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Abstract

Biomedical association studies are increasingly done using clinical concepts, and in particular 

diagnostic codes from clinical data repositories as phenotypes. Clinical concepts can be 

represented in a meaningful, vector space using word embedding models. These embeddings allow 

for comparison between clinical concepts or for straightforward input to machine learning models. 

Using traditional approaches, good representations require high dimensionality, making 

downstream tasks such as visualization more difficult. We applied Poincaré embeddings in a 2-

dimensional hyperbolic space to a large-scale administrative claims database and show 

performance comparable to 100-dimensional embeddings in a euclidean space. We then examine 

disease relationships under different disease contexts to better understand potential phenotypes.
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1. Introduction

Word embeddings1 are a popular way to represent natural language and have seen wide use 

in machine learning applied to document classification,?,? machine translation,?,? sentiment 

analysis,2 and question answering.3,4 Clinical concept embeddings extend this approach to 

model healthcare events,5–8 and have been particularly useful modeling longitudinal clinical 

data.?,9–11 Traditional approaches such as word2vec1 and GloVe12 embed entities within a 

Euclidean space.

However, recent work by Nickel and Kiela on Poincaré embeddings13 claims to provide 

better embedding representations of hierarchically structured data using a hyperbolic 

embedding space within the Poincaré ball. This n-dimensional hyperbolic space has a 

significantly higher capacity than the Euclidean space, which allows it to effectively embed 

structured trees while preserving distance relationships.14–17 Moreover, this space allows for 

embedding of hierarchical, tree-like structures, as Nickel and Kiela13 observed high fidelity 

embeddings of ontologies. This has an obvious relevance to medical concepts, given many 
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have an inherent tree structure (e.g. disease nosology) that should be recapitulated in the 

embedding space.

When clinicians consider a disease, they examine the disease in the context of the patient’s 

overall environment.18 For example, renal failure caused by poor blood flow to the kidneys 

as a result of long-term hypertension would be considered differently from renal failure as 

the result of a specific infection or immune system disorder like Lupus.19 Accurate and 

precise phenotyping is critical to modern clinical studies using the electronic healthcare 

record (EHR) and other ‘-omic’ associations studies (e.g. genomic, transcriptomic, 

metabolomic). Misclassified phenotypes have a severe effect on tests of association and 

require increased sample sizes to maintain constant power.20–22 Increases in genetic testing 

and the availability of clinical data repositories (Electronic Health Record, Administrative 

Claims, large-scale Cohort) have enabled PheWAS association studies to be performed 

without the need to target and recruit specific populations for each individual study.23–25 It is 

important to develop methods that enable researchers to consider a specific disease or 

phenotype in the context of the overall patient and environment.

We applied Poincaré embeddings to a large-scale administrative claims database to examine 

how the relationships of different conditions changed in distinct contexts. Our hypothesis 

was that the increased representational capacity offered by Poincaré embeddings and their 

ability to naturally model hierarchical data would result in improved embeddings for clinical 

concepts. We first demonstrate this by showing they can accurately reconstruct the ICD-9 

hierarchy on synthetic data. Next we show that they find an improved representation on real 

data relative to traditional embedding approaches at the same number of dimensions. We 

conclude with a disease-specific embedding hierarchy within an obese population. Our 

results could provide a better representation of disease and allow for more accurate machine 

learning models as well as the fine-tuning of targeted phenotypes for association studies.

2. Methods

To examine the effectiveness of Poincaré embeddings for clinical concept embedding, we: 

1.) trained Poincaré embeddings on the ICD-9 hierarchy as validation of parent-child tuples, 

2a.) selected and preprocessed chronological member sequences of each diagnosis 

experienced for a specified cohort (e.g. obese vs. no metabolic disorders diagnosed), 2b.) 

Learned distributed vector representations for the real data by training a Poincaré embedding 

model in a two-dimensional space. 3.) Visualized the Poincaré embeddings in a two 

dimensional space. 4a.) Constructed a distance matrix within the hyperbolic space. 4b.) 

Analyzed the distance matrix to measure how effectively the embeddings represent clinical 

groupings (e.g. ICD9 Chapter, Sub-chapter and major codes).

2.1. Source Code

The source code used for the analyses in this work are freely available on Github (https://

github.com/brettbj/poincareembeddings) under a permissive open source license. The 

optimized C++ Poincare Embedding implementation by Tatsuya Shirakawa is available 

under the MIT license (https://github.com/TatsuyaShirakawa/poincare-embedding).
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2.2. Data Source

These analyses were performed using de-identified insurance administration data including 

diagnostic billing codes from January 1, 2008 until February 29, 2016 for more than 63 

million members. The database does not include any socioeconomic, race or ethnicity data. 

The Institutional Review Board at Harvard Medical School waived the requirement for 

approval as it deemed analyses of the de-identified dataset to be non-human subjects 

research.

The data to rebuild the reference ICD9 hierarchy tree is available in the GitHub repository 

(https:/github.com/brettbj/poincareembeddings/data/icd9.tsv).

2.3. Data Selection and Preprocessing

2.3.1. Reference ICD9 Example—We first benchmarked against a known hierarchy, 

the ICD9 2015-Clinical Modification code ontology. To do this we extracted the ICD9 codes 

into four levels: 1.) Chapters (e.g. codes 390–459: Diseases of the circulatory system), 2.) 

Sub-chapters (e.g. codes 401–405: Hypertensive disease), 3.) Major Codes (e.g. code 401: 

Essential hypertension), and 4.) Detail level codes (e.g. code 401.0: Hypertension, 

malignant). We assigned relationships between each detail level code and the chapter, sub-

chapter and major code it belonged to, each major code to the appropriate sub-chapter and 

chapter, and each sub-chapter to the chapter it belonged to.

2.3.2. Real Member Analyses—We performed cohort analyses by defining different 

study groups. First we included ten million randomly selected members (without 

replacement) who were enrolled for at least two years from the database of 63 million 

members. Next we separated two groups based on obesity diagnoses: 1.) ten million 

members who do not have a diagnosis for metabolic disorders with ICD9 codes between 270 

and 279 2.) 3.38 million members who were diagnosed with obesity ICD9 codes (278.00 

and 278.01).

Poincaré embeddings learn distributed vector representations from hierarchical data (e.g. a 

directed graph or tree). The input to the model is a list of tuples of the form < A, B >, which 

indicates that A and B have some form of unspecified relationship (e.g. parent of, co-occurs 
with, etc). In our case, the list of relationships specify that two diagnoses occurred 

sequentially, within a one year period, and had to occur more than ten total times and in 

more than 2% of all diagnoses.

2.4. Poincaré Embeddings

The key way in which Poincaré embeddings differ from traditional approaches is the 

distance metric which is used to compare the embeddings for two concepts. This distance 

metric is given in equation 1:

dist x1, y1 , x2, y2 = arccosh(1 +
x2 − x1

2 + y2 − y1
2

2y1y2
) (1)
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Equation 1 shows the distance between two points in the Poincaré ball hyperbolic space.

Training a Poincaré embedding model occurs by maximizing the distance (Equation 1) 

between unconnected nodes or diagnoses while minimizing the distance between highly 

connected nodes. This is done using a stochastic Riemannian optimization method, 

specifically stochastic gradient descent on riemmanian manifolds as seen in Bonnabel.15

2.5. Processing and Evaluating Embeddings

Once each concept is embedded into a two dimensional space, it is possible to calculate the 

pair-wise distance between all concepts using Equation 1. To assess how well the 

embeddings captured the ICD hierarchy on real data, we compared the average distances 

between concepts in the same ICD9 major code, sub-chapter and chapter against the 

distances of all other concepts. We then compared the capacity of a two-dimensional 

Poincairé space with varying size euclidean spaces. To do this, we repeated distance 

calculations with the clinical concept embeddings trained in a euclidean space on more than 

63 million members in 2, 10 and 100 dimensions from Beam et al.5 To normalize the 

distance comparisons between hyperbolic and euclidean spaces, we compared the ratio of 

distances between ICD codes within the same major, sub-chapter and chapter and the other 

ICD codes outside of the major, sub-chapter, and chapter.

3. Results

3.1. ICD9 Hierarchy Evaluation

To evaluate the method with a known ground truth, we embedded the ICD9 hierarchy and 

then reconstructed it as a tree. Because there are no counts included, stochasticity for all 

relationships at the same level (Chapter, Sub-chapter, Major, Detail) was expected. Figure 1 

shows the reconstructed tree of the predefined ICD9 tree. This served as evidence that 

Poincairé embeddings can effectively embed a clean ICD9 hierarchy.

3.2. Poincaré Embeddings on 10 Million Members

We then trained Poincaré embeddings in a two-dimensional space for 10 million randomly 

selected members (Table 1).

Figure 2A shows the ICD9 concepts (labeled by chapter) embedded in a two-dimensional 

space. While there were over 223 million total diagnoses, the majority of concepts had less 

than 100 distinct relations (Figure 2B) and the number of distinct relations was correlated 

with the distance from the origin (R2 = 0.61) (Figure 2C).

Figure 2 shows that the ICD hierarchy is correctly reconstructed using by the Poincaré 

embeddings in two dimensions. The distances between ICD codes in the same major, 

subchapter and chapter are smaller than the distances across different major codes, sub-

chapters and chapters (Table 2). This shows that Poincaré embeddings are representing the 

data in a way that has similarities with the human-defined ICD9 hierarchy.
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3.3. Comparison with Euclidean Embeddings

To evaluate Poincaré embeddings against traditional euclidean embeddings, we compared 

the 2-dimensional Poincaré embeddings with 2, 10 and 100 dimension embeddings. The 

Poincaré embeddings were trained on 10 million randomly selected members. Running the 

preprocessing pipeline required 42 minutes on 16 cores but training the embeddings required 

only 49 seconds on 16 cores. All euclidean embeddings were trained on more than 63 

million members. Table 3 shows the ratios of the mean distances of ICD codes in the same 

category over ICD codes in all other categories. We show the ratio to allow for comparison 

between Poincaré and Euclidean distances. As the dimensionality of the euclidean 

embeddings increased, the ratio of distance in-group vs. out of group decreased, indicating 

that the higher capacity enabled a better representation. The 2-dimensional Poincaré 

embeddings compared most closely to the 100-dimensional euclidean embeddings.

3.4. Cohort Specific Embeddings

Finally, we trained two separate Poincaré embeddings on patients with either: 1.) no prior 

diagnoses from the sub-chapter of metabolic disorders between ICD code 270 and 279 

(N=10,000,000) and 2.) members diagnosed with obesity (ICD codes 278.00, 278.01, 

N=3,377,267) to first visualize the differences in the context of type 2 diabetes mellitus 

(Figure 3). Because the Poincaré embedding model was trained in 2-dimensions this was 

done without any further dimensionality reduction step.

We then examined the diseases in the closest quartile of either cohort to determine which 

showed the greatest movement from type 2 diabetes (Table 4). Of note, 22 of the top 50 were 

pain related and there are numerous links in the literature between both obesity (particularly 

joint and fibromyalgia26,27) and type 2 diabetes (particularly neuropathy28) with pain.

4. Discussion and Conclusion

Machine learning has great potential to improve the delivery of healthcare to patients, but 

many methodological challenges remain before this potential can be realized.29,30 In this 

work, we showed the increased capacity and hierarchical positioning of Poincaré embedding 

models can be useful to learn representations of disease diagnosis codes. Two-dimensional 

Poincaré embeddings were on par with 100-dimension euclidean embeddings when 

compared to the human-defined ICD hierarchy. Importantly the extra capacity of Poincaré 

embeddings may directly allow for visualization in a two-dimensional space, while 

traditional euclidean embedding techniques require an additional dimensionality reduction 

step (PCA, t-SNE, UMAP). Many of these techniques are non-deterministic and may not 

preserve global structure.

An important limitation of our current method is that the pre-processing step constructs 

binary relations between concepts whenever they occur with a specified threshold (more 

than 10 occurrences and 2% of cases). It is likely that additional information could be 

learned by encoding the actual frequency between concepts. In addition, it could be useful to 

evaluate additional distance matrices that have worked well for hierarchical problems in 

other domains, such as pg-gram and Edit distance.31
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There are significant opportunities to expand on and apply these techniques to biomedical 

domains in order to examine and consider phenotypic context when performing associations. 

We are especially interested in the ability to contextualize a phenotype for association 

studies by considering the way ICD code relationships change given comorbidities. For 

example, start by measuring the way Poincaré embeddings change given a comorbidity (e.g. 

type 2 diabetes given metabolic disorder). If there are significant changes, it may be helpful 

to design association studies to separate endpoints, for example diabetes with no prior 

metabolic disorders and diabetes with prior metabolic disorders. In this case, the disease 

etiology may be distinct, and therefore we would expect the potential for different genetic 

drivers.
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Fig. 1. 
ICD Example All codes
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Fig. 2. 
A.) ICD9 Diagnoses Codes Embedded in a two-dimensional space. B.) Examination of the 

number of distinct relations for each ICD9 code. C.) Examination of the Correlation between 

the number of distinct relations and hyperbolic distance.

Beaulieu-Jones et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A.) Poincaré Embeddings trained on 10M members with no metabolic disorder diagnoses 

(centered on type 2 diabetes). B.) Poincaré Embeddings trained on 3.38M members 

diagnosed with obesity (centered on type 2 diabetes).
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Table 1

Member Demographics of the Training Data

Demographics

Male 40.4%

Female 59.6%

Age (2016) 48.66 (22.68)

ICD9 Diagnoses 22.38 (28.70)
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Table 2.

Hyperbolic Distance comparison within Major, Sub-chapter and Chapter

Category In Category Outside of Category

Major 3.87 (1.71) 5.89 (1.92)

Sub-chapter 4.47 (1.73) 5.89 (1.92)

Chapter 4.91 (1.81) 5.91 (1.94)

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Beaulieu-Jones et al. Page 13

Table 3

Distance (ratio) comparison between Poincaré (2-dimensional) and Euclidean (2, 10, & 100-dimensional) 

within Major, Sub-chapter and Chapter.

Category Poincaire (2d) Euclidean (2d) Euclidean (10d) Euclidean (100d)

Major 0.657 0.758 0.668 0.649

Sub-chapter 0.759 0.863 0.794 0.774

Chapter 0.831 0.894 0.856 0.830
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Table 4.

ICD9 Codes with the largest changes in distance from Type 2 Diabetes (250.00).

ICD Description

1 553.21 Incisional hernia

2 786.09 Other Respiratory Abnormalities

3 599.0 Urinary tract infection

4 285.9 Anemia

5 571 Chronic Liver Disease

6 583.6 Nephritis

7 724.5 Backache, unspecified

8 710.5 Eosinophilia myalgia syndrome

9 796.2 Elevated blood pressure w/o hypertension

10 719.46 Pain in Leg
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