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Abstract

Transstadial transmission of tick-borne rickettsiae has been well documented. Few studies,

however, have evaluated the role of transovarial transmission of tick-borne rickettsiae, par-

ticularly in nature within the host-vector ecosystem. This cross-sectional study aimed to

understand the role of transovarial transmission of tick-borne rickettsiae among feeding

ticks at different life stages. Tick eggs laid by engorged wild-caught adult female ticks were

pooled and tested for Rickettsia spp. and Anaplasma/Ehrlichia spp. using molecular tech-

niques, while adult fed ticks were tested individually. Additionally, larval and nymphal ticks

were collected in the wild from small mammals, pooled and tested for Rickettsia spp. and

Anaplasma/Ehrlichia spp. There were 38 fed adult and 618 larvae/nymphs (60 pools total)

Dermacentor spp. ticks collected from livestock and rodents. All individual adult ticks and

tick pools were positive for Rickettsia spp. While none of the larvae/nymphs were positive

for Anaplasma/Ehrlichia spp., two adult fed ticks were positive. Rickettsia spp. DNA was

detected in 91% (30/33) of the pooled eggs tested, and one pool of eggs tested positive for

Anaplasma/Ehrlichia spp. Sequencing data revealed Rickettsia spp. shared�99% identity

with R. raoultii ompA. Anaplasma/Ehrlichia spp. shared�89% identity with A. ovis 16S ribo-

somal RNA. This study identified potential transovarial transmission of Rickettsia spp. and

Anaplasma spp. among D. nuttalli ticks. Additional studies are needed to further assess the

proportion of transovarial transmission occurring in nature to better understand the burden

and disease ecology of tick-borne rickettsiae in Mongolia.

Author summary

In this study, we evaluate the probability or likelihood that tick-borne rickettsiae might

be transmitted vertically from wild engorged adult female ticks collected throughout the

Northern region of Mongolia during the summer of 2016. While significant effort has

been directed to study tick-borne rickettsiae, this public health challenge is complicated
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by the limited knowledge and understanding of tick and tick-borne rickettsiae ecology

within Mongolia. Tick-borne rickettsiae of concern to humans and animals in this region

of the world are Rickettsia spp., Anaplasma spp., and Ehrlichia spp. Using molecular tech-

niques, we detected rickettsiae among all Dermacentor spp. tick life stages and demon-

strated potential vertical transmission of Rickettsia spp., and Anaplasma spp. among wild

engorged adult female Dermacentor nuttalli ticks. We believe our findings provide impor-

tant information regarding the ecology of key rickettsiae associated with tick-borne dis-

ease in Mongolia.

Introduction

While significant effort has been directed to study tick-borne rickettsiae, they continue to be a

global public health threat. Mongolia is a country known for its rich nomadic and pastoral cul-

ture, with populations of people who work very closely with their livestock in environments

that are often densely populated with ticks. Additionally, ecotourism is a rapidly growing

industry in Mongolia, placing international visitors at risk of exposure to tick-borne rickettsiae

[1, 2]. This public health challenge is further complicated by a limited knowledge and under-

standing of tick and tick-borne rickettsiae ecology within Mongolia [2–4].

The mobility of ticks is restricted to questing and travelling via feeding on animals and

humans [5]. Tick-borne rickettsiae typically undergo transstadial transmission before being

vectored by a competent tick host. However, depending on the tick species and the type of

tick-borne rickettsiae, transovarial transmission may also occur [6]. Research related to transo-

varial transmission has been particularly limited within the Asian and Eurasian regions of the

world.

Several tick-borne rickettsiae surveillance and case studies have been conducted throughout

China, Russia and Mongolia, which have tested humans [7–10], livestock [11–15], wildlife

[16–19], and ticks [20–28]. However, most of these studies focused exclusively on ticks in their

adult life stage, either fed or unfed. Few studies have examined the larval and nymphal stages

of ticks in the Eurasian environment. Larval and nymphal life stages of ticks are of special

interest in regard to exposure risk, as their small size can lead to less readily detectable feeding

on human hosts [29–31].

Tick-borne rickettsiae of most concern in the Asian and Eurasian regions of the world are

Rickettsia spp. [21, 24], Anaplasma spp. [12, 14, 16, 25, 27, 32], and Ehrlichia spp. [17, 25].

These rickettsiae have been associated with small mammal reservoirs [6, 17, 19]. Collectively,

the objectives of this study were to further investigate the life cycle of tick-borne rickettsiae

in locally occurring ticks; to examine the propensity of certain tick-borne rickettsiae to

undergo potential transovarial transmission; and to evaluate the infection prevalence of tick-

borne rickettsiae infections from early life stage ticks throughout the Northern Mongolia

region.

Methods

This cross-sectional study was designed to evaluate ticks at different life stages (Fig 1). First,

engorged adult ticks were collected from livestock located in three soums (counties) within

three aimags (provinces) (Fig 2) from May 6th to 22nd, 2016. The second component of this

study, examined larvae and nymphs removed from trapped small mammals across seven
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soums in three aimags situated in the Northern region of Mongolia from June 20th to July 23rd,

2016. Using a handheld global positioning system (GPS) unit (Juno Trimble Positions System,

Sunnyvale, CA), latitudinal and longitudinal coordinates were collected at each small mammal

collection site (Fig 3).

Fig 1. Summary of study design.

https://doi.org/10.1371/journal.pntd.0006696.g001

Fig 2. Map of soums where engorged ticks were collected in Mongolia. Soums of tick collection sites were

highlighted using ArcGIS 10.4 (ESRI, Redlands, CA). Maps were downloaded from Mongolian Environmental Health

Geodatabase (http://www.eic.mn/).

https://doi.org/10.1371/journal.pntd.0006696.g002
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Adult tick and egg collection

Handling procedures for livestock were conducted by trained veterinary staff prior to this

study during animal care and were in accordance with the Mongolian Institute of Veterinary

Medicine, Ulaanbaatar, Mongolia. Verbal consent was obtained from livestock owners at time

of tick collection. Female adult fed ticks were collected from livestock at time of veterinary

care of livestock and kept alive at room temperature in storage containers at the Laboratory

of Arachno-Entomology and Protozoolgy, Institute of Veterinary Medicine in Ulaanbaatar,

Mongolia. Moist cotton was placed near the ventilation of the containers to replicate environ-

mental humidity conditions. Once female ticks laid eggs (between 2–7 days of incubation),

both adult ticks and eggs were stored separately at -80˚C until DNA extraction was performed.

The whole egg clutch was pooled and tested from each adult female tick. Mass of egg clutches

ranged from 10 to 410 milligrams. Eggs and adult ticks were briefly rinsed with 70% ethanol in

sterile 1 mL vials to remove contamination and then air dried on a sterile dish in preparation

for processing [33, 34].

Larval/nymphal tick collection

Trapping and handling procedures for small mammals were approved by the Duke University

Institutional Animal Care and Use Committee (#A086-16-04) in accordance with the Mongo-

lian Institute of Veterinary Medicine, Ulaanbaatar, Mongolia. At each location, live Tomahawk

and Sherman traps were placed near holes where there were signs of recent small mammal

habitation. All captured small mammals were sedated with ketamine (50 mg/Kg) and

inspected for ticks. Ticks were stored in 70% ethanol at room temperature. Specimens were

taxonomically identified to genus for larvae and nymphs and species for adults by a trained

entomologist. Ticks were air dried and pooled based on life stage (larvae range 1–15; nymphs

Fig 3. Map of larval/nymphal tick collection sites in Mongolia. GPS data points of tick collection sites were

downloaded into ArcGIS 10.4 (ESRI, Redlands, CA). Maps were downloaded from Mongolian Environmental Health

Geodatabase (http://www.eic.mn/).

https://doi.org/10.1371/journal.pntd.0006696.g003
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range 1–5), small mammal host, sampling location, and tick genus. Pools (n = 60) were stored

at -20˚C in new sterile 1 mL vials before genomic DNA was extracted.

Polymerase chain reaction and sequencing

All ticks and eggs were ground using a sterile pre-chilled mortar and pestle with 500 μL of ster-

ile PBS and 50 mg sterile sand for friction [35]. Contents were then centrifuged in a 1.5 mL

vial at 9,500 g for 5 minutes. Supernatant was pipetted from the sand deposit, inserted into a

new vial and stored at -20˚C. Genomic DNA was extracted from tick supernatant using TIA-

Namp Genomic DNA Kit (Tiangen Biotech (Beijing) Co., LTD, Beijing, China) and tested for

molecular detection of Rickettsia spp. targeting the citrate synthase gene (gltA) [36] and the

outer-membrane protein gene (ompA) [37], as previously described (Table 1). For the molecu-

lar detection of Anaplasma spp. and Ehrlichia spp., the 16S rRNA gene [17] was targeted as

previously described (Table 1).

Gel electrophoresis was used to evaluate amplified products using 1% (w/v) agarose gels

stained with ethidium bromide at 120 V. Gels were analyzed using the Gel Doc EZ System

(Bio-Rad, Hercules, California) with ultra-violet illumination.

A representative subset of positive amplicons were selected and directly sequenced using

Sanger sequencing (Eton Biosciences, Inc., NC, USA). Sequencing results were then compared

against the NCBI nucleotide database using the Standard Nucleotide BLAST application

(http://www.ncbi.nlm.nih.gov/BLAST/) for species identification. Rickettsia spp. gltA and

ompA sequences were used as confirmation of amplified Rickettsia spp. samples and Ana-
plasma/Ehrlichia spp. 16S rRNA sequences were used as confirmation of amplified Anaplasma
spp. Anaplasma/Ehrlichia spp., and Rickettsia spp. sequences were structured for phylogenetic

relatedness using Molecular Evolutionary Genetics Analysis (MEGA) software, version 7.0.

Data analysis

Engorged tick infection status was compared to corresponding oviposited egg infection status

for PCR-positive Rickettsia spp. and Anaplasma/Ehrlichia spp. samples, as well as sequence

data. Transovarial transmission was considered to have occurred when the corresponding

female tick and egg mass were both PCR positive.

Statistical analyses, including two-way frequencies with measures of association, were con-

ducted using STATA 14.1 (StataCorp, College Station, TX).

Table 1. Summary of primers used in molecular assays.

Rickettsiae Gene Primers Sequence (5’—3’) Amplicon Size Ref.

Rickettsia spp. gltA CS2d ATG ACC AAT GAA AAT AAT AAT 381bp [36]

CSEndr CTT ATA CTC TCT ATG TAC A

RpCS877p GGG GAC CTG CTC ACG GCG G

RpCS1258n ATT GCA AAA AGT ACA GTG AAC A

ompA Rr190.70p ATG GCG AAT ATT TCT CCA AAA 346bp [37]

Rr190.602n AGT GCA GCA TTC GCT CCC CCT

190.70-38s1 AAA ACC GCT TTA TTC ACC

190.602-384r1 GGC AAC AAG TTA CCT CCT

Anaplasma/ Ehrlichia spp. 16S rRNA Ehr1 AAC GAA CGC TGG CGG CAA GC 524bp [17]

Ehr2 AGT AYC GRA CCA GAT AGC CGC

Ehr3 TGC ATA GGA ATC TAC CTA GTA G

Ehr4 CTA GGA ATT CCG CTA TCC TCT

https://doi.org/10.1371/journal.pntd.0006696.t001
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Results

A total of 656 ticks were collected from 15 different locations across nine soums in five aimags.

All ticks were morphologically identified as Dermacentor spp. Due to the size of larval and

nymphal ticks collected, and the variety of Dermacentor spp. found in Mongolia, early life

stage ticks were only identified to genus. All adult-fed ticks were morphologically identified to

be D. nuttalli. Of the early life stage ticks collected from small mammals, 546 (88%) were lar-

vae, 72 (12%) were nymphs. There were 588 (95%) of 618 ticks that were allocated into 42 lar-

val and 18 nymphal pools (60 pools total). A total of 38 adult fed female ticks were collected

from sheep and cattle. Of the 38 adult ticks collected, 33 laid eggs.

Molecular results

All individual adult ticks and larval/nymphal tick pools were PCR-positive for Rickettsia spp.

Subsequent PCR testing of paired eggs resulted in 91% (30/33) PCR positive among tick egg

pools for Rickettsia spp. Sequencing data revealed Rickettsia spp. shared�99% identity with R.

raoultii ompA (Accession numbers MH234455 and MH234456) shown in the phylogenetic

analysis (Fig 4). A majority (23/32) of gltA sequences shared�99% identity with R. raoultii
(Accession numbers MH208721 and MH208722) shown in the phylogenetic analysis (Fig 5),

however 9/32 sequences were considered inconclusive, falling between 84%-95% identity with

R. raoultii.
Of the 38 engorged adult ticks collected, two ticks (5%) were PCR-positive for Anaplasma/

Ehrlichia spp., while none of the larval/nymphal pools were PCR-positive for Anaplasma/

Ehrlichia spp. Additionally, one pool of eggs laid by an Anaplasma/Ehrlichia spp.-positive

engorged adult female tick, was also found to be PCR-positive for Anaplasma/Ehrlichia spp.

All PCR-positive Anaplasma/Ehrlichia spp. ticks and the positive egg clutch were further

examined using a sequencing approach to identify the infecting rickettsial species. Sequencing

results indicated that the Anaplasma/Ehrlichia spp. positive egg clutch and corresponding

Fig 4. Evolutionary relationships of Rickettsia spp. ompA. The evolutionary history was inferred using the Neighbor-

Joining method [38]. The bootstrap consensus tree inferred from 10,000 replicates is taken to represent the

evolutionary history of the taxa analyzed [39]. Branches corresponding to partitions reproduced in less than 50%

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (10,000 replicates) are shown next to the branches [39]. The evolutionary distances were computed

using the Kimura 2-parameter method and are in the units of the number of base substitutions per site [40]. The

analysis involved 17 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous

positions were removed for each sequence pair. There were a total of 642 positions in the final dataset. Evolutionary

analyses were conducted in MEGA7 [41].

https://doi.org/10.1371/journal.pntd.0006696.g004
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engorged adult female tick shared 99% identity (accession number MG461482) and the other

engorged adult female tick shared 89% (accession number MG461483) identity with the A.

ovis 16S ribosomal RNA gene. Both Anaplasma spp. sequences are shown in the phylogenetic

analysis (Fig 6).

Fig 5. Evolutionary relationships of Rickettsia spp. gltA. The evolutionary history was inferred using the Neighbor-

Joining method [38]. The bootstrap consensus tree inferred from 10,000 replicates is taken to represent the

evolutionary history of the taxa analyzed [39]. Branches corresponding to partitions reproduced in less than 50%

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (10,000 replicates) are shown next to the branches [39]. The evolutionary distances were computed

using the Kimura 2-parameter method and are in the units of the number of base substitutions per site [40]. The

analysis involved 18 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous

positions were removed for each sequence pair. There were a total of 1254 positions in the final dataset. Evolutionary

analyses were conducted in MEGA7 [41].

https://doi.org/10.1371/journal.pntd.0006696.g005

Fig 6. Evolutionary relationships of Anaplasma spp. 16S rRNA gene. The evolutionary history was inferred using

the Neighbor-Joining method [38]. The bootstrap consensus tree inferred from 10,000 replicates is taken to represent

the evolutionary history of the taxa analyzed [39]. Branches corresponding to partitions reproduced in less than 50%

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (10,000 replicates) are shown next to the branches [39]. The evolutionary distances were computed

using the Kimura 2-parameter method and are in the units of the number of base substitutions per site [40]. The

analysis involved 19 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous

positions were removed for each sequence pair. There were a total of 1518 positions in the final dataset. Evolutionary

analyses were conducted in MEGA7 [41].

https://doi.org/10.1371/journal.pntd.0006696.g006
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Discussion

Few studies have evaluated transovarial transmission of tick-borne rickettsiae in Mongolia [42,

43]. As a result, data regarding transovarial transmission of Rickettsia spp. [44] are particularly

sparse and it remains unclear what role transovarial transmission of Rickettsia spp. and Ana-
plasma/Ehrlichia spp. plays in the maintenance of tick-borne rickettsiae in Mongolia. Addi-

tionally, few studies have assessed tick-borne rickettsiae in tick larvae collected from small

mammals [45, 46].

It is often difficult to compare field surveys on tick-borne rickettsiae, because of varying

sampling methods and sample sizes. However, the detection of R. raoultii found in this study

show similarity with other studies conducted in Mongolia with 100% of Dermacentor spp. tick

pools testing positive for R. raoultii [20, 22]. The positive molecular status of the majority of

adult ticks were R. raoultii with few other ticks carrying uncharacterized rickettsiae, suggesting

that the prevalence of R. raoultii in the areas in which the ticks were collected is quite high.

Though this study does not report animal host infection status, it can prove advantageous

to test larvae collected from animal hosts as a method of determining if rickettsiae infect ticks

by transovarial or transstadial transmission with paired animal health information. A positive

infection status in ticks could occur by horizontal transmission of rickettsiae from an infected

animal host to the tick. The alternative explanation is that the larvae found on the small mam-

mals may be infected with the Rickettsia spp. by transovarial transmission. Transovarial

transmission of Rickettsia spp. has been demonstrated in controlled laboratory settings and

observed in nature. Laboratory demonstration of transovarial transmission has often included

controlled concentration of the rickettsiae, artificial climactic conditions (temperature, humid-

ity, etc.), and use of experimental hosts such as rabbits [44], mice, guinea pigs or capillary feed-

ing [47]. Among these laboratory-based transovarial studies, the transmission rate of Rickettsia
spp. from mother to progeny has been shown to occur up to 100% across various tick species,

including Dermacentor genus [44, 48]. Additionally, many laboratory-based transovarial stud-

ies have demonstrated the efficiency of transovarial transmission of Rickettsia spp. over multi-

ple generations of ticks [44, 49]. Among studies observing naturally infected ticks transmitting

Rickettsia spp. to progeny, prevalence has ranged from 30% to 100% [48]. Though laboratory

challenge studies determine the capability of transovarial transmission, observational studies

of transovarial events can provide a risk assessment for transovarial transmission of tick-borne

rickettsiae in a given region.

It is well documented that naturally occurring Rickettsia spp. are sustained through both

transovarial and transstadial transmission in Dermacentor spp. ticks based on previous epi-

demiological research of Rickettsia spp. in Inner Mongolia, China, suggesting that there may

be similar maintenance of Rickettsia spp. in Mongolia [50]. Previous challenge studies have

demonstrated transovarial transmission of R. raoultii in D. nuttalli, D. silvarum, D. margina-
tus, and D. reticulatus ticks. Transovarial transmission ranged from 43% to 100% prevalence

depending on generation of tick infection, species of tick, and strain of R. raoultii. In com-

parison to the previous laboratory-based research reporting 43% to 99.5% of transovarial

transmission of R. raoultii in D. nuttalli ticks [49], this study reports comparable transovarial

transmission prevalence between adult and pooled eggs in D. nuttalli ticks at 91%. Though

there has been no conclusive data reporting vertebrate hosts as a reservoir for R. raoultii, it

has been suggested that D. marginatus and D. reticulatus serve as both vector and reservoir

[51]. Additionally, D. nuttalli ticks have been implicated as the primary vector for R. raoultii
in Mongolia [20].

Our study’s high prevalence of infected egg clutches suggesting transovarial transmission in

conjunction with the substantial number of infected larvae found on small mammals, suggests

Transovarial transmission of tick-borne rickettsiae
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that Dermacentor species (potentially D. nuttalli) ticks may serve not only as the primary vec-

tor, but also as the primary reservoir for R. raoultii in the northern region of Mongolia.

Though this study did not identify Anaplasma spp. or Ehrlichia spp. in larvae or nymphs,

there was detection of an Anaplasma spp. most similar to A. ovis in two D. nuttalli fed adult

ticks and in one tick egg pool. There have been reports of A. phagocytophilum transmitted

transovarially with prevalence’s ranging from 10% to 40% [52], however transovarial transmis-

sion of most Anaplasma spp. and Ehrlichia spp. are thought to occur at low frequencies or not

at all [53, 54]. There has been research evaluating the role of transovarial transmission of Ana-
plasma spp. and Ehrlichia spp. with little success [55]. To our knowledge, this may be the first

documented report suggesting potential transovarial transmission of A. ovis in D. nuttalli ticks

[56]. There has been reports of this particular Anaplasma spp. in Dermacentor spp. ticks [57]

being associated with history of infection in goats [11, 12], sheep [11, 14], cattle [11], and

reindeer [16] throughout Mongolia and China. Though A. ovis is not known to cause human

disease, the economic burden is great for individuals who rely on raising livestock for their

income [58]. Further research is needed to evaluate the efficiency and role of potential transo-

varial transmission of A. ovis.

Limitations

Like many tick pool studies, it is difficult to determine the exact prevalence of disease using

this approach. Due to the nature of the maximum likelihood estimation calculation, the pro-

portion of infected ticks with maximum likelihood of being Rickettsia spp. infected within tick

pools cannot be calculated if 100% of sample pools are positive [59]. Additionally, due to the

pooling of tick eggs, this study was unable to determine a more precise proportion of transo-

varial transmission from an infected female tick to at least one progeny. Though data suggest

that transovarial transmission for R. raoultii did occur, we were unable to determine how

many progeny were infected. Additionally, by only screening infection status of egg mass, we

are unable to discuss if infected larvae will hatch. Furthermore, Rickettsia spp. PCR primers

have been shown to cross-react with Anaplasma spp. and Ehrlichia spp. However, this study

also utilized a general screening assay for Anaplasma/Ehrlichia spp. and confirmation by

sequencing, which allowed for greater confidence in the Rickettsia spp. PCR assay.

Conclusion

The indication that D. nuttalli ticks can serve as reservoirs for R. raoultii may warrants addi-

tional evaluation of transovarial and transstadial transmission of R. raoultii. Studies should

focus on assessing tick eggs, either in smaller egg pools or individually, to determine the

proportion of transovarial transmission as well as transstadial transmission for R. raoultii in

eggs entering larval life stage, and larvae entering nymphal stages in the natural foci of Mon-

golia. Additionally, the testing of larvae from animal hosts and the environment should be

further examined, preferably testing individual ticks instead of tick pools. Also, this report

has identified a potentially novel transovarial transmission of A. ovis. Further investigation

would be needed to determine the efficiency and prevalence of transovarial transmission of

this rickettsiae.
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