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A B S T R A C T   

The Multidimensional Forced Choice (MFC) test is frequently utilized in non-cognitive evalua-
tions because of its effectiveness in reducing response bias commonly associated with the con-
ventional Likert scale. Nonetheless, it is critical to recognize that the MFC test generates ipsative 
data, a type of measurement that has been criticized due to its limited applicability for comparing 
individuals. Multidimensional item response theory (MIRT) models have recently sparked 
renewed interest among academics and professionals. This is largely due to the development of 
several models that make it easier to collect normative data from forced-choice tests. The paper 
introduces a modeling framework made up of three key components: response format, mea-
surement model, and decision theory. Under this paradigm, four IRT models were chosen as 
examples. Following that, a comprehensive study is carried out to compare and characterize the 
parameter estimation techniques used in MFC-IRT models. This work then examines empirical 
research on the concept by analyzing three distinct domains: parameter invariance testing, 
computerized adaptive testing (CAT), and validity investigation. Finally, it is recommended that 
future research initiatives follow four distinct paths: modeling, parameter invariance testing, 
forced-choice CAT, and validity studies.   

1. Introduction 

Non-cognitive psychological tests frequently employ Likert rating scales such as organization (e.g., "I am organized"). There are no 
correct or incorrect answers to the items. Participants must identify the item that best fits their situation on a five-point Likert scale 
ranging from little likeness (1) to maximum resemblance (5). People may purposefully distort their answers in important assessments 
such as employment and selection, particularly those related to traits such as responsibility and optimism. This strategic behavior 
attempts to appear more aligned with organizational expectations, even if it does not reflect the true nature of the organization. The 
phenomenon under investigation is "faking," which occurs when an assessment fails to separate people based on their abilities, thereby 
undermining its objectivity. 

To reduce faking, pro-preventing or post-detecting are used [1]. To avoid mistaking an honest person as a fraud, post-control 
approaches must provide high recognition accuracy. The post-detecting approaches prevents cheating before or during questioning 
in order to obtain pollution-free data. There are warnings, bogus pipeline, and forced-choice test. Individual faking is unaffected by 
warnings, and bogus pipeline defrauds people, which is unethical [2]. The forced-choice test requires participants to select items of 
comparable quality. They cannot provide good options for all objects. Because the products’ desirability is equal and none is superior, 
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social desirability is less likely to influence selection or faking. Researchers have explored the use of items involving several statements 
that are similar in social desirability but represent different dimensions [3]. 

However, traditional forced-choice test scoring will yield ipsative data. Dimension scores are interdependent in the forced-choice 
test. All dimensions will have different high and low scores. This information is ipsative. Internal score dependence of ipsative data 
violates one of classical test theory’s basic assumptions, the independence of error variance, which affects statistical analysis and 
interpretation of forced-choice test scores [4,5], such as reliability, variance, and regression analysis, and increases the probability of 
type I error. It also has an impact on statistical test power [6]. The ipsative data’s distortion of the dimension relationship pollutes the 
test’s construct validity and criterion-related validity [7] and prevents it from being used for factor analysis [8]. Finally, comparing 
individuals and normalizing ipsative data by scores may affect their veracity. Self-comparison, for example, only displays interest test 
participants’ preference rankings. According to Closs [8], direct comparisons will overvalue or undervalue individual interests. 

The number of dimensions and their interrelationships have a great impact on ipsative data. More test dimensions, according to 
previous research [4,9,10], narrow the gap between ipsative and normality scores. When dimensions are positively or negatively 
correlated, the difference between the ipsative score and the normality score decreases [11]. As a result, increasing the number of test 
dimensions is one of the more effective traditional methods for resisting ipsative data, but it is only a compromise. 

In conclusion, the ipsative data limits the application of the forced-choice test; while it can resist the ipsative problem by adding 
dimension methods, it does not reflect the individual’s psychological decision process. To address the issue of ipsative data, it is 
necessary to abandon the traditional scoring method and adopt a modern measurement model to reflect individuals’ decision process 
when answering forced-choice tests [7] and obtain the latent trait scores underlying the decision process from the explicit comparison 
results. Individual score normalcy can thus be restored. 

The primary goal of this work is to provide a comprehensive and structured overview of the MIRT model for forced-choice tests. We 
introduce forced-choice IRT models and provides a concise summary of their three basic components. We also discuss the parameter 
estimation techniques used in forced-choice MIRT models. Following that, we demonstrate the application’s current research progress. 
Finally, based on the practical implications of the forced-choice paradigm, this study suggests potential future research directions. 

1.1. Search methods 

In the Web of Science Core Collection database, the keyword “forced choice” yielded 135 papers. Following an examination of the 
abstracts, studies that did not include the forced choice model and only used forced choice tests as empirical experiments were 
excluded, leaving 45 papers to complete the paper search for this literature review. Then, in order to supplement the literature, we 
searched for the keyword “forced choice” in mainstream journals in the field of forced choice. Such as Educational and Psychological 
Measurement, Applied Psychological Measurement, Multivariate Behavioral Research, Journal of Educational, Behavioral Statistics 
and so on. Finally, we traced the sources of existing literature and included 97 references in total. 

2. IRT model for multidimensional forced choice test 

2.1. Three key elements of multidimensional forced choice models 

Various MIRT-based scoring models for forced-choice tests have been developed over the last decade. These models relate explicit 
responses to underlying features in order to obtain latent trait scores with normal characteristics and to compare scores across in-
dividuals. These models are comprised of three major components: response format, measurement model, and decision theory. The 
response format reflects the format of the forced-choice response data, the measurement model reflects the relationship between item 
response intensity and dimensions, and the decision theory reflects the process by which participants choose between items. The 
decision theory acts as a link between the explicit response and the favorability of the items, and is then linked to the personal latent 
trait level by the measurement model, forming an overall forced-choice IRT model. 

2.1.1. Response format 
The forced-choice test typically consists of a number of item blocks of varying dimensions. The item block is made up of a fixed 

number of statements with different or identical dimensions and social desirability levels. The statements are explicit indicators of the 
dimension (i.e., latent trait). 

According to Hontangas et al. [12], there are three common forms of forced-choice item blocks: Pick, Rank and MOLE. This 
classification is mainly reflected in the types of instructions. Pick (Table 1) requires individuals to choose the item that best matches 
them. Rank (Table 2) requires individuals to fully rank the items from most agreeable to least agreeable. MOLE (Table 3) requires 
individuals to choose the item that best fits themselves MOst and the item that is LEast suited to themselves. These three are equivalent 

Table 1 
Pick question types.  

Instruction: Choose the one that best suits you from the following two descriptions 

Item block Most 
A Lack of finding things ✓ 
B Explore unfamiliar territory   
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in a pair, while Pick and MOLE are equivalent in a triple. 
The number of statements contained in an item block determines its size, with two to four questions being the most common. The 

size of the item block influences the individual’s load on the selection task. The more items there are, the more times the individual 
must compare them. The cognitive complexity of the selection task is increased by a large item block. It may be harmful to people with 
limited education or poor reading skills [13]. 

For anti-fraud efficacy, the alignment of item desirability is the most important factor in forced-choice test construction, followed 
by explicit factors such as item size and instructions. In general, the matching degree is calculated by calculating the average absolute 
difference in desirability between items. The greater the disparity, the more mismatched it is. However, judging only by the mean 
ignores differences in the desirability evaluations of the same item by different evaluators. Pavlov et al. [14] proposed an alternative 
index, the IIA (Inter-item Agreement) index, which incorporated the BP and AC indexes [15] into the matching of desirability of items 
to better match those items with no difference in mean value of desirability. Practitioners can calculate the IIA index and automatically 
compose the paper using the R [16] package autoFC [17]. 

The consistency of MFC item blocks in the ideal rank suggests that if item desirability is not well matched, the forced-choice test 
lacks an anti-fraud effect [18]. Well-matched blocks, on the other hand, produce more uniform response data. As a result, response data 
can be used to forecast item block faking ability in order to create a Faking Mixture Model [19]. 

2.1.2. Measurement model 
The item is an explicit measure of the trait, and the item’s relationship to the latent trait must be linked using a measurement model. 

Dominance Models and Unfolding Models (or Ideal-Point Models) are the two types of measurement models. According to dominance 
models, an individual’s characteristic level increases their likelihood of responding yes to the item. The Rasch model and the Two- 
Parameter Logistic Model (2PLM) all assume that the individual answers the item in accordance with the dominance measurement 
model. The unfolding models assume that the item’s proximity to the characteristic level being evaluated increases the likelihood of a 
positive response. Individuals who are too introverted, for example, may disagree with the item "I enjoy chatting quietly with a friend 
in a café" because they are uncomfortable in public places, whereas individuals who are extremely extroverted may disagree because 
they prefer more exciting settings [20]. Individuals at the intermediate level are more likely to agree with the item, and their item 
response function curve is single-peaked and bell-shaped; that is, the higher the probability of a positive answer, the closer the in-
dividual’s trait level is to the item position. The Generalized Graded Unfolding Model (GGUM) is the unfolding model’s representative 
model [21]. 

There is disagreement in the literature about whether models are better at reflecting individuals’ responses to non-cognitive items 
[6,22,23]. Simulation and empirical studies, such as those conducted by Chernyshenko et al. [24] and Tay et al. [25], have aided in the 
unfolding model. According to these studies, unfolding response items are just as effective as dominance response items in assessing 
attitude qualities. The unfolding model is more flexible since it might be similar to the dominance model when the item’s positional 
parameter is in its final place. However, studies have shown that this superiority is not universal in practice, and the psychometric 
properties of scales made entirely of unfolding response items are significantly inferior to scales made entirely of dominance response 
items, including lower reliability and criterion correlations [26]. Furthermore, the unfolding model cannot directly convert the scoring 
of reverse items [27]. The dominance model is generally more parsimonious and has fewer parameters than the unfolding model in 
terms of model complexity. Except where there is clear evidence to examine the superiority of the complex model [28], the more 
parsimonious model should be considered first. Furthermore, writing unfolding response items is more difficult, and defining the exact 
meaning reflected by the items is also difficult. More information on the dominance model and the unfolding model can be found in the 
work of Drasgow et al. [20]. 

The measurement model is an item-level feature and has nothing to do with the format of forced-choice items. Items from any 
measurement model can be used when combining items into forced-choice item blocks because they can all measure the same latent 
trait and the distribution of latent trait is constant for the same population. In practice, researchers must combine the characteristics of 
the item or the data to choose one of the dominance or unfolding models as the measurement model between the item and the latent 
trait, and there is currently no situation in which the two models are mixed in the same test. 

2.1.3. Decision theory 
Instead of evaluating each item independently, forced-choice tests require participants to make comparative judgments on a group 

of items and then make decisions on how to answer them. The absolute evaluation of the items serves as the foundation for determining 
an individual’s trait level. According to Brown [13], the basis for individuals making comparative judgments on a set of items is their 
absolute evaluation level of each item being compared. To model forced-choice data, decision theory must explain the relationship 
between explicit response and absolute evaluation, allowing the individual’s latent trait level to be assessed. 

Table 2 
Rank question types.  

Instruction: Sort the following descriptions 

Item block Rank 

A Lack of finding things 3 
B Explore unfamiliar territory 1 
C Make decisions based on data analysis 2  
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Thurston’s Law of Comparative Judgment 
Utility is a latent variable that can be thought of as the psychological value of an item to an individual. Thurstone [29] believed that 

the individual’s consideration of the item was essentially a consideration of utility value. yij represent the explicit results after 
comparing the item i and j, and yij = 1 represent that individual selected the item i as the most consistent, otherwise yij = 0. The 
relationship between utility difference y∗ij and explicit response yij can be sorted as formula (1): 

yij =

{
1, y∗ij ≥ 0
0, y∗ij < 0

(1)  

Where y∗ij = ti − tj represent the utility difference between item i and item j. t represent the utility value of item. 
The utility on item i can be divided into two parts: systematic and random. The systematic part f(θa) can be a response function 

related to the individual’s latent trait level, and the random part is random error εi. Thurstone assumed that they are independent of 
each other among different items and obey a normal distribution. Therefore, the relationship between utility and latent trait can be 
expressed as formula (2): 

ti = f (θa) + εi (2)  

Where θa is the individual’s level on the latent trait i measured by the item a. 
Luce’s Choice Axiom 
Luce [30,31] extended the Bradley-Terry model [32] from binary choice situations, which used vi to represent an individual item 

i-related response intensity. The set of alternative items is called S, then the probability P(i[S]) of choosing i from S is proportional to vi 
as formula (3): 

P(i[S]) =
vi

∑

k in S
vk

(3) 

Luce describes the ranking process of a group of items as a series of independent steps to make the best choice: firstly, select the 
most suitable item i from the item set S, and then select the second most suitable item j from the remaining set S − 1, until the selection 
of the last two items is completed, thus realizing the ranking of all alternative items [12]. The probability of the ranking result is the 
result of the multiplication of the probability of each step. 

When this decision theory is applied to the forced-choice model, vi can be derived from the item response function related to the 
latent trait. The MUPP framework proposed by Stark [33] extends Luce’s Choice Axiom, which greatly promoted the development of 
forced-choice models [7]. In the MUPP framework, it is assumed that the individual’s assessment of each item is independent and that 
the items are unidimensional. Items in a block can come from the same or different dimensions, so it is called the Multi-Unidimensional 
Pairwise Preference Model (MUPP). Assuming an item block contains the item i, j, k, l, and the latent trait θa, θb, θc, θd are measured 
separately. P(i) represents the individual’s probability of accepting the item i and Q(i) represents the probability of rejecting the item i, 
and Q(i) = 1 − P(i). Put them into formula (3), vi = P(i)Q(j)Q(k)Q(l). 

When it is Pick item format, the probability P(i[ijkl]) of an individual choosing i from the set [ijkl] can be expressed as formula (4): 

P(i[ijkl]) =
P(i)Q(j)Q(k)Q(l)

P(i)Q(j)Q(k)Q(l) + Q(i)P(j)Q(k)Q(l) + Q(i)Q(j)P(k)Q(l) + Q(i)Q(j)Q(k)P(l)
(4) 

Taking the Rank item format as an example, assuming that the ranking result of an individual is i > j > k > l, then P(ijkl) is like 
formula (5): 

P(ijkl)=P(i[ijkl]) × P(j[jkl]) × P(k[kl]) (5) 

Taking MOLE as an example, the rank of the two unselected items cannot be determined, so the two possible ranks are combined as 
the probability of the selection result of this item format. Using P(i ∗ ∗l) to represent the probability that the subjects chose i and l as the 
most and the least in line with their probability, then we can get formula (6): 

P(i ∗ ∗l)=P(ijkl) + P(ikjl) (6)  

In conclusion, determining the response probability of an individual item will allow us to determine the response probability of a block. 

Table 3 
MOLE question types.  

Instruction: Choose from the following descriptions the one that best fits you and the one that doesn’t fit you the most 

Item block Most Least 

A Lack of finding things   
B Explore unfamiliar territory ✓  
C Make decisions based on data analysis   
D Do work that focuses on precision  ✓  
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In addition, Thurston’s Law of Comparative Judgment and Luce’s choice axiom are equivalent in a pair. 
Other types of decision theories include Coombs’s Unfolding Preference Model and Andrich’s Forced Endorsement Model. The 

former is a special case of Thurstone’s Law of Comparative Judgment, and the latter is equivalent to the Bradley-Terry model after 
simplification. 

2.2. IRT models for forced-choice test 

Table 4 presents a concise overview of the prevailing forced-choice models [23,33–36] based on the three fundamental components 
of FC models. Due to the equivalence of decision theory under pairs, pair will be listed separately. This section elucidates the un-
derlying distinctions among models by presenting a comprehensive overview of four specific examples, namely TIRT, MUPP-2PL, 
ZG-MUPP, and MUPP-GGUM. 

2.2.1. TIRT model 
Brown and Maydeu-Olivares [34] proposed TIRT, a MIRT model for dominance response items based on Thurstone’s Law of 

Comparative Judgment. 
TIRT assumes that the psychological process of individual selection or ranking is to make independent pairwise comparison 

judgments on n items in an item block in turn, and produces ñ = n(n − 1)/2 comparison results. Before modeling the data, binary 
coding the response to obtain the comparison results of the pairwise items are needed. 

Taking a Rank-3 item block as an example, the items in the item block are {i, j,k}, i, j and k respectively represent a project and 
measure the latent feature s of an independent dimension. Assuming that the individual’s selection result is i > k > j, the encoding 
result is {i,j} = 1, {i,k} = 1, {j,k} = 0, which represents i > j, i > k and j < k. Taking i > j as an example, P(i> j) is like formula (7)： 

P(i> j|θa, θb)=ΦN

⎛

⎜
⎝

γij + λiθa − λjθb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ψ2

i + ψ2
j

√

⎞

⎟
⎠ (7)  

Where μi − μj = γij, μi is the mean of the latent utility ti, λi is the factor loading of the item i on the latent trait θa, assumming latent trait 
and error obey the normal distribution. The variances of error εi and εj are ψ2

i , ψ2
j , then the variance of the difference value is ψ2

i + ψ2
j , 

and ΦN represents the cumulative normal distribution function. 
TIRT’s applicability in various settings has been tested using simulations and empirical studies by many scholars [5,7,37–41]. On 

the one hand, these studies indicated that TIRT has overcome the ipsative issue in conventional scoring to some extent, has improved 
measurement accuracy compared to conventional scoring, and is closer to the results of the Likert single stimulus scale [42]; on the 
other hand, they also indicated that in order to show better properties than conventional scoring, TIRT requires more restrictions on 
the test design [34]. 

2.2.2. MUPP-GGUM model 
The MUPP-GGUM model, proposed by Stark [33], is a multidimensional model for unfolding response items that is based on Luce’s 

Choice Axiom. As the first forced-choice model used in computerized adaptive testing, it has been extensively used in the development 
of numerous personality assessments for the purpose of military personnel selection in the United States. It also provides consistent 
guidance for the development process. 

Stark [33] used the binary scoring version of GGUM, which follows the dominance response model, to calculate the response 
probability of a single item, that is, the P(i) and Q(i) in formula (4). Hontangas et al. [22] developed MUPP-GGUM model suitable for 
the Rank and MOLE item formats and used the MCMC joint estimation algorithm to evaluate the statement and personal parameters. 
Based on the presented model, the likelihood of an individual selecting a particular item i can be determined as formula (8): 

P(i)=
exp{αi[(θa − δi) − τi]} + exp{αi[2(θa − δi) − τi]}

1 + exp{αi[3(θa − δi)]} + exp{αi[(θa − δi) − τi]} + exp{αi[2(θa − δi) − τi]}
(8)  

Among them, αi represents the discrimination parameter of the item i, τi is the intercept parameter of the item i, δi is the location 
parameter of the item i, and θa represents the latent trait measured by item i. 

For this model, Joo et al. [43] created two informative indices: OII (Overall Item Information) and OTI (Overall Test Information). 
When selecting items similar to OII, Joo et al. offered a method to draw graphs of conditional OII so that researchers can further 

Table 4 
Model summary.    

Pair Pick Rank MOLE 

Dominant model Thurston’s Law of Comparative Judgment TIRT/RIM/MUPP-2PL TIRT/BRB-IRT TIRT/BRB-IRT TIRT/BRB-IRT 
Luce’s Choice Axiom – 2PLM-RanK/ELIRT – 

Unfolding model Thurston’s Law of Comparative Judgment ZG-MUPP/MUPP-GGUM – – – 
Luce’s Choice Axiom – GGUM-Rank/FCRM –  

L. Nie et al.                                                                                                                                                                                                             
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compare and select the item block that provides the greatest amount of information within the target ability interval. The development 
of information indices also lays the groundwork for CAT [44]. 

2.2.3. MUPP-2PL model 
According to Morillo et al. [24], the items used in the dominance measurement model were superior to those used in the unfolding 

measurement model in terms of item writing difficulty and model parsimony. Therefore, on the basis of the MUPP framework, Morillo 
et al. replaced the item response function calculated P(i) and Q(i) in formula (4) with the classical dominance response model 2PLM, 
and called it the MUPP-2PL model. According to this model, the probability of an individual choosing an item i is formula (9): 

P(i)=P(i|θa)=
1

1 + exp[ − (αiθa − βi)]
(9)  

Among them, αi represents the discrimination parameter of the item i, βi is the intercept parameter of the item i, and θa represents the 
latent trait measured by item i. 

Morillo et al. [24] discovered that the length of the test influenced the recovery of relationships between item parameters, ability 
parameters, and traits; the longer the test, the more accurate the estimated results. Furthermore, sample size has a significant impact on 
parameter estimation accuracy, and this method can estimate difficult parameters more accurately than discrimination parameters. 
Finally, Morillo et al. discovered in an empirical study that MUPP-2PL’s estimation results of the relationship between some latent 
traits were quite different from previous studies, but it was unclear whether the difference was due to the respondent population or a 
change in the test situation. 

2.2.4. ZG-MUPP model 
The ideal point model is used as the measurement model in the ZG-MUPP model [45]. The model extends the MUPP framework’s 

decision theory from Luce’s Choice Axiom to Thurstone’s Law of Comparative Judgment. 
Assuming the participant needs to choose between two items s and t, these items assess latent features in different dimensions. The 

ZG-MUPP model defines Xs as the latent feature variable of item s, and Zs as the statement variable of item s. The latent feature variable 
follows a bivariate normal distribution, while the statement variables are independent. Individual choices between items s and t are 
made by comparing the distances between the latent features measured by the two items and the statement variables. If the distance 
Ts = Xs − Zs in item s is smaller than the distance Tt = Xt − Zt in item t, the participant is inclined to choose item s. The ZG-MUPP 
model calculates the probability of an individual choosing item s among items s and t as formula (10) to formula (12): 

P(s> t)= 1 − Φ
(
a∗

st

)
− Φ

(
b∗

st

)
+ 2Φ

(
a∗

st

)
Φ
(
b∗

st

)
(10)  

a∗
st =

1̅
̅̅
2

√ [λs(θs − μs)+ λt(θt − μt)] (11)  

b∗
st =

1̅
̅̅
2

√ [ − λs(θs − μs)+ λt(θt − μt)] (12)  

Among them, λs represents the discrimination parameter of the item s, μs is the location parameter of the item s, and θs represents the 
latent trait measured by item s. 

The ZG-MUPP model was created in response to criticism of the MUPP-GGUM model, which has too many parameters, making 
parameter estimation difficult. Each item in the MUPP-GGUM model includes three types of parameters: discrimination, location, and 
threshold, which appear to be cumbersome and complex. This complexity makes parameter estimation difficult and increases the need 
for sample size [21]. As a result, reducing model parameters is necessary. Previous research has shown that when estimating item and 
latent feature parameters directly, the MUPP model’s threshold parameters are more difficult to estimate than other parameters [35]. 
Moreover, threshold parameters provide little information for MFC testing [45]. Therefore, the ZG-MUPP model removes threshold 
parameters and retains two model parameters: discrimination λ and location μ. Joo also derived the information function for this model 
to facilitate its application in CAT and the calculation of SE [45]. 

All along, the unfolding model has been considered more flexible compared to dominant models [25,26]. However, it has a higher 
level of complexity and requires a larger sample size. The ZG-MUPP model simplifies the unfolding model and greatly increases its 
competitiveness. 

3. Parameter estimation methods 

To obtain the parameters of the forced choice model in complex scenarios with multidimensional data, some parameter estimation 
algorithms must be used. Based on the estimation process, these approaches can be divided into joint estimation and two-phase 
estimation strategies. The least squares algorithm, which is based on the maximum likelihood estimation (MLE) approach, and the 
Markov Chain Monte Carlo (MCMC) algorithm, which is based on the Bayesian method, are the two main algorithms used in joint 
estimation. 

L. Nie et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e26884

7

3.1. Two-phase estimation strategy 

MUPP-GGUM uses a two-phase strategy: the item parameters needed to calculate P(i) and Q(i) were pre-calibrated by Likert scale 
data in steps 2–3 and estimated by the GGUM2000 computer program (Roberts, Donoghue, & Laughlin, 2000b). In step 7, forced- 
choice response data were used to estimate ability using MUPP-GGUM. Stark et al. [33,46] achieved the Maximum A Posteriori 
(MAP) for high-dimensional latent trait estimation using a BFGS (Broyden-Fletcher-Goldfarb-Shanno) method similar to 
Newton-Raphson iterations. Expected A Posteriori (EAP) or MLE can also be used to estimate latent traits. Because an increase in the 
number of dimensions leads to an exponential increase in the number of nodes for numerical integration in EAP, EAP is best suited for 
1–2 dimensions, whereas MAP and MLE are best suited for a large number of dimensions. 

Stark implemented the BFGS algorithm in DFPMIN [47], but it can also be implemented in R by specifying the method parameter as 
L-BFGS-B in the function "optim." In the area of item parameter calibration, GGUM has made many breakthroughs in parameter 
estimation in recent years [48], supported by the related R packages GGUM [49], mirt [50], and Bmggum [51]. 

This model makes an implicitly strong assumption that item parameters are consistent across test formats, which may not be 
correct. However, this process is very beneficial to the management of the item bank and then facilitates the development of forced- 
choice adaptive tests. 

3.2. Joint estimation strategy 

3.2.1. Least squares algorithm 
TIRT is developed based on the structural equation model. The structural equation modeling software Mplus [52] or the Lavaan 

package [53] can estimate item parameters using unweighted least squares or diagonally weighted least squares. MLE, MAP, and EAP 
methods can also be used to estimate latent traits. 

Brown and Maydeu-Olivares [54] provide an Excel macro (http://annabrown.name/software) that can export Mplus statements 
after entering the test design for the convenience of practitioners. Bürkner provides functions for data simulation in the thurstonianIRT 
package and serves as an interface for users to select the Lavaan package [53] or Mplus as the intrinsic processing of model fit methods, 
and can automatically generate codes based on the method selected by the user [55]. 

Obviously, the development of the TIRT software kit provides great convenience for practitioners, which is one of the reasons why 
TIRT is widely used, but there are some reservations. For example, Bürkner et al. [55] discovered serious model failure to converge 
when using Mplus and Lavaan to fit TIRT, particularly in the case of large tests (for example, a 5-dimension test with 27 items in each 
dimension, the model convergence rate is only about 0.3). Furthermore, a large amount of RAM is required (for example, for a 
30-dimension test, where each dimension has nine item blocks and the model requires 32 GB of RAM); otherwise, it is necessary to 
specify in the code not to calculate the chi-square, standard error, and other fitting indices to reduce operating time and operating 
pressure. The most common error is a negative variance, which often necessitates specifying inter-dimensional relationships or factor 
loadings to facilitate convergence, but the estimation results also heavily rely on these fixed values. Given the sensitivity of TIRT in 
model identification, if TIRT is considered for use in a test with high dimensions, it is necessary to fully ensure the quality of the items 
during test development, such as through unidimensionality testing of the items to ensure the characteristics of unidimensionality. The 
issue of RAM must be considered when selecting an estimation method. Otherwise, the model does not converge or the memory is 
insufficient to obtain any estimation results, reducing the test developer’s confidence in the test quality and the model. 

3.2.2. MCMC algorithm 
Unlike TIRT, the proposers of the later models all based the parameter estimation algorithm on MCMC. It is a probabilistic, full- 

information parameter estimation method that does not necessitate complex mathematical derivation but only requires researchers 
to construct a reasonable posterior probability distribution function and can achieve estimation accuracy comparable to frequentist 
algorithms (maximum likelihood estimation, etc.). The Metropolis-Hasting MCMC algorithm is used by the MUPP-2PL, GGUM-Rank, 
RIM, and BRB-IRT models to estimate item and ability parameters based on forced-choice data. 

Table 5 
Summary of model parameter estimation methods.  

Parameter Estimation 
Methods 

Software Implementations Advantage Disadvantage 

Two steps: 
1. Pre-calibrate item 
parameters based on 
Likert scale data 
2. BFGS estimation power 

1. R package: GGUM/mirt/ 
bmggum 
2. DFPMIN/R package: 
stats 

Pre-calibration of item parameters is 
convenient for self-adaptive item 
bank management 

Using Likert item parameter on forced-choice data to 
estimate ability have the risk of inconsistent item 
parameter across test formats 

Weighted Least Squares/ 
Diagonally Weighted 
Least Squares 

Mplus 
R package: thurstonianIRT 
(Mplus/Lavaan method) 

Estimated time is short, easy to use not easy to converge in high-dimensional situations, the 
memory usage is too high, and sometimes the calculation 
of the fitting index needs to be discarded 

MCMC Ox/WinBUGS/JAGS/ 
OpenBUGS 
R package: thurstonianIRT 
(Stan method) 

no convergence problem Long estimated time, uneasy to use  

L. Nie et al.                                                                                                                                                                                                             

http://annabrown.name/software


Heliyon 10 (2024) e26884

8

Ox [56], OpenBUGS 3.2.3 [57], WinBUGS [58], JAGS [59], and other software can implement the MCMC algorithm. WinBUGS and 
OpenBUGS are relatively slow among these software programs, whereas the MCMC method developed by Bürkner et al. [55] for TIRT 
uses Stan [60] language, and the estimation speed is greatly improved by using the more advanced NUTS (No-U-Turn sampler) or HMC 
(Hamiltonian Monte Carlo) sampling methods. They all use the statistics R̂ , proposed by Gelman & Rubin [61] in the model 
convergence evaluation criteria (less than 1.2 means the parameters have converged). Although these models do not have significant 
convergence issues, they do necessitate practitioners having a deeper understanding of MCMC-related knowledge and implementation 
steps, and the main disadvantage of MCMC methods is the long estimation time [62]. 

See Table 5 for a summary of various model parameter estimation methods. 

4. Applied research 

In the field of industrial and organizational psychology, the MFC-IRT model is widely used. For example, TIRT has been used to 
develop the Assessment of Work-Related Maladaptive Personality Traits [63], as well as the Occupational Personality Questionnaire 
(OPQ32r) and the Customer Contact Styles Questionnaire (CCSQ) [34,64]. In the 360-degree feedback test, it has also been suggested 
that using forced-choice tests and TIRT scoring has better construct validity and aggregate validity than using traditional Likert rating 
scales to score [65]. The Adaptive Employee Personality Test (Adept-15) [66] and the Tailored Adaptive Personality Assessment 
System [67] both use MUPP-GGUM. These two tests are also a ground-breaking attempt at a Computerized Adaptive Test (CAT) 
forced-choice test. Simultaneously, the test of item parameter invariance is an important part of the test development process, and the 
invariance test method for the forced-choice test is being developed and improved gradually. Considerable evidence has also accu-
mulated in the field of validity research, which practitioners are increasingly interested in. As a result, this paper will summarize the 
current state of research in three areas: parameter invariance tests, CAT, and validity research. 

4.1. Parameter invariance test 

To ensure that all participants understand the item in the same way, test developers must run the measurement consistency test 
(item parameter invariance). In the forced-choice test, item parameter invariance can be classified as cross-block consistency or cross- 
population consistency. Items that lack parameter invariance indicate that their likelihood of answering is influenced by factors other 
than the measurement target. 

The degree to which an item maintains parameter invariance when paired with different items across item blocks is measured by 
cross-block consistency. Block 1 (which contains items A, B, and C) and Block 2 (which contains items A, D, and E) are two item blocks 
that share item A. The estimation results for item parameters for item A in the two item blocks should be consistent, indicating cross- 
block parameter invariance. Lin and Brown [68] used the TIRT to compare the parameter invariance of two sets of Rank-3 and 
MOLE-4. Because the latter only added one new item to each of the former’s item blocks, the proportion of common items between 
each pair of item blocks was 75%, and only a few items had significant deviations. 

Cross-population consistency refers to whether an item has parametric invariance between people from different backgrounds (for 
example, people of different genders or different test situations). Differential Item Functioning (DIF) is another term for testing for such 
variability. If the item parameters differ significantly between groups, it indicates that the individual’s background influences the 
likelihood of answering this item. If the test contains an excessive number of such items, the test’s validity will be reduced and it will be 
unfair. Lee & Smith [69] tested the measurement invariance of TIRT using multiple group confirmatory factor analyses (CFA). It is 
suggested that ΔCFI >0.007 and ΔCFI >0.001 be the critical values of metric non-invariance and scalar non-invariance, respectively, 
but this method cannot be specific to the item to screen. The parameter inconsistency at the item level is DIF. DIF is the parameter 
inconsistency at the item level. P. Lee et al. [70] proposed an Omnibus Wald test for the discrimination and intercept indicators of the 
TIRT and suggested through simulation research that the detection efficiency was higher under the free baseline method: the detection 
rate was close to 1 and the type I error rate was close to 0.05 as sample size and DIF amount increased. Qiu & Wang [71] proposed three 
DIF test methods for RIM including EMD (equal-mean-difficulty), AOS (all-other-statement), and CS (constant-statement). Finally, it 
was found that the CS performed better than the other two methods in the test with DIF items. 

4.2. Computerized adaptive testing 

The measurement dimensions of personality assessment tools are typically high-dimensional due to the complexity of human 
personality. OPQ32r, for example, assesses 32 personality dimensions. The more dimensions there are, the more items are needed. 
Excessively large items will cause individual fatigue and boredom with the test, leading to careless answering. From the standpoint of 
measurement efficiency, when individuals in some dimensions have reached an acceptable measurement precision by a small number 
of items, which can be for individuals to have certain judgments on these dimensions, a subsequent focus on the items of the evaluation 
of uncertainty in the higher dimensions, a review of individuals in all dimensions as soon as possible can reach the level of reliability. 
Evaluation efficiency can thus be improved. One solution to the aforementioned problem is to create a CAT version of the forced-choice 
test. 

The forced-choice CAT was first used to select US Navy personnel 15 years ago. Houston et al. [72] created the Navy Computer 
Adaptive Personality Scales, which assess 19 personality traits. Stark et al. [46] proposed a six-step forced-choice adaptive procedure 
for multi-dimensional and unidimensional pick-2 (single and multidimensional blocks) using MUPP-GGUM. The most significant 
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difference from traditional CAT is that it must predetermine the proportion of unidimensional item blocks and the dimensional 
combination form of navigating and storing multidimensional item blocks. The two studies mentioned above imply that CAT improves 
efficiency more than non-CAT. The forced-choice CAT can be correctly only requiring half of the non-adaptive test questions. In 
addition, TAPAS, which is based on MUPP-GGUM, is an adaptable personality test for US military selection [67]. 

The ideal-point measurement model is currently used in the majority of computer-adaptive forced-choice tests, but dominant items 
have several practical advantages over ideal-point items. According to Brown and Maydeu-Olivares [27], creating ideal-point items is 
more difficult in content development. Ideal-point items have fewer analytic software options and are more difficult to estimate item 
parameters for [73]. Chen et al. [74] investigated the FC CAT with dominant items using the Rasch model, and Lin et al. [75] con-
ducted the first empirical study on MFC CAT dominance items using TIRT model. 

The assembly of blocks and the guidelines for block selection determine the validity of multidimensional FC-CAT. Fixed assembly 
and dynamic assembly are two methods of assembling blocks. A benefit of constant assembly is consistent block parameters. But fixed 
assembly produces fewer blocks from the same item pool than dynamic assembly. Dynamic assembly selects items in real time while 
the subject takes the test. Flexible matching generates more blocks, making item leakage harder. However, the stability of item pa-
rameters over these blocks may be an issue. And dynamically creating blocks requires aligning things with similar social desirability 
[14]. The genetic algorithm-based NHBSA (Node Histogram-Based Sampling Algorithm) [76] can help achieve this goal [77]. 

Block selection rules balance information for each dimension. Data from previous blocks determines the next block the subject 
should answer during the test. There are three FI-based (Fisher Information) selection rules for multi-dimensional CAT, which Mulder 
& van der Linden [78] categorized as A-optimality (trace), D-optimality (determinant), and E-optimality (eigenvalue). Among them, 
the A-optimality method has slightly better estimation accuracy than the D-optimal method, and the E-optimal method is the most 
unstable (Mulder & van der Linden, 2009). Veldkamp & van der Linden [79] proposed a posterior expectation KL information (KB 

method) based on the KL information as an alternative to FI, which includes three selection rules: KL index (KI), posterior expected KL 
information (KB), and posterior KL distance (KLP) between subsets [78–82]. 

Chen et al. [74] proposed three subpool selection strategies to improve the efficiency of item selection and control the exposure rate 
of items. The three strategies are the Sequential Strategy, the Multinomial Strategy, and the High-SE Strategy. The Sequential Strategy 
will choose items from each combination of items based on the amount of information until the termination standard is reached. The 
Multinomial Strategy solves the problem of sequential strategies by randomly selecting a sub-database based on the polynomial 
distribution. The high-SE Strategy first determines which dimensions an individual has the highest SE in, and then selects the item 
blocks of the corresponding dimension combination. In terms of overall performance, the Multinomial Strategy does well. 

Furthermore, Chen et al. [74] proposed the Revised Sympson-Hetter Online (RSHO) to control the exposure rate of items. When 
selecting item blocks, first determine the most appropriate item blocks based on the amount of information and then select items with 
less exposure. The RSHO regulates the exposure rate of the items while slightly sacrificing measurement accuracy. 

According Seybert & Becker [82], the retest reliability of the forced-choice CAT is lower than that of traditional Likert rating scales 
[83], but comparable to the retest reliability of duplicate Likert rating scales. 

4.3. Validity studies 

To answer this question, researchers focused on five areas to see if the IRT’s latent trait scores could accurately reflect individuals’ 
true characteristics. The first is to determine whether IRT scoring recovers better latent traits and their relationships than traditional 
scoring [12,22,84]. Using IRT to estimate trait scores can result in a significant improvement in measurement accuracy when 
compared to traditional scoring, which is almost the common conclusion of all studies in this direction, and it also gives researchers 
great confidence to develop more IRT. Some studies, however, have found that the results of forced-choice models are not always as 
good as those of traditional scoring models [40,85,86]. However, the extent to which the scores obtained from these models can be 
interpreted as traditional normality scores merits further investigation because it is directly related to whether these scores can be used 
as normality scores for personnel selection or for correlation analysis with external criteria. 

To answer the above questions, the second direction attempted to investigate the relationship between IRT and latent trait scores 
obtained by the Likert single stimulus scale [42,64,87,88]. The score of a single stimulus scale is thought to be the most consistent with 
the true value of individual latent traits in these studies. If the score obtained by the forced-choice model maintains a high similarity 
with the score origin, size, and dimension relationships, the equivalence of the Likert scale and forced-choice scale will be proved. 

The third direction is to investigate the ability of forced-choice tests to detect fraud. When the social desirability of the forced- 
choice item block is matched, the forced-choice test outperforms the Likert rating scales in terms of anti-fraud ability [89]. When 
compared to using TIRT to analyze the forced-choice test, using the Graded Response Model (GRM) to analyze the Likert rating scales 
cannot effectively distinguish high-ability individuals because participants tend to perform better, resulting in low discrimination of 
items that reflect high ability [90]. 

The fourth direction is to investigate the application of IRT in non-self-rating situations. Because Likert rating scales have a common 
method deviation, different raters’ evaluations are influenced by their internal ideal behavior standards, resulting in low consistency 
and reliability among raters. Hung et al. [91] proposed Forced-Choice Ranking Models (FCRM), which quantify rater leniency and task 
difficulty as new indicators and are useful in non-self-rated scenarios. 

The fifth direction is reliability research. Reliability affects validity, so reliability is a crucial indicator for evaluating the appli-
cability of FC models. Many scholars have reported on reliability indicators when conducting IRT-FC studies [7,23,27,34,35,37,42,43, 
54,88,89,92]. According to Lin et al. [92], reliability indicators include theoretical reliability, empirical reliability, simulated true 
estimation reliability, and retest reliability. The evaluation score is influenced by four aspects of measurement errors [93]: random 
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errors (due to random fluctuations in an individual’s responses), transient errors (due to situational factors affecting a specific 
measurement occasion), item-specific errors (due to consistent interindividual differences in item interpretation), and scale-specific 
errors (due to different measurement operationalizations of the same psychological construct). Simulating the reliability of true 
estimation involves random, item-specific, and scale-specific errors, while simulated retest reliability only reflects random errors [92]. 
Theoretical and empirical reliability often overestimate the reliability of IRT information because of the local independence 
assumption between pairwise comparisons within the same group (containing more than two items), which is not actually rigorous 
[90]. 

5. Future research 

IRT research has great potential as a form of assessment that can effectively resist fraud and response biases and improve individual 
response efficiency, particularly in the application of non-cognitive, high-stakes situation assessment. In addition to the unresolved 
problems of previous research, the following future research directions are proposed: new FC models, item parameter invariance 
research, forced-choice CAT research, and validity research. 

5.1. New FC models 

Current forced-choice models work for Pick, MOLE, and Rank item kinds. There are variations of the Pick-2, including the Adept 15 
[66], which asks participants to choose their preferred item and their willingness to do so (see Table 6). Brown and Maydeu-Olivares 
[94] created a factor analysis model and information function for graded blocks based on Thurston’s Law of Comparative Judgment. 
The DPM model was built to handle graded block data by Qiu et al. [95]. This type of item refines the individual’s behavior and 
provides more information, but the cognitive load of the item was also increased. Only the dominance models RIM and TIRT have now 
been expanded to a polytomous level. MUPP-GGUM is a dichotomy iteration of GGUM with the potential for future development of 
polytomous forced ideal point models. 

A new kind of IRT model with time has also been developed. As decision time increases, product preferences become less differ-
entiated, making decision-making harder. Thus, their trait levels are likely to be similar. This method is used in the Thurstonian D 
Diffusion Model [96], the Linear Ballistic Accumulator Item Response Theory Model [97], and the Guo et al.’s [98] Log-Linear Model. 
Collecting response time data in this setting is effortless, therefore augmenting the quantity of information and improving the effi-
ciency of the model without imposing additional cognitive load on the participants. Each traditional model has the capability to create 
a similar version that incorporates the element of time. In the future, more models may be taken into account for temporal extension. 

Both polytomous models and models with time can obtain more information, which produces more accurate parameter estimation 
results. All models in Table 4 can be extended in these two directions. However, it should be noted that models with time do not 
increase cognitive load and are generally only suitable for computerized testing with simple data collection; the polytomous model 
increases cognitive load and thus has significant limitations on the size of blocks. 

5.2. Research on parameter invariance based on each model 

Following Lin and Brown’s study [68] on TIRT, when the proportion of common items decreases, whether a higher proportion of 
items’ parameters can still have cross-item block invariance remains to be studied. In addition, the cross-item block consistency of 
other models needs to be studied. 

At present, there is only research on the parameter invariance of TIRT [69,70] and RIM [71]. Future studies should broaden the 
repertoire of differential item functioning (DIF) test methods for the forced-choice model and improve their sensitivity in detecting DIF 
from multiple sources. 

5.3. Forced-choice CAT 

Although forced-choice CAT has accumulated more experience in empirical research, the adaptive process for latent trait esti-
mation has been developed using item parameters calibrated in advance with a single stimulus scale. The database used for items is the 
single-item database rather than the item block database. During item selection, items will be combined to form the forced-choice item 
blocks, so the impact of cross-item block consistency on latent trait estimation under this CAT process needs further study. In addition, 
the combination of item block dimensions and the test length will increase significantly in a high-dimensional situation, which brings 
challenges to content balance and test efficiency. In the future, we can further explore how to elaborate on the advantages of CAT in a 
high-dimensional situation. Although the subpool partition strategies for item selection and within-person statement exposure control 
procedures proposed by Chen et al. [74] do not involve scoring and can be extended to CAT based on other non-RIM models, the 

Table 6 
Pick-2 graded blocks.   

Slightly agree Agree 

A lack of finding things  ✓ 
B explore unfamiliar territory    
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specific performance still needs to be explored by research. In addition, control methods such as The Multinomial Strategy cannot be 
directly applied to the variable-length test. In the future, we can further explore how to construct a more appropriate item selection 
strategy. 

5.4. Validity studies 

A large amount of research compares forced-choice tests and Likert rating scales to see if they measure the same measurement 
content similarly. However, the difference between the two in the test form and the response biases caused by Likert rating scales will 
inevitably lead to some errors. It is worth exploring how to maximize the control of these biases in the future. In the form of forced 
choice, the larger the item block, the stronger the resistance to faking, but it also increases the cognitive load [89]. Future research can 
explore the balance between the anti-faking effect and cognitive load on the size of the item block. In addition, most of the existing 
validity studies focus on TIRT, and the validity studies of GGUM-Rank and other new models need to be explored. 
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