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Abstract: Wilson Disease is a rare autosomal recessive liver disorder in humans. Although its clinical
presentation and age of onset are highly variable, hallmarks include signs of liver disease, neurological
features and so-called Kayser-Fleischer rings in the eyes of the patient. Hepatic copper accumulation
leads to liver disease and eventually to liver cirrhosis. Treatment options include life-long copper
chelation therapy and/or decrease in copper intake. Eventually liver transplantations are indicated.
Although clinical outcome of liver transplantations is favorable, the lack of suitable donor livers
hampers large numbers of transplantations. As an alternative, cell therapies with hepatocytes or liver
stem cells are currently under investigation. Stem cell biology in relation to pets is in its infancy. Due to
the specific population structure of dogs, canine copper toxicosis is frequently encountered in various
dog breeds. Since the histology and clinical presentation resemble Wilson Disease, we combined
genetics, gene-editing, and matrices-based stem cell cultures to develop a translational preclinical
transplantation model for inherited copper toxicosis in dogs. Here we describe the roadmap followed,
starting from the discovery of a causative copper toxicosis mutation in a specific dog breed and
culminating in transplantation of genetically-engineered autologous liver stem cells.
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1. Introduction

The trace element copper is indispensable for various biochemical processes [1]. At the same time,
the transition element copper (reduced as Cu+ and oxidized as Cu2+) is involved in chemical reactions
leading to the production of reactive oxygen species. Therefore, its intracellular free concentrations need
to be regulated within very narrow boundaries [2]. Regulation occurs at the level of cellular uptake,
intracellular binding and distribution, and lastly cellular excretion. Copper is imported into cells mainly
via Copper Transporter 1 (Ctr1) [3]. Once copper is inside the cell, copper binding proteins ensure that
the free copper levels remain very low. These chaperone proteins include Cytochrome c Oxidase Copper
Chaperone (Cox17), Copper Chaperone for Superoxide Dismutase (CCS), and Antioxidant protein1
(ATOX1) [1,2]. Intracellularly copper can be sequestered by glutathione, and metallothionein. Excretion
is mediated via P-type ATPases, ATP7A and ATP7B [4]. Transport through the blood stream is mediated
via ceruloplasmin. Copper related diseases in humans include Menke’s Disease (copper deficiency
disorder), Wilson Disease (copper accumulation), Indian childhood cirrhosis [5], endemic Tyrolean
infantile cirrhosis [6], and idiopathic copper toxicosis [7]. The causative mutations for Wilson Disease
are in the ATP7B gene [8,9]. The ATP7B protein is responsible for excretion of bound intrahepatic copper
into the bile. Biliary copper excretion accounts for as much as 95% of the total body copper excretion.
There is a wide variation in clinical presentation of Wilson Disease (WD) and a large number of mutations
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has been reported (well over 500; http://www.wilsondisease.med.ualberta.ca/database.asp) [10–12].
Phenotypical variation also occurs within the same genotype, hinting to the effect of modifier genes.
In contrast to hepatic copper overload, Menkes Disease (MD) is presented with impaired copper
absorption in various organs. Wilson Disease is a rare X-linked copper deficiency disorder caused
by mutations in the ATP7A gene [13–17]. The limited genotype-phenotype correlation and the rarity
of both WD and MD urge for innovative clinical approaches to improve the quality of life of people
suffering from Wilson’s or Wilson Disease. What makes dogs (Canis lupus familiaris), especially for
WD, so well-suited? In order to fully appreciate the potential of these animals, some insights into the
canine population structure are necessary. Ever since dogs were domesticated, they have been under
severe artificial breeding selection, for instance for behavioral traits and/or specific morphological
features [18]. This resulted in isolated genetic populations of dog breeds [19]. The limited genetic
variation within breeds, and at the same time a large genetic variation over all breeds, provides a
gold-mine for geneticists. Whereas the genetic variation over the various breeds remained intact,
the reduced genetic variability within breeds worked as a genetic amplifier and offered researchers a
genetic dissection microscope [19]. Together with the selection for a unique trait, such as excessive
muscle formation, short limbs or a specific coat color, an increased risk for the development of specific
disorders with a simple and/or complex inheritance pattern arose within breeds. Exploiting the
downside of inbreeding may therefore be instrumental for the discovery of causative and modifier
genes involved in complex diseases and/or rare diseases such as inherited copper toxicosis.

Next to the above mentioned genetic-argument, other research advantages reside within dogs.
Dogs are of comparable size of humans and they share similar environmental exposures. Especially
the size allows to design and test procedures at a humanized size with highly comparable anatomical
arrangements. This is an obvious advantage for preclinical studies, for instance related to liver
transplantation. In this respect, the readers might be aware that the first liver transplantations were
performed in dogs [20].

In summary both genetic and technical arguments are in favor to utilize dogs as important
preclinical models for inherited copper toxicosis. However, there is more to come. Veterinarians
have been confronted with sheep and dogs presenting with copper related disorders already for
decades [21–24]. Deleterious levels of hepatic copper are described in several dog breeds including
Bedlington terriers, Skye terriers, West-Highland White terriers, Dobermanns, Dalmatians and
Labrador retrievers [25–30]. Pedigree analysis of most breeds revealed a complex mode of inheritance
of copper-mediated hepatitis. Therefore, the phenotypic expression is not dependent on one single
genetic factor, but on mutations in more genes and also environmental factors are deemed influential
in the phenotypic presentation. As an exception to the rule of thumb that copper toxicosis is a complex
genetic disorder, a simple autosomal recessive mode of inheritance is observed in the Bedlington
terrier [31].

2. A Roadmap towards a Relevant Preclinical Model Animal for Liver Stem Cell Transplantations

Although rodent models for WD have been instrumental to dissect molecularly how mutations in
the ATP7B gene lead to hepatic copper accumulation, their size does not allow for longitudinal studies
(individual animals followed for long time and consecutive measurements). This prompted us to
investigate the genetic background of inherited copper toxicosis in several dog breeds. One important
feature of a clinical model is the knowledge of the genetic cause and preferentially a simple breeding
strategy to acquire sufficient number of experimental animals. In line with this, a similar progression
of the disease in time strengthens the validity of the model. Another aspect is the feasibility to obtain
sufficient and genetically gene-corrected liver stem cells, preferentially autologous to minimize the risk
of rejection of the transplanted cells. Lastly, in view of the clinical application in human medicine,
mode of cell transplantation must be similar to the one preferred in human medicine. All these steps
will be outlined in more detail below. Figure 1 depicts the strategy followed for functional liver recovery
after autologous genetically-engineered liver stem cell transplantation in a COMMD1 deficient dog.
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were used with COMMD1 as bait. Of interest, a direct COMMD1-ATP7B interaction occurs which 
was confirmed in cell lines [37]. In WD the interaction between ATP7B and COMMD1 is enhanced 
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Figure 1. The strategy followed for functional liver recovery after autologous genetically-engineered
liver stem cell transplantation in a COMMD1 deficient dog.

2.1. Requirement 1. Copper Accumulation in Bedlington Terriers Is caused by a Deletion of exon-2 in the
COMMD1-gene

By means of mapping studies and positional cloning, a 13kB deletion covering exon-2 of the
commd1 gene was discovered as the causative mutation of Bedlington terrier copper toxicosis [31,32].

In the following years, the involvement of this mutation in other copper storage diseases was
investigated. It turned out that this mutation was not causative for either Indian Childhood Cirrhosis
(ICC), Endemic Tyrolean Infantile Cirrhosis (ETIC), nor Idiopathic copper toxicosis (ICT) [33].

Furthermore, whether or not the murr1 mutations are somehow involved in WD is a matter of
debate [34–36]. The intracellular interaction between the ATP7B protein and the COMMD1 protein
(previously known as murr1) explains the similarities in WD and Bedlington terrier copper toxicosis [37].
The COMMD1 protein, COpper Metabolism Murr1 domain-containing protein had an unknown
function at the time it was discovered. To unravel its function, among others yeast-two hybrid
screens were used with COMMD1 as bait. Of interest, a direct COMMD1-ATP7B interaction occurs
which was confirmed in cell lines [37]. In WD the interaction between ATP7B and COMMD1 is
enhanced and leads to lower ATP7B stability. This interaction partially explains the similar phenotypes
of WD in men and copper toxicosis in Bedlington terriers. At present a plethora of functions are
related to the COMMD1 protein, including sodium transport via epithelial sodium channel (ENaC),
trafficking of cystic fibrosis transmembrane conductance regulator (CFTR), inhibition of Cu/Zn -SOD,
NFk-B signalling, Hypoxia Inducing Factor (HIF1) regulation and HIV-replication [37–41]. COMMD1
depletion leads to increased serum Low Density Lipoprotein (LDL) levels, due to mis localization
of the LDL-receptor and consequently a reduced uptake of LDL particles [42]. One of the common
themes of COMMD1 action seems to be related to protein degradation via ubiquitination, at least
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regarding NFkB-signalling, ENaC trafficking and HIF1alpha regulation. Results of immunoprecipitated
ubiquitinated proteins with associated proteins have not been described, to our knowledge.

Two papers provided direct evidence for a crucial role in cellular copper regulation in in vitro cell
cultures [41,43]. By means of siRNAs commd1 was silenced in HEK-293 (human embryonic kidney)
cells and in BDE-cells, a canine liver cell line [41,43]. This resulted even in short term cell cultures for
increased intracellular copper levels. The fetal lethality of COMMD1 -/- mice is most likely caused
by defect in the placenta development, an organ with very high COMMD1 protein expression [43].
Finally, liver specific ATP7B deficient mice had increased hepatic copper levels [44], albeit not as
high as the hepatic copper levels in Bedlington copper toxicosis (see Table 1). With respect to hepatic
copper accumulation it turned out that COMMD1 protein functions as a chaperone not only for ATP7B,
but also for ATP7A [45–47].

Table 1. Comparison of some parameters for Wilson Disease (WD) patients with potential large animal
models such as Bedlington terriers (BT) and Labrador retrievers (LR).

WD BT LR

Gene ATP7B COMMD1 ATP7B/ATP7A

Mode of inheritance autosomal recessive autosomal recessive complex
Age of onset variable adolescence-mid age adolescence-mid age

Liver pathology cirrhosis cirrhosis cirrhosis
Hepatic Cu (mg/dwl) <1000 <12,000 <1000

Neurology impaired not reported not reported
Population rare rare * very frequent

Kayser–Fleischer rings present in 50% not reported not reported

mg/dwl means mg copper per kg dry weight liver; * due to negative breeding selection on copper toxicosis, the
disease in Bedlington terriers almost disappeared.

In summary, the genetic cause of Bedlington terrier copper toxicosis is known, and despite
not being in the same gene as for WD, protein–protein interaction of the WD-gene product and the
Bedlington-gene product easily explain the similarities in hepatic copper accumulation.

2.2. Requirement 2. Longitudinal Studies on COMMD1 Deficient Dogs Highlight Similarities between WD
and Canine Copper Toxicosis

All these in vitro and mouse models stimulated us perform longitudinal studies to describe in great
detail how copper toxicosis progresses and to which extent this resembles WD. Therefore, an in-house
breeding colony of five COMMD1 deficient dogs was followed for over four years. The simple mode
of inheritance facilitated us to create a homozygous COMMD1 deficient breed on a Beagle background.

Biannual liver biopsies were taken for histology, copper measurements, immunohistochemistry,
quantitative RT-PCR and Western blotting [48–50]. Although these animals are not geno-copies of
human WD patients the disease progression at molecular and histological level clearly resembles WD.
Variations between WD in men and COMMD1-deficiency mediated copper toxicosis in Bedlington
terriers include the amount of copper accumulated (see Table 1) and the absence of neurological
features and Kayser–Fleischer rings. Maximum copper accumulation was reached at 12 months
of age (adolescence-mid age), which coincided with the first histological signs of hepatitis. At the
same time, increased levels of mt1A (copper scavenger metallothionein) mRNA were observed.
Slightly later, hepatic stellate cells became activated (α-SMA positivity), with increasing reticulin
deposition and hepatocytic proliferation in later stages. A further increase over time of histologically
confirmed hepatitis and pro-apoptotic caspase-3 activity (first noticed at 18 months) was observed.
For further details on the temporal expression of genes involved in copper homeostasis and antioxidant
mechanisms like atox1 (antioxidant 1 copper chaperone), ccs (copper chaperone for cytochrome C
oxidase), cox17 (cyclooxygenase 17), atp7A, atp7B, sod, cat, and gpx1 readers are referred to previous
papers [49,50]. These longitudinal studies clearly established that COMMD1-deficient dogs develop
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copper-induced chronic liver disease and even cirrhosis in a comparable fashion as do human WD
patients. Two minor variations are related to the age of onset which was much more standardized
in the dogs and the copper accumulation was more extreme. Together, the important clinical and
histological similarities positioned this breeding colony as genetically-defined large animal model to
test clinical applicability of new therapeutics developed in rodent models.

2.3. Requirement 3. Culture of Sufficient Quantities of COMMD1-Functional Autologous Liver Stem Cells

The liver is one of the few organs acknowledged for its reparative capacity. Replication of
differentiated hepatocytes and/or cholangiocytes are responsible for the volume regeneration to
compensate for partially removed liver lobes. For this reason, the existence of liver stem cells
seemed unnecessary. Some evidence even points to hepatocytes themselves as main sources of liver
regeneration [51,52]. To complicate matters even more, several sources of hepatic stem cells are
described, presumably depending on the model to induce hepatic damage or their involvement in the
hepatocyte renewal during liver organ homeostasis [51–53]. Often one of the most obvious histological
reactions is a proliferation of a subset of biliary cells, the so-called ductular reaction. Proposed stem
cells include, among others, hepatic stellate cells, hepatocytes themselves, or self-renewing pericentral
Axin2+ cells that differentiate into polyploid hepatocytes able to replace hepatocyte during homeostatic
liver renewal [53–55]. Which of these various liver stem cells are involved in the daily wear-and tear of
hepatocytes and cholangiocytes and which of these are hampered in their activation in case of severe
liver damage is a matter of a fierce debate; the various points of view are summarized [56,57].

The presence and activation of liver progenitor cells was based on experimental mouse models,
and ductular reactions (proliferation of intrahepatic bile ducts) were described in various diseases in
humans [58–63]. Our initial papers described the activation of liver stem cells in canine hepatopathies
and compared these patterns to the observation in human hepatopathies [64–67].

Having established that a ductular reaction occurred in diseased dog livers in a similar fashion as
for human liver diseases, we designed experiments to culture canine liver progenitor cells.

Enrichment of liver progenitor cells by means of fluorescent activated cell sorting (FACS) revealed
a side population with a gene expression pattern resembling progenitor cells [68].

Interestingly, during the culture of non-purified liver canine liver progenitor cells, on top of
non-proliferating hepatocytes colonies of small, progenitor-like cells became visible [69]. Even more
interesting these cells differentiated into a hepatocyte-like phenotype (e.g., albumin and MRP2
expression). This stimulated us to dissect pathways involved in their replication in order to obtain
sufficient quantities of liver stem cells. Using a siRNA-screen targeting kinases, we established
DYRK1A as a novel pathway specific for liver stem cell proliferation [70]. However, interference with
harmine, a known inhibitor of DYRK1A, revealed little effect on cell proliferation as it turned out to be
crucial for S-phase entry.

A recent development has been the establishment of liver stem cells cultures as 3D cultured
organoids. Organoids are an artificially grown mass of (stem) cells resembling an organ’s function.
These stem cell based mini-organs are described from various organs including murine and human
livers [71,72]. The clinical application of these mini-organs range from diseases modelling, advanced
toxicology and pharmacological studies, and application in stem cell transplantations. For liver, dog,
rat, and cat liver organoids have been described [73–75]. With these 3D in vitro cultures, expandable to
almost infinity and at the same genetically stable, the combination of bioengineering and cell-biology
becomes a reality. Indeed in 2015, canine liver organoids of COMMD1-deficient dogs were described
in which by means of lentiviral transduction a COMMD1 cDNA was inserted, COMMD1 protein
expression resumed in these organoids, as did their copper excretion and they survived under high
copper culture conditions [73].

In brief, culture of large quantities of autologous liver stem cells with a functional copy of the
COMMD1 cDNA was within reach.
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2.4. Requirement 4. Number and Routing of Genetically-Engineered Autologous Transplanted Donor Cells

Hepatocyte transplantation in dogs was first described in 1996 preceding the clinical application of
hepatocyte transplantations in humans [76]. Together with the few studies describing transplantation
of healthy liver cells in human Crigler-Najjar syndrome, urea cycle defects and phenylketonuria
we could make an estimated guess on the number of cells minimally required for functional liver
recovery [77–80]. A growth stimulus for the transplanted cells was provided by a lobectomy of the
recipient liver [80]. In order to avoid increased portal pressure during cell transplantation and to
enhance engraftment, the required number of cells was injected via the portal vein on three consecutive
days through an implanted port-a-cath system [81]. The portal vein has been the preferred routing in
human patients to transplant liver cells in order to correct inborn errors of metabolism. This highlights
another advantage of a large animal models over murine models, since portal vein injections in mice
are very challenging.

3. Transplantation of Autologous COMMD1-Positive Liver Organoids into Copper-Laden Livers
of COMMD1 Deficient Dogs

Having fulfilled relevant criteria for a valid preclinical model for stem cell transplantation we
sailed out to culture enormous quantities of gene-corrected liver stem cells. In about 12 weeks of
culture the number of gene-corrected liver stem cells was obtained. In this study, we are following five
individual dogs up to two years after the transplantation, and the dogs’ size permitted longitudinal
liver sampling. All dogs tolerated the lobectomy and the subsequent liver cell transplantations.

Apparently the usage of the port-a-cath system did not reveal severe side-effects. At histology no
signs of tumor formation caused by the transplanted cell are observed for the post-transplantation
time points analyzed thus far.

4. Bedlington Terriers with a commd1 Mutation or Labrador Retrievers with an ATPB Mutation,
Which Is the Preferred Breed to Study WD?

Biomedical researchers are well aware of the fact that each model has its limitations, for instance
it is a simplification or exaggeration of the reality. In other words, the beauty (and relevance) of a
model is in the eye of the beholder. It is of utmost importance to make a rational decision on which
large animal or which specific breed to be used for various preclinical studies to truly have impact on
the quality of life of WD patients. In order to facilitate this decision, for instance if one would like to
investigate the effect of novel therapeutic compounds, some aspects of two dog breeds with copper
toxicosis are compared with clinical parameters of WD, as summarized in Table 1.

5. Future of Novel Preclinical Models, DoGtor Can You Help Me?

The European Commission recently established a reference network for rare liver diseases
(ERN-RARE-LIVER). This shows Europe’s perseverance to address the specific issues inherent to rare
diseases, including limited research resources, a lack of scientific understanding and importantly
a lack of public awareness. In this respect the participation of the Faculty of Veterinary Medicine
(Utrecht, the Netherlands) in an EASL-sponsored consortium entitled Regenerative Hepatology is a
crucial first step to bridge the scientific and preclinical gap for inherited copper toxicosis. Recently a
recovery from acute liver failure without transplantation was reported in a small population (n = 5) [82].
Zinc and/or copper chelation contributed to the recovery. Similarly, a high zinc, low copper diet
decreased hepatic copper levels in a subset of Labrador retrievers suffering from inherited copper
toxicosis [83]. This shows the potential of comparative clinical studies in humans and dogs. However,
it must be kept in mind that these animals are both target animal for therapy (pets as patients) and
model animals. As for all models they represent a part of the complete picture, one or a few aspects
are highlighted. In the case of hepatic stem cell transplantation, this is unlikely to become the main
treatment of choice for WD since it will only affect liver function and not likely the neurological aspects.
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Often research is of mice and meds, but we should consider for preclinical studies on bioengineered
livers the option pets and vets. In other words, a dogmatic shift: bioengineered liver with large animal
models will benefit people suffering from rare diseases, such as inherited copper toxicosis.
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