent
on ADF activation of the autophagy-lysosome pathway. Although
fewer studies have examined the physiological effects of PF on islet
function, Kolakowski et al. observed in 1970 that 7-day PF
followed by 3-days of tRF resulted in a 2.5-times increase in
insulin secretory capacity (154). PF via FMD has also been
demonstrated to modulate functional b-cell mass in insulin-
deficient and HF diet models of diabetes (51, 153); however, the
ability to translate these findings are confounded by the limited
replicative capacity of human b-cells (155). Taken together, the
physiological characterization of fasting-type diets has
demonstrated their ability to promote b-cell rest, restore islet
function, and potentially regenerate b-cell mass, highlighting the
importance of cyclic fasting-feeding to maintain b-cell health.

Underlying the noted physiological effects of IF and PF on
pancreatic islet function and survival in T2DM are dramatic
changes to the islet’s transcriptional and epigenetic identity.
Under control conditions, islets isolated from C57B/6J mice
following 6-days of tRF exhibit clear transcriptional and
epigenetic differences during periods of feeding versus fasting
(48). Specifically, fasted islets exhibit enrichment for genes
associated with lipid/fatty acid/carbohydrate metabolism and
nutrient sensing (Forkhead box O [FoxO] and mTOR
signaling). Indeed, FoxO signaling is activated in the b-cell upon
glucose and nutrient restriction and is required for maintaining
diurnal metabolic flexibility between carbohydrates and lipids
(156, 157). In contrast, fed islets are significantly enriched for
genes associated with protein processing/export, kinase signaling,
and amino acid metabolism, all which are required for GSIS. This
is consistent with circadian analysis of the mouse islet’s
transcriptome which similarly found significant enrichment for
protein processing/export, insulin secretion and amino acid
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metabolism during the animals active, feeding period and
corresponding activation of nutrient sensing (mTOR),
inflammatory signaling (tumor necrosis factor, cytokine
receptor, nuclear factor kappa B [NFkB]) and fatty acid
metabolism during inactive, fasting periods suggesting that
rhythmic feeding/fasting cycles drive the islet’s transcriptional
identity (158). In line with the noted changes in gene
expression, Wortham et al. (48) found that nearly half of all
active enhancers and promoters (~19,000 by H3K27ac) were
differentially acetylated (active) during fasting vs. feeding, with
80% hyperacetylated with feeding. Although not directly
compared, the hyperacetylation exhibited in the HF diet islet
may be partially driven by disruption in the circadian feed-fast
cycle which occur with HF feeding (159). The leptin receptor
deficiency model of T2DM (Leprdb/db), which also exhibits
impaired circadian food intake rhythms (160), similarly exhibits
increased H3K27ac and histone H3 lysine 4 monomethylation
(H3K4me1; activating chromatin mark which co-occurs with
H3K27ac) signal in regions associated with feeding but not in
regions associated with fasting. Importantly, regions
hyperacetylated are associated with LSD1 binding where it acts as
a brake on transcription by demethylating H3K4, likely
contributing to b-cell rest (161). Consistently, b-cell specific LSD1
deletion physiologically and epigenetically phenocopies theHFdiet
state: basal hyperinsulinemia, impaired GSIS and activation of a
‘stressed/immature’ gene signature (i.e., hexokinase1 [Hk1], 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 [Pfkfb3], jun
proto-oncogene [Jun], fos proto-oncogene [Fos], nuclear factor,
interleukin 3 regulated [Nfil3]). Future studies will likely be
needed to unravel whether mistimed feeding, nutrient
overabundance, or both are factors driving hyperacetylation and
b-cell dedifferentiation with HF diet and T2DM.

Circadian disruption and shift work are environmental
stressors characteristic of impaired feeding/fasting rhythms and
have been directly linked to the development of islet failure in
T2DM (22, 162). Pancreatic islets isolated from circadian
disrupted (via constant light) mice exhibit complete ablation of
circadian rhythms in both gene expression and chromatin
accessibility (47). Providing further evidence that rhythmic
feeding/fasting cycles drive islet transcription, tRF was shown
to rescue transcriptional and epigenetic (chromatin accessibility)
rhythms, despite global circadian disruption, of genes/loci
annotated to pathways regulating circadian rhythms along with
b-cell function (i.e., insulin secretion and exocytosis) and rest
pathways (i.e., FoxO signaling, fatty acid metabolism) active
during feeding and fasting, respectively. The interaction of
nutrient sensing pathways with the circadian clock has been
shown to be a key regulator underlying feeding/fasting driven
rhythms in transcription and chromatin accessibility. Under
circadian disruption conditions, where feeding cycles are
disrupted, the circadian transcription factor D site of albumin
promoter (Dbp) is highly suppressed (~20-fold at peak). During
extended fasting periods with tRF, Dbp is activated by FoxO1
(163), and likely other factors (164), where it begins to bind
active promoter and enhancer regions (~75% overlap with
H3K27ac) of genes associated with insulin processing and
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secretion to prepare the b-cell (i.e., b-cell rest) for subsequent
feeding periods. Histone modifying factors such as LSD1 likely
also play a role in this process and have been shown to be
required for circadian transcription factor activation in the liver
due to diurnal differences in nutrient availability and could play a
similar role in the islet; however, future studies will be required to
establish this direct link (165).

Fasting type diets can also directly modulate transcriptional
mechanisms underlying b-cell proliferation and survival. Indeed,
ADF impeded HF diet induced b-cell apoptosis due in part to
suppression of interleukin-6 and tumor protein p53, two key
regulators of DNA damage response, and activation of
autophagic/lysosomal flux (49, 50). Given that PF has been found
to be preserve b-cell mass in several models of b-cell loss, it seems
likely that extended fasting protects the b-cell from p53-mediated
DNA damage associated with diabetogenic stress (51, 166).
Subsequent refeeding following a prolonged fasting period results
in a mixed islet transcriptional phenotype: upregulation of b-cell
identity genes such as MAF bZIP transcription factor A (Mafa),
pancreatic and duodenal homeobox 1 (Pdx1), insulin 2 (Ins2), and
glucose transporter 2 (Glut2) with a parallel induction of
pluripotency/immaturity markers Nanog homeobox (Nanog),
DNA methyltransferase 3 beta (Dnmt3b), SRY-Box transcription
factor 17 (Sox17), Neurogenin 3 (Ngn3) andGATA-binding factor 6
(Gata6) (51).Chronic activationof thesepluripotencyandsecretory
factors due to constant feeding, common to both obesity and
circadian disruption (22, 140), may play a role in precipitating b-
cell dedifferentiation and dysfunction in T2DM. Together, this
provides further evidence supporting the importance of extended
fasting periods to maintain b-cell health; however, future
transcriptional and epigenetic studies are still needed to fully
characterize islet cell specific changes in response to modified
feeding/fasting cycles which may underly b-cell failure in T2DM.
CONCLUSION

The interaction between the pancreatic islet and dietary inputs
has long been appreciated as a key piece in the etiology of islet
failure in T2DM. More recent studies suggest that the temporal
regulation of food intake is another critical regulator of islet
function, and when perturbed, contributes to the development of
T2DM. Indeed, lifestyle-driven changes in diet composition and
daily patterns of food intake appear to be primary environmental
factors contributing to ever-increasing rise in the incidence of the
metabolic diseases worldwide. This review outlined the current
literature highlighting the complexity in gene regulatory
networks dictating the islet’s response to changes in the
composition of dietary macronutrients, specifically proteins,
carbohydrates, and fatty acids, and the timing of their
consumption (i.e., intermittent fasting, time-restricted feeding)
throughout life. The current evidence underlying successful
versus failed islet adaptation to dietary interventions points to
the importance of the minimalist motto: “less is more”. Less basal
insulin secretion, less proliferation, less transcriptional entropy,
less bivalent promoters and enhancers, less acetylation of H3K27,
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and less feeding time are all common threads associated with
maintaining robust meal-stimulated insulin secretion and
mature beta cell phenotype and genotype. A diet and lifestyle
that allows the b-cell and likely other islet cell types time to “rest
and repair” mediated by proper alignment of fasting/feeding
cycles with internal circadian clocks appears to be a critical factor
in preventing b-cell hyperactivation and eventual demise. With
the ongoing development of additional low-input and single-cell
epigenetic techniques (i.e., CUT&RUN, SHARE-seq) (167, 168)
and further adoption of current technologies (i.e., RNA-seq,
ATAC-seq, ChIP-seq), future studies will likely provide
additional insights into causal transcriptional and epigenetic
mechanisms underlying how each islet cell type responds
to the timing and composition of their diet, their contribution
to T2DM development, and their potential as a therapy to
ameliorate islet dysfunction in T2DM.
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