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S U M M A R Y

Coronavirus disease 2019 (COVID-19) caused by human severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is a worldwide problem. From the standpoint of hospital
infection control, determining the source of infection is critical. We conducted the
present study to evaluate the efficacy of using whole genome sequencing to determine the
source of infection in hospitalized patients who do not have a clear infectious contact
history. Recently, we encountered two seemingly separate COVID-19 clusters in a tertiary
hospital. Whole viral genome sequencing distinguished the two clusters according to the
viral haplotype. However, the source of infection was unclear in 14 patients with COVID-19
who were clinically unlinked to clusters 1 or 2. These patients, who had no clear history of
infectious contact within the hospital (‘undetermined source of infection’), had hap-
lotypes similar to those in cluster 2 but did not have two of the mutations used to char-
acterize cluster 2, suggesting that these 14 cases of ‘undetermined source of infection’
were not derived from cluster 2. Whole viral genome sequencing can be useful for
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confirming that sporadic COVID-19 cases with an undetermined source of infection are
indeed not part of clusters at the institutional level.

ª 2020 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
Introduction

The current coronavirus disease 2019 (COVID-19) pandemic
caused by human severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) is a major worldwide community problem.
Since rapid increases in the numbers of COVID-19 patients
threaten to collapse healthcare systems in many countries, the
development of effective diagnostic and preventive systems is
urgently needed.

SARS-CoV-2 is a single-strand RNA virus with a rapid pace of
mutagenesis (approximately two new mutations per month)
[1]. Currently, global monitoring of SARS-CoV-2 mutation
dynamics is publicly available through the Global Initiative on
Sharing All Influenza Data (GISAID) and Nextstrain [2,3]. Viral
genome sequencing data is useful for tracing longitudinal and
global trends in viral genome changes.

For infection control within hospitals, whole genome viral
sequencing can help to determine whether newly diagnosed
patients have nosocomial or community-acquired infections. In
situations involving nosocomial infection, not only must con-
firmed positive cases be isolated, but thorough intrahospital
contact tracing must be performed to identify healthcare
workers and inpatients who may have undiagnosed COVID-19.
In contrast, thorough intrahospital surveillance is not neces-
sary in situations where infection is known to have occurred
within the community. The roles of viral genomic data in the
application of preventive measures at an institutional level
remain to be explored.
Methods

Study population

The present study was conducted at Keio University Hospi-
tal, a single tertiary care medical centre in a metropolitan area
(Tokyo, Japan). The present study protocol was approved by
the ethics committee of the Keio University School of Medicine
(approval number: 20200062). The hospital has a total of 960
beds with approximately 2700 workers, including 400 physi-
cians. Among more than 80 university hospitals in Japan, Keio
University Hospital was the first university hospital in Japan to
be affected by a COVID-19 outbreak. Patients with a reverse
transcriptionepolymerase chain reaction (RTePCR)-positive
result who had been diagnosed as having COVID-19 at Keio
University Hospital between March 24th and May 15th, 2020,
were enrolled in the present study. A total of 90 positive cases
were identified (46 patients, 44 hospital staff). Among the 32
cases who underwent whole viral genome sequencing, 14 were
patients and 18 were hospital staff. Cluster 1 occurred among
the patients and hospital staff after one patient was trans-
ferred from a local hospital on March 19th, 2020. Cluster 2
occurred among interns and junior residents during the last
week of March 2020. In addition, some cases were present that
could not be linked to cluster 1 or 2 using contact tracing.
Clinical RTePCR testing

A nasopharyngeal swab specimen was collected from indi-
viduals who were suspected of having COVID-19 based on the
presence of fever, cough or rhinorrhoea, the appearance of
pneumonia on computed tomography, or a history of close
contact with a confirmed case. Clinical RTePCR testing was
performed using a standardized quantitative RTePCR test for
SARS-CoV-2 [4].

Specimen collection and sample preparation

The residual nasopharyngeal swab specimens of subjects
who tested positive during clinical RTePCR testing were ret-
rospectively collected and used in the present analysis. Total
RNA was extracted from the specimens using the QIAamp
MinElute Virus Spin Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The RNA was reverse-
transcribed to cDNA using a random hexamer primer and
SuperScript III Reverse Transcriptase (Thermo Fisher, Waltham,
MA, USA). PCR-based amplification was performed using Artic
ncov-2019 primers, version 3, in two multiplex reactions
according to the globally accepted ‘nCoV-2019 sequencing
protocol’ [5,6]. A sequencing library for amplicon sequencing
was prepared using the NEB Next Ultra II DNA Library Prep Kit
for Illumina (New England Biolabs, Ipswich, MA, USA). Paired-
end sequencing was performed on the MiSeq platform (Illu-
mina, San Diego, CA, USA).

Bioinformatics analysis and annotation

The fastq files were aligned using the BurrowseWheeler
Aligner and a reference sequence (Wuhan-Hu-1, MN908947.3)
to generate the bam files [7,8]. The bam files were then pro-
cessed with iVar to remove primer positions supplied in a bed
file and to soft clip primer sequences from an aligned and
sorted bam file [9]. The quality of the genome sequencing data
was evaluated using qualimap [10]. The sequenced bam files
were processed with samtools and bcftools to call the variants
in the variant call format (vcf) [11]. The variants were anno-
tated for effects on protein translation and global viral allele
frequencies using snpEff [2,12]. The bioinformatics pipeline
used in this study, ‘Variant calling pipeline for amplicon-based
sequencing of the SARS-CoV-2 viral genome’, is available at
https://cmg.med.keio.ac.jp/sars-cov-2/.

Phylogenetic tree analysis

A phylogenetic tree analysis was performed locally using the
Augur program available from Nextstrain and genome sequence
data obtained in the currently reported study as well as data
available from the global database EpiCov from GISAID [3]. For
the construction of the phylogenetic tree, the analysis inclu-
ded all 32 subjects in the present study, the global dataset
submitted as of February 29th, 2020, and all available Japanese
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data excluding that obtained from the cruise ship, the Diamond
Princess [13]. The allele frequency was calculated based on a
total of 8604 sequences downloaded from the global database
EpiCov (downloaded on April 16th, 2020).
Results

Ninety positive RTePCR results were obtained during the
study period at Keio University Hospital. Among these positive
results, 32 corresponding samples were subjected to next-
generation sequencing. The ‘unrooted’ analysis using Next-
strain showed that the presence of C11752T could be used to
segregate the results into two distinctive clades. The first clade
included five cases and was compatible with cluster 1. The
second clade was divided into two groups by the presence of
C823T and was compatible with cluster 2 and the ‘unde-
termined source of infection’ cases.
Cluster 1

The index patient was transferred from a local hospital to
Keio University Hospital to undergo surgery on March 19th,
2020. The patient had no respiratory symptoms at admission.
On March 23rd, 2020, the occurrence of a COVID-19 nosocomial
infection at the local hospital prior to the patient’s transfer
was discovered. On the following day, the patient received a
positive clinical RTePCR test result [4]. Subsequently, three
healthcare workers and four additional patients on the same
floor tested positive using clinical RTePCR testing.
Figure 1. Results of phylogenetic tree analysis. The dots represent p
present study. Clades were defined according to the colour code show
from cluster 2 were distinct. Cluster 2 and the ‘undetermined source
GISAID, formed clusters belonging to a close branch (see Figure 2).
Cluster 2

Another cluster occurred among interns and junior residents
during the last week of March 2020. All 99 interns and junior
residents underwent clinical RTePCR testing, and 20 tested
positive. The source of the infection remained unknown in this
cluster.
Other patients unlinked to clusters 1 or 2

Concurrently with clusters 1 and 2, several patients who
could not be linked to clusters 1 or 2 were newly diagnosed as
having COVID-19. This group was considered to have an
‘undetermined source of infection.’

Nasopharyngeal samples from five subjects in cluster 1, 13
subjects with positive RTePCR results in cluster 2, and 14
subjects with an ‘undetermined source of infection’ were
subjected to whole viral genome sequencing.
Phylogenetic tree analysis

The data points from cluster 1 were distinct from the data
points from cluster 2 (Figure 1). Cluster 1 appeared to have
derived from the original SARS-CoV-2 descended from the
Wuhan outbreak at a relatively early stage, whereas the data
points from the other Japanese COVID-19 cases, including
those in cluster 2 and the ‘undetermined source of infection’
group, were clustered together rather closely.

The viral genome haplotype analysis confirmed that cluster
1 and cluster 2 were distinguished by 15 mutations (Figure 2).
ublicly available data points. The squares represent cases in the
n at the bottom right. Note that the data points from cluster 1 and
of infection’ cases, as well as the Japanese cases registered in
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The mutations 11752C/T, 25665C/T, 26447C/T, 27700-
27702delATT, and 28912T/C were specific to cluster 1,
whereas 241C/T, 313C/T, 823C/T, 3037C/T, 14408C/T,
23401G/T, 23403A/G, 28881G/A, 28882G/A, and
28883G/C were specific to cluster 2. The mutually exclusive
haplotypes of clusters 1 and 2 provided molecular evidence
that clusters 1 and 2 were caused by two different SARS-CoV-2
strains, and thus were independent of each other. This finding
was compatible with the in-hospital surveillance results
obtained using contact tracing.
Viral genome haplotype of ‘undetermined source of
infection’ cases

During the same period as the two in-hospital clusters, 14
cases with an ‘undetermined source of infection’ occurred,
necessitating an urgent determination of the source of infec-
tion. Although these 14 subjects had a haplotype that was
similar to that of cluster 2, a distinctive viral genomic signature
was also present: two mutations, i.e. 823C/T and 23401G/T,
were specific to the cases in cluster 2, but not to the
Wuhan-Hu-1 (MN908947.3)
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Figure 2. Postulated local evolutionary history based on viral genome
present in approximately 56% of publicly available 8604 SARS-CoV-2 c
Note that five mutations, i.e. 11752C/T, 25665C/T, 26447C/T, 2
cluster 1 and were absent in cluster 2. Conversely, ten mutations, i.e.
23403A/G, 28881G/A, 28882G/A, and 28883G/C, were exclusive
changes were present in subjects from cluster 1. The haplotypes of clu
group shared eight mutations, i.e. 241C/T, 313C/T, 3037C/T, 1440
mutations, 823C/T and 23401G/T, were not shared. The representat
exhibit either 823C/T or 23401G/T but contained 26966T/A, whic
indicated that the strains carried by this healthcare worker and thos
community infection pattern,’ rather than direct cross-infection with
‘undetermined source of infection’ cases. This finding sug-
gested that the ‘undetermined source of infection’ cases had
community-acquired infections and were not derived from
cluster 2, since the spontaneous reversion of the viral genome
mutations was unlikely. Instead, the cluster 2 and ‘unde-
termined source of infection’ cases were most likely derived
from a common ancestral haplotype with eight mutations, i.e.
241C/T, 313C/T, 3037C/T, 14408C/T, 23403A/G,
28881G/A, 28882G/A, and 28883G/C (Figure 2), present in
the neighbourhood surrounding Keio University Hospital.

The utility of viral haplotype analysis is best exemplified by
the case of one healthcare worker (case 23, Supplementary
Table S1) in the ‘undetermined source of infection’ group.
The subject worked as a full-time employee at Keio University
Hospital. In addition, until March 17th, 2020, she had attended
an outpatient clinic once a week at the local hospital that was
the origin of cluster 1. She developed a fever and tested pos-
itive using clinical RTePCR on April 13th, 2020. She denied
having had any contact with the individuals from clusters 1 or 2.
Her viral genome haplotype confirmed that she had not become
infected with SARS-CoV-2 at either the local hospital or Keio
University Hospital.
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ases downloaded from the GISAID database as of April 16th, 2020.
7700_27702delATT, and 28912T/C, were exclusively present in
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ly present in all 13 subjects from cluster 2, whereas none of these
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Discussion

In the present study, rapid onsite whole viral genome
sequencing of SARS-CoV-2 successfully demonstrated distinc-
tive viral genomic haplotypes that were concordant with the
epidemiologic contact history in two intrahospital clusters. The
viral genome haplotype was useful for confirming that sporadic
COVID-19 cases with an undetermined source of infection were
indeed not part of clusters within the hospital environment.
Epidemiologic contact tracing combined with viral genomic
data could be effective as a preventive measure against COVID-
19.

The major limitations of the present study were the rela-
tively small number of subjects, the inclusion of a single
medical centre, and the lack of a systematic method of subject
accrual. Since the virusehost interaction, which determines
virulence and the severity of symptoms, is highly complex and
multifactorial, co-analyses of host genome data are needed to
determine the relationship between viral genomic data and
prognosis and therapeutic efficacy.

The acquisition of whole viral genome sequences has
implications from a future basic research perspective. In the
present study, the whole viral genome sequencing not only
provided the nucleotide signatures of the SARS-CoV-2 strains,
but also identified 53 different mutations, with 27 being amino
acid substitutions, in 32 samples. A recent longitudinal obser-
vation of the SARS-CoV-2 genome has shown that a single
mutation in the spike region, i.e. D614G, became predominant
in early 2020 and increased the amount of viral nucleic acid
shedding [14]. The present study showed that cluster 1
exhibited D614, whereas cluster 2 and the ‘undetermined
source of infection’ cases exhibited G614; these findings were
compatible with the present epidemiological observations. The
research and development of vaccines and antibodies targeting
SARS-CoV-2 should be pursued in view of this variability in viral
protein sequences.

In conclusion, we have shown that whole viral genome
sequencing was useful for confirming that sporadic COVID-19
cases with an undetermined source of infection were indeed
not part of institutional clusters. Whole viral genome
sequencing is useful for augmenting the results of thorough
contact tracing, particularly in situations where multiple
COVID-19 clusters have occurred within a single hospital
simultaneously.
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