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Genome wide analysis implicates upregulation of proteasome
pathway in major depressive disorder
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INTRODUCTION
Major depressive disorder (MDD) is a complex and common
psychiatric illness [1]. The World Health Organization predicts
that by 2030, MDD will be the leading cause of disease burden
worldwide (https://www.who.int/mental_health/management/
depression/wfmh_paper_depression_wmhd_2012.pdf?Ua=1).
Despite the numerous pharmacological agents available, about
30% of persons with MDD do not achieve a satisfying response
from their medications [2]. Thus, the importance of improving
therapy cannot be overestimated. However, to improve treat-
ment options, a better understanding of the biology of MDD is
needed. While the genetic contribution is estimated at around
45% [3], the biological basis of MDD is still poorly understood.
The most recently published MDD genome-wide association
studies (GWAS) applied a meta-analysis to 135,458 cases and
344,901 controls and detected 44 MDD associated loci; each
contributing only slightly to the risk to develop MDD [4].
Although the list of associated loci is given by GWAS,
identifying the causal variants driving these associations is a
complex task, for the following reasons: (i) Many loci span large
numbers of genes due to the pattern of linkage disequilibrium
[5]. In addition, a substantial portion of the loci resides inside
promoters or enhancers that affect the expression of genes
distant from the locus (similar to schizophrenia, for example
[6]). Thus, it is difficult to pinpoint the causal variant inside a
given associated locus and the gene associated with the causal
variant. (ii) The biological interpretation of GWAS results
remains challenging, particularly in the field of neuropsychiatric
disorders, due to their polygenic nature and the small effect of
single genetic factors [7,8,]. Several approaches have been
developed to detect the potential causal genes (for example,
the VEGAS tool [9], which translates GWAS results at the single
nucleotide polymorphism (SNP)-level to the gene-level). How-
ever, focusing on a specific gene can be misleading, as it could
represent a false-positive finding. Thus, a higher-level analysis,
such as pathway enrichment analysis (PEA), is needed to
improve the interpretation of results in relation to the biological
pathways involved. (iii) Performing PEA based on MDD GWAS
results alone is limited since the list of GWAS-based genes is not
well-defined (as described in (i)) and might be too short to

reach statistically meaningful PEA (as was demonstrated in
(o).

In our study, we integrated GWAS results with global gene
expression data, to improve the interpretation of MDD GWAS
results, in relation to the biological pathways involved. The
integration of data from various sources may potentially decrease
false-positive rates resulting from each data source separately, and
increase the reliability of the results [11,12,]. We previously used
this approach to decipher pathways involved in schizophrenia
[10,13]. In the first study [10], gene expression data were
integrated with schizophrenia GWAS results to (i) identify a
cluster of GWAS-based genes with highly correlated expression,
and (ii) extend the cluster to include genes whose expression
correlates highly with the cluster’'s pattern. This enabled a
statistically meaningful PEA of GWAS-based genes associated
with schizophrenia, which could not be performed when
analyzing GWAS-based genes alone. Similarly, we expected that
the integration of GWAS with gene expression data would
improve the interpretation of MDD GWAS results, in relation to
the biological pathways involved.

We extracted 37 GWAS-based genes from the latest published
GWAS of MDD [4]. We explored their expression patterns in post-
mortem brain samples of 48 individuals with MDD (GSE53987) and
identified a statistically significant pairwise correlation pattern.
This suggests a possible biological basis for the observed
correlations and involvement in common biological pathways.
However, the PEA of the 37 GWAS-based genes did not yield
reliable results. We then identified a cluster of seven highly
correlated GWAS-based genes. We followed the rationale that
genes participating in common biological pathways tend to have
correlated expression [14], and expanded the cluster by 793 genes
highly correlated with the cluster’s average profile. We were then
able to apply statistically meaningful PEA and identified biological
pathways that are known to be involved in brain-related processes
and specifically in MDD. These results were replicated in an
independent dataset. While gene-level differential expression
analysis of the GWAS-based genes and the enriched pathways
did not yield statistically significant results, pathway-based
differential expression analysis did identify a differentially
expressed pathway in MDD.
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Affymetrix Human Genome

Platform
U133 Plus 2.0

MDD—45.17 Control

—48.16
MDD—46.5 Control

— 4844

Mean age

=9, F =8 Control—
=9
=10, F =6 Control

9, F

Gender distribution

MDD—M
M
MDD—M

# Control
samples
18

18

# MDD
samples
16%

15°

Brain region
Hippocampus (HPC)
Striatum (STR)

Gene expression data description.

GEO accession
GSE53987 (Lanz
et al, 2015)

Table 1.
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MDD—M
M

51
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et al, 2013)

35, F=15
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8, F =5 Control—

31, F=19

MDD—M

50
M

13

Cerebellum (CRBLM)

Affymetrix GeneChip Human

MDD—48.6 Control

—55.9

=60, F=16

MDD—M

175

76

The dorsolateral prefrontal

cortex (DLPFC)

GSE92538 (Hagenauer
et al,, 2018)

=45

130, F

Control—M

Genome HG-U133 Plus 2 Array

®0ne sample was removed from the hippocampus (HPC)-MDD (GSE53987) as it did not pass the quality control (see Fig. S1A). Of 17 samples, we continued to investigate the remaining 16.

POne sample was removed from the striatum (STR)-MDD (GSE53987) as it did not pass the quality control (see Fig. S1B). Of 16 samples, we continued to investigate the remaining 15.

MATERIALS AND METHODS

1.

Data

1. Gene expression data: Messenger RNA (mRNA) levels from post-
mortem brain samples of individuals with MDD and healthy
controls measured by microarrays were obtained from the Gene
Expression Omnibus (GEO) repository [15]. We used three
datasets, composed of six brain regions (484 samples overall), as
listed in Table 1. Demographic and samples characteristics are
presented in Table S1. The gene expression datasets used were
pre-processed according to standard methods; for details see
the Supplementary Methods section 2 and Fig. S1.

2. GWAS data: Results were obtained from the latest MDD GWAS
study (135,458 cases and 344,901 controls), in which the
genes located 200 kb downstream and upstream to each of
the 44 resulting associated loci were listed [4]. We created a
list of 37 GWAS-based genes, which includes the closest gene
(within 200 kb downstream and upstream) to the peak SNP of
each of the 44 associated loci.

3. Blood sample data: The research protocol was approved by the
Ethics Committee of Shalvata Mental Health Center, and all the
participants provided written informed consent. Nine patients with
MDD and nine healthy controls were recruited from Shalvata
Mental Health Center, Israel. All the patients had been diagnosed
with MDD according to the Diagnostic and Statistical Manual of
Mental Disorders (DSM)-IV or DSM-V. Current depressive symptoms
were analyzed using the Hamilton Depression Rating Scale (HAM-
D) [16] and the Quick Inventory of Depressive Symptomatology
(QIDs) [17]. Peripheral blood samples were obtained at baseline.
Demographic and samples characteristics of the participants are
presented in Table S2.

2. Expression correlation analysis of GWAS-based gene lists:

For a given gene list, expression pairwise Pearson correlation
coefficients were calculated along with the MDD samples, for each
region separately. For each correlation value, a p-value was
calculated using the MATLAB function “corr”, which calculates the
probability of obtaining such an absolute value of the correlation, or
higher, in a random permutation of the order of the samples.
Calculation of a p-value of the observed correlation pattern:

We calculated the pairwise gene expression correlation values of a
randomly selected group of genes of the same number as the given
GWAS-based gene list. The random group of genes was created
using a uniform distribution on the whole gene expression dataset.
We repeated this calculation 1000 times. To calculate the p-value of
the observed correlation pattern, we counted the number of
random groups in which the number of gene pairs with absolute
correlation values higher than a certain threshold is equal to or
higher than that of the given GWAS-based gene list. For a detailed
description see Supplementary Methods section 3.

Extending the list of GWAS-based genes for PEA:

Given pairwise Pearson correlation values of the expression
patterns of a list of GWAS-based genes, we first identified a
cluster of genes with highly correlated expression. Then we
calculated the average expression profile of the cluster and
extended the cluster that originated from the GWAS-based genes
to 800 genes in total. We did this by adding the genes with the
highest Pearson correlation to the cluster’'s average expression
profile, as calculated along with all the MDD samples of the
relevant brain region. Extending the list is important for enabling
robust and statistically meaningful PEA.

PEA using GeneAnalytics via the GeneCards Suite website:

Given a group of genes, we applied the GeneAnalytics tool [18]
to identify enrichment of biological pathways. GeneAnalytics
defines superpathways as comprising one or more pathways from
different data sources, based on the similarity of their compound
genes. This entity was established to improve inferences and to
reduce redundancy. Superpathway enrichment scores are based
on log2-transformation of the binomial p-value, which is
equivalent to a p-value corrected for multiple comparisons, with
significance defined at <0.05. According to GeneAnalytics, scores
are classified as: High: corrected p-value smaller or equal to
0.0001; Medium: corrected p-value higher than 0.0001 but lower

Translational Psychiatry (2021)11:409



or equal to 0.05; Low: corrected p-value higher than 0.05.
6. Estimation of the comparability of various datasets and brain
regions, according to the differential expression:

We used an accepted measure to assess the comparability of
two datasets, as was presented in [19]. First, a two-sided t-statistic
was calculated for each gene, comparing its expression levels
between individuals with MDD and controls, for each brain region
separately. Then, to assess the comparability of two given brain
regions (from the same or different datasets), Pearson correlation
between the t-statistic values along all the genes expressed in
both regions was calculated. A p-value for obtaining such a
correlation value (or higher, in terms of absolute value) was also
calculated.

7. Pathway-based differential expression analysis using the STRING
database:

Network creation: A network is defined by a given group of genes
(nodes) and the co-expression relations of the genes (edges). We used
the STRING database, version 10.5 [20] for the co-expression relations
data. Accordingly, a score between 0 and 1 “indicates the estimated
likelihood that a given interaction is biologically meaningful, specific
and reproducible” [20]. Edges with a score above 0.1 were included.

Network view of differential expression: Given a gene expression
dataset, the following calculation was applied for each gene in the
network:

a. The mean expression and standard deviation values, Mc and Sc,
are calculated using the control samples only.

b. The mean expression, Mp, is calculated using the MDD samples.

c. Mp-Mc is calculated as the difference in the mean expression
between the two groups of samples.

d. The deviation from the control group is calculated, by (Mp —
Mc)/Sc. Then the network is displayed as an undirected graph
such that the node’s colors correspond to the deviation
described above, (Mp — Mc)/Sc. The edges represent co-
expression relations. Only genes that have co-expression
relations with other genes in the network are displayed.

8. RNA-sequencing of peripheral blood mononuclear cells:

Peripheral blood mononuclear cells (PBMC) were extracted from the
samples collected at Shalvata Mental Health Center (9 MDD and 9
controls). RNA was then extracted and sequenced. For a detailed
description, see the Supplementary Methods section 10.

RESULTS

MDD GWAS-based gene expression exhibits a high pairwise
correlation

A list of 37 GWAS-based genes was created, based on the latest
MDD GWAS [4].

We analyzed the expression pairwise correlation patterns of the
GWAS-based genes using the GSE53987 dataset (which includes
23 of the 37 genes), composed of hippocampal (HPC;16 samples),
striatal (STR;15 samples), and Brodmann area (BA) 46 (17 samples)
of individuals with MDD. The results for the HPC GSE53987 MDD
samples (Fig. 1A) show a gene cluster with highly correlated
expression (marked by an orange rectangle). We estimated the
statistical significance of the correlation pattern in each of the
three brain regions by generating 1000 random groups of genes
of the same size (Supplementary Methods section 3). A typical
correlation matrix for such a random group is shown in Fig. 1B. For
the HPC (GSE53987) and STR (GSE53987), the correlation patterns
showed high statistical significance: p-values of 0.006 and 0.02,
respectively, for a threshold value of 5% (Fig. S2; Correlation
matrices are presented in Fig. S3). The small p-values suggest a
possible biological basis for the observed correlations and
involvement in common biological pathways. We repeated this
analysis for a more permissively defined GWAS-based gene list of
69 genes (Supplementary Methods section 1 and Fig. S4). The
observation that this list did not yield statistically significant
correlation patterns in the three brain regions (Fig. S2) suggests it
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contains false positives, i.e. genes that are not biologically
associated with MDD.

Searching for biological pathways in which MDD-associated
genes play a significant role

We applied GeneAnalytics [18] PEA to the 37 GWAS-based genes
(see Supplementary Methods section 5). Twenty superpathways
were found to be enriched, with statistical significance. However,
most of the superpathways contained only one of the 37 GWAS-
based genes (See Table S3). These results are weak, as omitting a
single gene from the GWAS-based gene group (for example, as a
result of changing the upstream-downstream window around the
peak SNP of each locus) eliminates enrichment of the superpath-
way that contains it.

To further verify the results, PEA was also applied using the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) tool [21] (see Supplementary Methods section 6). No
statistically significant enriched pathways were detected using this
method (score > 2), further supporting that the GeneAnalytics
results are not reliable.

To improve pathway detection in MDD, based on GWAS-derived
genes, we integrated gene expression analysis in the following
way. For each of the three brain regions measured in GSE53987,
we calculated a correlation matrix (see Supplementary Methods
section 2) for the GWAS-based genes, using 23 of the 37 genes
that are present in that dataset. Then, a cluster of highly correlated
genes was selected for each brain region (for the HPC GSE53987, a
cluster of 7 genes was identified: DENND1B, C60rf168, SLC30A9,
DCC, DLST, RAB27B, and NEGR1; see the orange rectangle in Fig.
1A). For the STR GSE53987 and BA46 GSE53987, clusters of 8 and 6
genes, respectively, were identified (see Fig. S4). We focused on
the HPC GSE53987, as its correlation pattern showed the most
statistically significant results (see Supplementary Methods section
3 and Fig. S2B, D, and F). However, we note that the clusters of
highly correlated genes identified in the STR and BA46 of
GSE53987 significantly overlap with those of the HPC GSE53987
(7 of the 8 STR cluster genes; hypergeometric p-value = 0 and 3 of
the 6 BA46 cluster genes; hypergeometric p-value = 0.045).

As demonstrated above, the correlation pattern of 23 of the 37
GWAS-based genes present in the HPC (GSE53987) was statisti-
cally significant. This suggests a possible biological basis for the
observed correlations and involvement in common biological
pathways. However, to enable statistically meaningful PEA of the
GWAS-based genes, we expanded the list of genes. Following the
rationale that genes that participate in a common biological
pathway tend to have correlated expression [14], we expanded
the cluster of HPC (GSE53987) highly correlated GWAS-based
genes by an additional 793 genes whose expression levels are
highly correlated with the cluster's average profile (Pearson
correlation > 0.78, see Supplementary Methods section 4).

PEA was applied to the expanded list of genes using
GeneAnalytics [18]. Table 2 presents selected results (full results
of the 120 enriched pathways are presented in Table S4). While
800 is a somewhat arbitrary number of genes, the results were
similar when the dataset was extended instead by 600 genes, with
expression levels highly correlated with the cluster's average
profile (See Tables S5 and S6).

Comparing the results to those of the GWAS-based genes alone
(listed in Table S3), the extension of the list of implicated genes
increased the statistical significance of the results and the number
of enriched superpathways identified.

To further test the strength of the enriched pathways resulting
in GeneAnalytics [18], we also applied the DAVID [21] PEA website
tool and compared the results (See Table S7). The size of the
overlap between the two independent PEA tools corresponds to
an estimated hypergeometric p-value of 2.19x 107" (see Supple-
mentary Methods section 6 and 7). See the last columns of Table 2
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A) HPC(GSES53987): MDD GWAS

Clusterad
genes

-1 5 @ Qo5 1

C) PC(GSE53978): MDD GWAS

b

Clustered genes

Fig. 1

B) HPC{GSE53987): MDD rand.

. .5 ¢ s 1

<1 .5 Q Q5 1

Correlation expression matrix of the GWAS-derived genes. The color in each entry (xy) represents the correlation between the

expression of genes x and y, along with all MDD samples in the specified brain region. Red color indicates high-correlated expression and
blue, low. We used the SPIN tool [40]) to sort the list of genes so that genes with similar expression patterns would be grouped together. A The
Pearson correlation expression matrix of the 23 GWAS-derived genes was calculated along with hippocampal (HPC) samples of MDD patients
(GSE53987 data). Note that 23 of the 37 GWAS-derived genes were present in GSE53987. The orange rectangle represents the cluster of genes
with highly correlated expression. B The Pearson correlation expression matrix of 23 randomly selected genes was calculated along with HPC
samples of persons with MDD (GSE53987 data). C The Pearson correlation expression matrix of the 28 GWAS-derived genes calculated along
parietal cortex (PC) samples of MDD patients (GSE53978 data). Note that 28 of the 37 GWAS-derived genes were present in GSE53978. The
orange rectangle represents the cluster of genes with highly correlated expression. D The Pearson correlation expression matrix of 28

randomly selected genes was calculated along with PC samples of persons with MDD (GSE53978 data).

and Table S4 for the GeneAnalytics superpathways that overlap
DAVID resulting pathways.

Replication in an independent dataset

To further validate our results, we repeated the analysis using
independent gene expression data of post-mortem brain samples
(GEO accession number GSE35978), which contains samples from
the parietal cortex (PC) and the cerebellum (CRBLM). Note that 28
of the 37 GWAS-based genes are expressed in this dataset. See Fig.
1C for the correlation expression matrix of the PC GSE35978 MDD
samples and Fig. 1D for a typical correlation matrix of a random
group of genes.

We calculated the statistical significance of the correlation pattern
of the two brain regions of GSE35978 (Fig. S2H, J). While for the
CRLBM, a statistically significant correlation pattern was not observed,
the correlation pattern of the PC was statistically significant (p-value
of 0.006 for a threshold value of 5%). We thus decided to further
explore the replicability of the results using the PC data.

A cluster of 16 highly correlated genes was identified for PC
GSE35978 (Fig. 1C, marked by an orange rectangle): SLC30A9,

SPRINGER NATURE

BAG5, NEGR1, RSRC1, DENND1B, DLST, TMEM106B, L3MBTL2,
SORCS3, RAB27B, TCF4, RBFOX1, LINC0O0461, LRFN5, TENM2, and
DCC. Examining HPC GSE53987 (7 genes) and PC GSE35978 (16
genes) clusters, 6 of the 7 HPC genes are present in the PC cluster.
Assuming that the clusters of highly correlated genes are random
and uniformly distributed along the GWAS-based genes for both
the HPC and PC, the size of their overlap corresponds to a
hypergeometric p-value =0. This suggests that these positive
correlations are unlikely to be false positives, and plausibly
represent involvement in common biological pathways.

Of the 17 unique genes with highly correlated expression in the
HPC and/or PC, 11 were previously associated with MDD (Table
S8). This provides further validation for their potential involvement
in this disease.

The same correlation pattern analysis was applied to the
healthy control samples (Fig. S5). While for region HPC (GSE53987)
a statistically significant correlation pattern was not observed, for
PC (GSE35978) the p-value was 0.002, for a threshold value of 5%.
Out of 7 genes in the HPC (GSE53987) healthy controls cluster, 6
appeared in the HPC MDD cluster, corresponding to a

Translational Psychiatry (2021)11:409
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Table 2.

# Enrichment score  Superpathway # Matched

(Superpathway) genes

1 48.48 Vesicle-mediated 60 (659)
transport
40.04 Innate immune system 117 (2128)
38.39 Synaptic vesicle cycle 20 (90)
27.99 Ubiquitin-proteasome 19 (123)
dependent proteolysis
27.92 Phagosome 21 (152)
27.80 tp53 regulates 16 (85)
metabolic genes
7 26.02 Mitotic metaphase and 22 (180)
anaphase
21.26 GABAergic synapse 21 (201)
15.88 Neuroscience 25 (341)
10 15.13 Cytokine signaling in 42 (760)
immune system
11 14.49 MTOR Pathway 12 (103)
12 1317 TGF-beta pathway 36 (653)
13 13.00 MTOR signaling 17 (211)
pathway (KEGG)
14 1225 Long-term potentiation 11 (104)
15  10.15 Brain-derived 12 (144)

neurotrophic factor
(BDNF) signaling pathway

Pathway enrichment analysis results of interest for 800 extended GWAS-based genes of the hippocampus (HPC) (GSE53987).

PC (GSE35978)
Enrichment score

DAVID corresponding pathway

25.98 Vesicle

16.14 -

31.85 Synaptic vesicle

12.27 Proteasomal ubiquitin-dependent protein
catabolic process

1447 Anaphase-promoting complex-dependent
proteasomal ubiquitin-dependent protein
catabolic process

30.49 =

3061 =

19.14 -

10.13 -

1.9 -

23.50 -

18.88 -

Enrichment score (second column) corresponds to the log2-transformation of the p-value, corrected for multiple comparisons. High (green): corrected p-
value £ 0.0001; medium (orange): 0.0001 < corrected p-value < 0.05. The number (#) of matched genes (fourth column) corresponds to the number of genes in
the 800 extended list that are included in each of the superpathways. The number of genes composing each of the superpathways appears in brackets. The PC
(GSE35978) enrichment score (fifth column) corresponds to the same measure as in the second column, when measured using the PC (GSE35978) gene
expression data. The DAVID?' corresponding pathway (sixth column) contains the most similar pathway found in the DAVID tool results.

hypergeometric p-value of 4.08x107°. Of 15 genes in the PC
(GSE35978) healthy controls cluster, 12 appeared in the PC MDD
cluster (hypergeometric p-value = 0.001).

We note the statistically significant correlation pattern in the
samples of the PC healthy controls (GSE35978), and the high
replicability between the MDD and the controls, of the genes,
composing the highly correlated clusters of both PC (GSE35978)
and HPC (GSE53987). These observations suggest the involvement
of the GWAS-based genes in common biological pathways that
are not specific to the MDD samples. This infers involvement of
GWAS-based genes in general biological processes, in both the
MDD and the control samples.

We next expanded the GWAS-based genes cluster of PC
(GSE35978) into a larger group of 800 genes whose expression
levels are highly correlated with the cluster's average profile
(Pearson correlation = 0.92). PEA was applied to the expanded
group of genes; results are listed in Table S9 for GeneAnalytics and
Table S10 for DAVID. As shown in Fig. 2, 65 of the 120 HPC-based
(GSE53987) enriched pathways were replicated in the 134 PC-
based (GSE35978) enriched pathways. The size of the overlap
between the two independent datasets corresponds to a
hypergeometric p-value of 1.69 x 10 3%,

Pathway-based differential expression analysis

Gene-level differential expression analysis of both the GWAS-
based genes and the genes of the pathways that were found to be
enriched did not vyield statistically significant results (see
Supplementary methods section 9, Tables S11 and S12). However,
this is concordant with the accepted notion of the small effect of

Translational Psychiatry (2021)11:409

each of the numerous genes involved in the pathogenesis of
MDD. Nonetheless, investigating the genes as a group might
expose subtle changes in expression, which may collectively have
an impact on relevant biological pathways. In addition, in the case
that pathway-based differential expression is replicated between
different brain regions and between independent datasets, this
would significantly increase the validity of the results. We thus
decided to explore pathway differential expression and compare
the results between the various datasets and regions examined.

We first explored whether the gene expression datasets of the
different brain regions ([STR, HPC, BA46—GSE53987], [PC, CRBLM
—GSE35978]) are comparable. For each pair of brain regions, we
applied a global correlation measure to estimate their compar-
ability (see Methods section 6 and Table S13 for the correlation
matrix). Examining the matrix shows significant positive correla-
tions (defined as rho>0.1 and p-value <0.001) only between
regions that originate from the same dataset (GSE53987). Thus, we
conclude that the two datasets (GSE53987 and GSE35978) are not
comparable in terms of differential gene expression.

To search for robust patterns, which appear in at least two
independent datasets, we analyzed three additional datasets:
GSE92538 (DLPFC data), Stanley Study ID 6 (Cerebellum data, by
Allen A. Fienberg), and Stanley Study ID 16 (Thalamus data) from
the Stanley Medical Research Institute (https://www.
stanleygenomics.org/). We repeated the correlation analysis for
the group of 5 (243 additional) datasets (Table S13). Brain
regions STR (GSE53987), HPC (GSE53987), and DLPFC (GSE92538),
originating from two independent datasets, were shown to be
significantly positively correlated with each other (STR-HPC rho =
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Fig.2 The overlap in the pathways enriched by GeneAnalytics [18], between the GWAS-based extended lists of the hippocampal (HPC)
(GSE53987) and parietal cortex (PC) (GSE35978) datasets. For the respective datasets, 120 and 134 pathways were found to be enriched by
GeneAnalytics. The size of the overlap between the resulting enriched pathways of the two datasets, 65, corresponds to a hypergeometric p

value of 1.69x 1073%.

0.14, p-value =2.39x10"%", HPC-DLPFC rho =0.25, p-value =
3.6x107"%°, STR-DLPFC rho=0.14, p-value =3.38x107%). We
concluded that these three brain regions are comparable in terms
of differential expression.

Proteasome-related genes are upregulated in human MDD
brain and blood samples

Examining the enriched pathways of interest presented in Table 2
reveals immune-system pathways (for example, the innate
immune system and TGF beta pathway), which are known to be
involved in MDD [22,23,]. Several brain-related biological pro-
cesses (for example, synaptic vesicle cycle and long-term
potentiation) were also found to be enriched (Table 2). While
the inclusion of these pathways among the resulting enriched
pathways increases the validity of our results, we decided to focus
on the ubiquitin-proteasome dependent proteolysis pathway, for
the following reasons: (i) Its enrichment, which was originally
found in the HPC (GSE53987), was replicated in an independent
dataset, PC (GSE35978), and when using both GeneAnalytics [18]
and DAVID [21] PEA tools (Table 2). (ii) When applying pathway-
based differential expression analysis (see Supplementary Meth-
ods section 7), the pathway showed a tendency for upregulation
in all three brain regions: STR (GSE53987), HPC (GSE53987), and
DLPFC (GSE92538) (Fig. 3). Binomial p-values for this tendency
(Supplementary Methods section 8) were significant: p-values =
0.32x 107 for STR (GSE53987), 0.0041 for HPC (GSE53987), and
5.86 x 107'° for DLPFC (GSE92538). (i) While some evidence exists
for its involvement in MDD [24,25,], and in additional psychiatric
disorders such as schizophrenia, bipolar disorder, and autism
spectrum disorder [26,27,], to our best knowledge the differential
expression of this pathway has not been studied in MDD.

When examining Fig. 3, a subgroup of highly interconnected
genes that encode for proteasome subunits is apparent. The
proteasome subunits tend to be up-regulated in the three brain
regions (Fig. 3E-G). Interestingly, when the same analysis was
applied to a cohort of 9 MDD blood samples versus 9 controls, that
were collected at Shalvata Mental Health Center and subjected to
RNA-sequencing in PBMCs, the proteasome subunits showed a
clear tendency for up-regulation (Fig. 3H). Again, when gene-level
differential expression analysis was performed, no gene reached
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statistical significance after correction for multiple comparisons,
although 4 proteasome subunits genes were found to be up-
regulated in MDD PBMCs with p-value < 5% (Table S14)

DISCUSSION
In this study, we integrated MDD GWAS results with gene expression
data, with the aim of interpreting GWAS results with regard to the
biological pathways involved. The integration of GWAS results with
gene expression data poses several advantages: (1) Potential
decreases in the false-positive rates that result when the data
sources are considered separately. (2) GWAS results often identify loci
that regulate gene expression rather than affect protein structure
[28]. (3) Gene expression data also include effects of epigenetic
changes. GWAS-based gene expression data showed significant
pairwise correlations in three of the five brain regions measured:
HPC, STR (GSE53987), and PC (GSE53987). This suggests the
involvement of these genes in common biological processes. The
integration with gene expression data enabled investigating
additional genes whose expression patterns have been shown to
correlate with the average profile of a cluster of highly correlated
GWAS-based genes. This step follows the rationale that the
expression patterns of genes involved in a given biological pathway
tend to be correlated. We showed that expansion of the genes
investigated enabled performing statistically meaningful PEA that
was not possible when considering only GWAS-based genes. This
methodology was previously applied to schizophrenia, for which it
was also shown to improve the ability to perform PEA to GWAS-
resulting genes [10,13,]. We replicated the results of the PEA, based
on the integration of GWAS-based genes with gene expression data,
using two independent datasets, HPC (GSE53987) and PC (GSE53978)
(the overlap between the resulting enriched pathways corresponds
to a hypergeometric p-value of 1.69 x 1034

While gene-level differential expression analysis did not yield
statistically significant results, pathway-based differential expres-
sion analysis identified upregulation of the ubiquitin-proteasome
dependent proteolysis pathway in three brain regions, measured
in two independent datasets (GSE53987 and GSE92538) (Fig. 3).
The resulting enriched pathways (Table 2) included immune-
system pathways that are known to be involved in MDD and
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Fig. 3 Pathway-based differential expression analysis of the ubiquitin-proteasome dependent proteolysis superpathway. A Differential
expression of the ubiquitin-proteasome-dependent proteolysis superpathway measured on dorsolateral prefrontal cortex (DLPFC) (GSE92538)
data. The colors of the nodes represent the deviation in expression of the MDD samples from the healthy control group; the edges represent
relations of co-expression of the STRING database (see Supplementary Methods section 7). Only genes with relation to at least one other gene
in the superpathway are displayed. The yellow circle represents a subgroup of highly interconnected proteasome subunit genes. B The same
as in A) for the hippocampal (HPC) (GSE53987) data. C The same as in A) for the striatal (STR) (GSE53987) data. D The same as in (A) for the
MDD PBMC cohort. E Zoom-in on the proteasome subunit genes that are circled in (A). F Zoom-in on the proteasome subunit genes that are
circled in (B). G Zoom-in on the proteasome subunit genes that are circled in (C). H Zoom-in on the proteasome subunit genes that are circled
in (D). Note that there is a blue-colored gene in (D) which is circled, UBE2V2, which does not appear in (H) as it does not encode a proteasome

subunit.

several brain-related biological processes, such as the synaptic
vesicle cycle and long-term potentiation. However, we focused on
the ubiquitin-proteasome-dependent proteolysis pathway, due to
a number of reasons. (i) Its enrichment was replicated when using
two independent gene expression datasets and when using two
PEA tools. (i) It showed a tendency for upregulation in the three
brain regions tested (Fig. 3). (iii) While evidence exists for its
involvement in MDD, to our best knowledge its differential
expression has not yet been studied in MDD.

Our examination in greater depth of the pathway-based
differential expression of the ubiquitin-proteasome-dependent
proteolysis pathway (Fig. 3) led to the identification of a subgroup
of highly interconnected genes that encode for proteasome
subunits, with a tendency for up-regulation in MDD. This might
indicate the involvement of these genes in the pathogenesis of
MDD. The findings of several previous studies support this
hypothesis. For example, in [24], the role of three proteasome
subunit genes (PSMA7, PSMD9, and PSMD13) in the mechanisms
underlying the resistance/response to antidepressants was
explored, by genotyping 231 treatment-responsive and 390
treatment-resistant  individuals with MDD. The PSMD13
rs3817629 G allele was found to be associated with treatment-
resistant depression. In addition, individuals with homozygous GG
of this SNP exhibited lower mRNA levels in fibroblasts for PSMD13
than did individuals with the A allele. Moreover, in another study
[25], gene expression was measured by microarrays in blood
samples of 34 patients with MDD and 33 matched controls. Using
a machine learning algorithm, a 13-gene predictive model of
response to antidepressants was constructed, with close to 80%
accuracy. Interestingly, two of the 13 genes were proteasome
subunit genes. Importantly, our analysis identified a clear
tendency for up-regulation of proteasome subunits in MDD blood
samples too, suggesting a potential role as biomarkers. However,
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as the analyzed cohort was relatively small (9 patients vs. 9
controls) this finding requires further validation.

The proteasome subunits have been found to be involved in
additional psychiatric disorders. For example, global down-
regulation of proteasome subunit genes was detected in multiple
brain regions of post-mortem samples of 267 individuals with
schizophrenia vs. 266 healthy controls in [26]. A PEA applied to
differentially expressed genes of blood samples of 23 individuals
with bipolar disorder and 24 healthy controls identified the
ubiquitin-proteasome pathway as one of the top ten enriched
pathways [29].

One hypothesis that arises from the above results is that the
proteasome is involved in MDD through its role in immune system
processes. This is supported by a number of propositions. (i) The
proteasome is known to be tightly involved in various processes of
the immune system, such as T cell repertoire selection, CD8 T cell
responses, and antigen processing of MHC class | [30]. (ii) Several
of the pathways that we found to be enriched in the extended list
of GWAS-based genes are related to the immune system (Table 2),
and closely involve proteasome subunit genes. Examples include
cytokine signaling in the immune system [31], the innate immune
system [32], and TGF-beta pathways [33]. The proteasome subunit
genes are included in the list of genes that construct these
pathways in GeneAnalytics. (iii) Gene expression of the protea-
some subunits positively correlates with genes in the three-
mentioned immune system-related pathways and also in the
phagosome pathway (see Fig. S6). However, further study is
needed to establish this hypothesis and to elucidate the
involvement of the proteasome in immune system processes
associated with MDD.

Another hypothesis that arises from the above results involves
the signaling pathways that we found to be enriched in the
extended list of GWAS-based genes, namely of the brain-derived
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neurotrophic factor (BDNF) and mammalian target of rapamycin
(mTOR) (See Table 2). BDNF was shown to have elevated
expression levels following antidepressant use [34] and to
contribute to the regulation of mTOR signaling [35,36,]. mTOR
signaling was shown, in turn, to be involved in the regulation of
the ubiquitin-proteasome-dependent proteolysis pathway [37,38,].
To further explore this possible regulatory connection, we created
a correlation matrix that compares the expression patterns of the
genes that compose three pathways (BDNF, mTOR signaling, and
the proteasome subunits) (Fig. S7). The high positive correlations
between the genes composing these pathways support the
suggested regulatory connection. However, additional study is
needed to further establish the regulatory path that results in the
upregulation of proteasome subunits in MDD.

A major limitation of post-mortem brain sample studies is the
cellular complexity of the brain tissue and the diverse cell types
that compose the brain samples. This can result in the dilution
of authentic changes in gene expression in cell subpopulations,
and yield false-negative reports. Indeed, differential expression
analysis at the gene level did not reveal statistically significant
differences. This is concordant also with the accepted notion
that the pathogenesis of MDD involves tens or hundreds of
genes, whereby the contribution of every single gene is small.
Nonetheless, our application of pathway-based differential
expression identified differential expression of the ubiquitin-
proteasome-dependent proteolysis pathway. While the magni-
tude of the differential expression was mild, the replication in
three brain regions from two independent datasets supports its
validity.

Another important limitation of this study is the potential
confounding effect of the use of antidepressants, which could
alter gene expression levels [39]. This limitation was addressed by
repeating the pathway-based differential expression analysis and
comparing the findings of the individuals with MDD patients who
were treated with antidepressants to those who were not. This
information was available for one of the three datasets analyzed,
GSE53987. Compared to those who did not take antidepressants
(Fig. S8), those who took them did not show a greater magnitude
of upregulation of the proteasome subunit genes. Thus, it is likely
that antidepressant use is not responsible for the upregulation of
the proteasome subunit genes that we detected.

As gene expression does not frequently correlate with the level
of the proteins coded by the genes, drawing conclusions
regarding the biological consequences of the signal we detected
is impossible. However, our integration of GWAS results with gene
expression data increases the validity of the association between
the enriched pathways identified and the pathogenesis of MDD.
Still, additional study is needed to further validate the up-
regulation of the proteasome subunit genes that we detected, and
to explore the consequences in terms of protein levels.

To summarize, by integrating GWAS results with gene expres-
sion data, we identified biological pathways that are associated
with MDD. Pathway-based differential expression analysis
detected up-regulation of proteasome subunit genes in MDD.
While this signal was replicated in three brain regions: HPC, STR,
and DLPFC and also in PBMCs, further validation of this signal and
exploration of its impact at the protein level are required. We have
shown that the integration of two data sources, GWAS (DNA
studies) and RNA expression levels, improves the ability to
interpret MDD GWAS results in terms of the relevant neurobio-
logical pathways.
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