
ARTICLE

Received 9 Dec 2016 | Accepted 22 Feb 2017 | Published 9 May 2017

Optically levitated nanoparticle as a model system
for stochastic bistable dynamics
F. Ricci1, R.A. Rica1,w, M. Spasenović1,w, J. Gieseler1,2, L. Rondin3,w, L. Novotny3 & R. Quidant1,4

Nano-mechanical resonators have gained an increasing importance in nanotechnology owing

to their contributions to both fundamental and applied science. Yet, their small dimensions

and mass raises some challenges as their dynamics gets dominated by nonlinearities that

degrade their performance, for instance in sensing applications. Here, we report on the

precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in

high vacuum. We demonstrate how it can lead to efficient signal amplification schemes,

including stochastic resonance. This work contributes to showing the use of levitated

nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide

variety of fields.
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N
ano-mechanical resonators need to meet criteria of light
mass and high-Q factor in order to maximize their
performances, when operated as linear force transducers.

However, these features lead to intrinsically nonlinear behaviour1,
with consequent vanishing dynamical range. To overcome this
limitation, modern nanotechnology requires new sensing schemes
that take nonlinearities into account and even benefit from them2.
Many of the proposed solutions operate inside an instability
region3,4 or close to a bifurcation point5,6, where the system
ideally becomes infinitely sensitive. Others exploit fluctuations of
noisy environments to trigger stochastic resonances7 that amplify
weak harmonic signals8–10. For all these sensing applications,
a single nanopartticle optimally decoupled from the environment
represents a particularly interesting system in the family of
high-Q resonators. In fact, since its very first realization11,
optical levitation of a nano-scale object in vacuum has enabled
several ground-breaking experiments, including demonstration
of zeptonewton force sensitivity1,12, tests of fluctuation theorems
and stochastic thermodynamics13,14, as well as the observation of
photon recoil heating15.

In this work, we demonstrate full control on the linear,
non-linear and bistable dynamics of a levitated nanoparticle in
high vacuum and under the effect of external noise. The potential
of our platform is validated by the implementation of two
nonlinear amplification schemes, including stochastic resonance7.
Remarkably, we demonstrate, in excellent agreement with theory,
up to B50 dB amplification of non-resonant harmonic force
at the atto-newton scale. In addition, the unprecedented level
of control achieved will enable the use of levitated nanoparticles
as a model system for stochastic bistable dynamics with
applications to a wide range of fields including biophysics16,17,
chemistry18,19 and nanotechnology20.

Results
System. Our experiment is sketched in Fig. 1a. A single silica
nanoparticle (dB177 nm in diameter) is optically trapped in
vacuum by a tightly focused laser beam, and its 3D trajectory
monitored with a balanced split detection scheme. The detector
signal controls an electro-optic modulator (EOM) that feedback-
cools all three translational degrees of freedom by modulating the
laser intensity. In high-vacuum conditions (PB10� 6 mbar) the
mechanical Q-factor, given by the gas damping g0, is measured to
be Q¼ 1.2� 108. Under feedback, the nanoparticle oscillates at
non-degenerate angular frequencies O0

(x,y,z) with very small
amplitudes, corresponding to sub-Kelvin effective temperatures11.
By optimizing the feedback settings (Supplementary Note 2) and
carefully screening important sources of noise such as mechanical
vibrations and air turbulences, we obtain a highly stable resonator
with frequency fluctuations improved by one to two orders
of magnitude compared to previous works1,21 (Supplementary
Note 3). When one of the spatial modes is parametrically driven
at resonance21, the particle explores the anharmonic part of the
optical potential, which can be modelled as a Duffing
nonlinearity1. As a result, the equation of motion for the driven
coordinate, which we choose to be x, reads

€xþ g0þO0Zx2
� �

_xþO2
0 1þ xx2þ E cos Omtð Þ
� �

x ¼ F
m
; ð1Þ

where Z is the non-linear feedback-induced damping coefficient,
x is the Duffing term prefactor, E and Om are, respectively,
the modulation depth and modulation frequency of the driving
signal. Finally, the fluctuating force F ¼ F thþF noise has
two contributions. The first one, F th, represents the stochastic
force arising from random collisions with residual air molecules
in the chamber, while the second, F noise, represents artificial

parametric noise that we add through the EOM. See Supple-
mentary Note 1 for further experimental set-up details.

Amplitude response. The nonlinear response of the resonator is
fully characterized by measuring the oscillation amplitude in the
driving parameters phase space ðdm; EÞ, where dm¼Om/O0� 2 is
the normalized detuning21. When the modulation frequency is
decreased (down-sweep) across the resonant condition dm¼ 0,
the amplitude response spans a triangular region corresponding
to the first instability tongue22. This is shown in the top 2D false
colour map of Fig. 1d. In the opposite case of a frequency
up-sweep, however, the system displays hysteresis, and the
tongue results in a narrower width. The red and blue cross cuts
in Fig. 1d clearly show this behaviour, identifying a region where
two stable oscillation states coexist (Fig. 1b,c). The bistability
region, shown at the bottom of Fig. 1d, is obtained by subtracting
up- from down-sweeps maps. By fitting our experimental
data with the analytical solution Aðdm; EÞ (See Supplementary
equation 1; ref. 21) we retrieve the nonlinear coefficients
Z¼ (18.1±0.4)mm� 2 and x¼ (� 9.68±0.15)mm� 2. Such
precision measurements are made possible by the highly stable
oscillation frequencies that lead to minimal drifts of the detuning
parameter (DdmE2DO/O0u10� 3, over the entire measurement
time), therefore allowing to predict with excellent agreement the
boundaries of the instability tongues (white lines in Fig. 1d).
Further details on spectral features of the nonlinear response are
provided in Supplementary Note 4.

Stochastic activation. Inside the bistable region, natural thermal
noise can activate spontaneous transitions between low- and
high-amplitude states. However, in high vacuum these events are
extremely rare, which makes our system a promising candidate
for nonlinear sensing. To observe stochastic activation within a
reasonable time we therefore add to the EOM a Gaussian noise
z(t) of amplitude NV, that in turns produces a position dependent
parametric stochastic force of the form F noise / NVzðtÞx. Noise
calibration can be performed by looking at the particle’s oscilla-
tion amplitude A in the absence of parametric driving23. For low
noise levels, the particle’s dynamics remains unaffected, being still
dominated by the thermomechanical noise of the environment.
However, for sufficiently high noise, the particle’s amplitude
starts to increase. Assuming an effective temperature Teff ¼ mO2

0A2

kB
,

the noise amplitudes NV are calibrated into meaningful
temperature units TN (Supplementary Note 5). Interestingly, the
measured trend differs from what reported in other systems8,
where a quadratic dependence between TN and NV was found.
This is to be ascribed to the parametric (that is, multiplicative)
nature of the noise injected in the present case, and prompts the
interest of future studies.

The stochastic switching dynamics of the levitated nanoparticle
is investigated via the injection of noise. Figure 2a illustrates
position and amplitude time traces corresponding to few
switching events and emphasizes the remarkable ability of our
tracking scheme to resolve considerably different time scales. The
amplitude probability distribution r(A), obtained by analysing
the particle trajectory over B1 min, is shown in Fig. 2b.
Even though the particle is in a non-thermal state due to the
applied parametric control13, we introduce a simplified
model that describes the dynamics of its amplitude as the
motion of a thermal fictitious particle in a double well
potential. This justifies the use of the Boltzmann–Gibbs
distribution rðAÞ / exp½ � UðAÞkBTN

� to extract the amplitude
effective potential UðAÞ that models the bistable dynamics.
Note that this approximation does not induce any inconsistency
in the subsequent analysis, which relies in the experimental
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determination of the symmetric condition for UðAÞ. The
high-frequency stability of the system allows us to finely modify
the probability distribution r(A), and hence to engineer almost at
will the shape of UðAÞ following any path inside the bistable
regime. An interesting case consists of the so called iso-amplitude
lines: paths along which the amplitude Ahigh, and consequently
the amplitude gap AD ¼ Ahigh�Alow, is kept constant. These
particular subsets of the phase space are nonlinear features
generally hidden by the frequency noise that blurs the measured
instability tongue10,21. Thanks to the reduced frequency
fluctuations, they are clearly visible in our system. Few
examples of iso-amplitude lines are shown in the lower panel
of Fig. 1d (solid lines), and satisfy the following relation
(See Supplementary Note 4 for derivation):

EðdmÞ ¼ 1þ 9x2

Z2

� �
d2

m

d2
th

� 6xA2
Ddmþ Z2d2

thA
4
D

� 	1=2

; ð2Þ

being dth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2þ Z2

p
=2Z. By following an iso-amplitude line

with a fixed AD, we obtain a very smooth evolution of the
effective potential (Fig. 2c). Starting from an asymmetrically tilted
configuration, it progressively undergoes inversion of its shape,
passing through a quasi-symmetric condition where the potential
barrier determines equal depth of the two wells. It is important to
stress that, upon this ad-hoc dynamical sweep of E and dm, the
two minima of the potential corresponding to the amplitudes
Ahigh and Alow, maintain their position fixed. Clearly, this would
not be the case when following any other path, for example
moving along E¼ const lines (see cross-cuts in Fig. 1d). The
populations of the two states Shigh and Slow, defined as the
normalized integrals of the amplitude distribution respectively

above and below a threshold Aun, are shown in Fig. 2d, and
display an inversion consistent with the potential dynamics
observed in Fig. 2c. The switching rate G also depends
significantly on the detuning (Fig. 2e), with a maximum
corresponding to the symmetric potential configuration. Under
this symmetry condition the switching rate, as a function
of noise temperature TN, is expected to follow Kramers’ law
GK ¼ G0 expð�DU

kBTN
Þ. However, the injection of noise and its

interplay with nonlinearities leads to a drift of the oscillation
frequency, equivalent to a change in the detuning dm, thereby
distorting the symmetric potential (see Supplementary Note 6).
If this change were not taken into account, a decay of the
switching rate would be observed8. Conversely, if an adjusted
detuning d�m TNð Þ is applied (Supplementary Fig. 8), the
symmetric potential is preserved and the prediction of Kramers’
law is perfectly met, as we show in Fig. 2f.

Stochastic resonance. The achieved control over the bistable
dynamics makes our system a very flexible platform for studying
two different signal amplification schemes. The first relies on a
common phenomenon in bistable systems called stochastic
resonance (SR)7. A weak periodic perturbation induces a
modulation of the potential barrier separating the two states,
and leads to an overall synchronized (that is, quasi-coherent)
switching dynamics when the interwell transition rate matches
twice the frequency of the perturbation. Given that this rate
depends monotonically on the amount of noise in the system, SR
leads to a noise-induced rise (and then fall) of the signal-to-noise
ratio (SNR), and can therefore be exploited to amplify a narrow-
band signal in a nonlinear system under appropriate conditions.
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Figure 1 | Experimental set-up and nonlinear response. (a) A microscope objective (OBJ) focuses a laser beam inside a vacuum chamber, where a single

silica nanoparticle is trapped. Its motion is measured with a split detection scheme and parametric feedback is applied via an EOM in order to cool its

center of mass motion. (b) A linear low amplitude and a nonlinear high amplitude oscillation states coexist when bistability is induced by the coherent

driving. (c) The bistable dynamics can be modelled by an effective amplitude double-well potential. Injected optical noise activates stochastic switching

between the two states. (d) (top) Measured 2D false colour map representing the particle amplitude response in the driving parameter phase space ðdm; EÞ.
The red and blue cross-cuts, correspond respectively to down- and up- sweeps, and emphasize the typical hysteretic non-linear response of the resonator.

Yellow lines are fits to the high amplitude solution A(dm) and allow to retrieve the nonlinear coefficients Z and x. The bistable regime (bottom map), can be

isolated subtracting up-sweep from down-sweep maps. Solid lines correspond to iso-amplitude lines (2): subsets of the parameter space where Ahigh, and

consequently AD ¼ Ahigh�Alow, are kept constant.
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To this aim, we prepare the bistable system driving the particle
with suitably chosen parameters d�m; E

�� �
. Once more, the noise-

dependent detuning d�m TNð Þ avoids the escape from the bistable
region as a consequence of hysteresis quenching8,24, which in
turn would prevent the observation of the full SR curve when
noise is increased. The periodic (~o=2p ¼ 1Hz) perturbation is
then introduced modulating the depth of the parametric driving
signal, namely EðtÞ ¼ E� 1þ wAM cosð~otÞ½ �, where the modulation
strength wAM corresponds to optical forces of ten to a hundred
atto-Newtons for the parameters used in our experiment.
Amplitudes are measured with long acquisition times (B103 s)
and repeated for increasing noise temperatures.

At TNB10 K (point marked A) switching events are only
partially correlated with the modulation signal (Fig. 3b). Instead,
when noise is increased to TNB16 K (point B) the system clearly
exhibits an overall synchronization. A spectral analysis of the
corresponding amplitude trace shows that SA features an
extremely sharp peak precisely at ~o=2p (see inset in Fig. 3a),

for which spectral amplification G and noise floor N can be
defined. When noise is further increased, the switching dynamics
loses correlation with the modulation signal. Interestingly,
a similar and counterintuitive behaviour is observed in the
noise floor N, which presents a similar non-monotonic trend
caused by a redistribution of noise intensity towards higher
frequencies. Linear perturbation theory of stochastic resonance7

(Supplementary Note 7) predicts a SNR¼G/N of the form:

SNR ¼ p
wAD

TN

� �2

G0 exp � DU
kBTN

� �
þOðw4Þ: ð3Þ

where w is the modulation of the potential, proportional to wAM.
Figure 3c shows the experimental SNR curves for different

values of wAM, together with a fitting of equation (3) that displays
very good agreement. Similarly, the ratios of the fitted modulation
depths (2: 5.4: 11) are also in good agreement with the expected
ratios (2: 5: 10).
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Figure 2 | Stochastic switching and effective potential shaping. (a), Position time trace (grey) and corresponding amplitude (blue) reveal a typical

bistable behaviour of the system, with randomly distributed stochastic switches between the two stable oscillation states. The distinctive trait of our

system is to be able to follow the dynamics of the overdamped variable down to very short time scales (insets) and therefore control the dynamics with

high accuracy. (b) A histogram of the amplitude distribution featuring two fully separated amplitude states from which the effective potential UðAÞ can be

retrieved by inverting the Boltzmann-Gibbs distribution. (c) With ad-hoc tuning of the driving parameters ðdm; EÞ the potential can be finely shaped.

For the dynamics here shown one expects a state population inversion and a maximization of the transition rate as shown in d and e respectively,

where points A, B and C correspond to the marked potentials in c. (f) Transition rate as a function of noise injected for the symmetric potential case. Solid

line is a fit to Kramers’ law, which yields G0¼ (1,814±96) s� 1 and DU=kB ¼ ð83 � 2ÞK.
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The second SR experiment was carried out for frequency
modulation of the driving signal, dmðtÞ ¼ d�m 1þ wFM cosð~otÞ½ �,
which according to our study (Fig. 2c), induces a potential
modulation consistent with SR requirements. The corresponding
results are shown in Fig. 3d. We emphasize the fact that previous
experiments have only explored amplitude modulation, and
that this is the first experimental demonstration of SR
with frequency modulated signals. Again the fitted modulation
strengths give ratios (1.9: 2.6: 4.9), in good agreement with the
expected ones (2: 2.5: 5). Interestingly, the resonance appears at
a noise temperature equivalent to the one observed in the
amplitude modulation case. This is consistent with the fixed value
of ~o along the two experiments that requires an equal GK in order
to fulfil the time-scale matching of the resonant condition.

Direct amplification. Our platform enables us to directly compare
the SR experiment with another amplification scheme that is
implemented by changing the driving parameters to zero detuning.
For dm¼ 0, the particle is driven outside of the bistable regime, but
still inside the instability tongue (see inset in Fig. 4). In this

configuration, the effective potential is monostable, and the AM
and FM modulations applied (having same wAM/FM as in the SR
case) result in a modulation of the oscillation amplitude for which a
spectral analysis still leads to the observation of a peak at ~o. The
corresponding SNR as a function of noise temperature TN are
shown in Fig. 4, together with fitted exponential decays that
properly follow the experimental data for TNo30 K, and the fits of
Fig. 3c,d in order to ease a direct comparison of the two amplifi-
cation schemes. Independently of the noise level, direct amplifica-
tion always features a higher SNR than the corresponding SR, and
the two methods give similar outcomes at high TN. This result is an
experimental verification of the central dogma of signal detection
theory25, namely that stochastic resonance can decrease the SNR
degradation of a noisy signal but it does not provide
a mechanism by which the undetectable becomes detectable26,27.
The couterinuitive nature of SR, in fact, mainly relies on
suboptimal parameter ranges28, here exemplified by the fact that
the same modulation becomes remarkably detectable when the
detuning is set to zero, without the need of adding noise.
Nonetheless, the fact of SR being observed in a wide variety of
settings poses the question of why this phenomenon is omnipresent
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Figure 3 | Stochastic resonance experiment. (a) Spectral amplification G and noise floor N as a function of the noise temperature for three different

modulations. (b) Three examples of amplitude time traces for different noise temperatures (corresponding to points A,B and C in a), together with the

modulation signal (orange line, not to scale in the y axis). For low noise (A) there is little correlation between switching dynamics and modulating signal.

However, for higher noise (B) the system reaches synchronization and a maximum in G is found. If further increased (C), the noise leads to a degradation of

the coherence in the switching dynamics. (c) The signal to noise ratio (SNR) of the detected modulating signal clearly presents a maximum (resonance) at

TNB28 K. Note that the peak position depends on both G and N and is therefore not expected to coincide with the peak in a. (d) The SNR curve for the SR

experiment performed with frequency modulation of the driving signal. The same observations reported for c apply here. In both cases, black circles

represent control data with wAM/FM¼0 to show that no amplification is encountered without modulation.
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and favoured by nature. We surmise that suboptimal balanced
configurations are generally preferable when dealing with very
complex systems, for which optimal conditions would be difficult
to achieve. Thus, exploiting ambient noise and stochastic resonance
appears to be a successful strategy to ensure a robust amplification
method that, at least above certain thresholds, is less sensitive to
noise changes than other detection schemes (Fig. 4).

Discussion
In conclusion, we presented an extensive study of the stochastic
bistable dynamics of a levitated nanoparticle in high vacuum. The
high stability achieved—in particular close to the bifurcation
point—enabled the application of our system as a test platform
for different amplification schemes, leading (to our knowledge)
to the first qualitative and quantitative agreement between
the stochastic resonance of a nanomechanical resonator
and the corresponding analytical models. The present state
of the experiment allowed up to B50 dB amplification
of a parametric force at the attonewton scale that was mimicked
by modulating the trap stiffness. A similar perturbation
could arise from a time varying nonlinear potential. However,
to evaluate the performance of our system to detect
a conventional linear force, a direct actuation is required. This
could be implemented by electrically coupling a charged
particle29 to an external field12 or via scattering force from
a weakly focused beam and is the subject of future work. The
unprecedented performances demonstrated could enable the
realization of novel ultra-sensitive threshold sensors, capable of
detecting tiny perturbations via a state change in the system,
or other detection schemes based on nonlinear nanomechanical
resonators3,4. Likewise, a high-Q parametrically driven Duffing
resonator could boost the state-of-the-art in nanomechanical
memory elements30,31 introducing additional bits by
simultaneous manipulation of the orthogonal oscillation
modes32. In the parametrically driven regime our system could
also enable fundamental search for classical to quantum
transitions33, and prompt the realization of quantum-enhanced
sensing techniques. Finally, we foresee in optically levitated

nanoparticles a suitable platform for mimicking very complex
stochastic nonlinear dynamics, able to shine a light on natural
phenomena such as bio-molecule folding16,17, hearing34,35 and
neural signalling36.

Methods
Sampling. The amplitude A tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
x2h in

p
is tracked by sampling position x at

fs¼ 625 kHz and integrating over n successive positions measurements. The value
of n depends on the temporal resolution needed in the particular measurement to
be carried out. We set n¼ 8,192 for the data shown in Fig. 1, n¼ 128 for the
amplitude time traces (blue data) of Fig. 2a and to n¼ 4,096 for the SR experiment
of Fig. 3. In this latter data sets, the acquisition time of a single amplitude trace
at constant noise temperature (Fig. 3b) was 103 s. However, in order to display
a meaningful dynamics, we show only 5 s time traces.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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(SEV-2015-0522), Fundació Privada CELLEX and from the CERCA Programme/
Generalitat de Catalunya. J.G. has been supported by H2020-MSCA-IF-2014 under REA
grant Agreement No. 655369. L.R. acknowledges support from an ETH Marie Curie
Cofund Fellowship.

Author contributions
F.R., J.G., M.S., R.A.R. and R.Q. conceived the experiment. J.G. and F.R. designed and
implemented the experimental set-up and wrote all data acquisition software. F.R.
performed the experiment. F.R. and R.A.R. analysed the data with input from M.S., J.G.,
L.R. and L.N. All authors contributed to manuscript writing. R.Q. and L.N. supervised
the work.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Ricci, F. et al. Optically levitated nanoparticle as a model system
for stochastic bistable dynamics. Nat. Commun. 8, 15141 doi: 10.1038/ncomms15141
(2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15141 ARTICLE

NATURE COMMUNICATIONS | 8:15141 | DOI: 10.1038/ncomms15141 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	System
	Amplitude response
	Stochastic activation
	Stochastic resonance

	Figure™1Experimental set-up and nonlinear response.(a) A microscope objective (OBJ) focuses a laser beam inside a vacuum chamber, where a single silica nanoparticle is trapped. Its motion is measured with a split detection scheme and parametric feedback i
	Figure™2Stochastic switching and effective potential shaping.(a), Position time trace (grey) and corresponding amplitude (blue) reveal a typical bistable behaviour of the system, with randomly distributed stochastic switches between the two stable oscilla
	Direct amplification

	Figure™3Stochastic resonance experiment.(a) Spectral amplification G and noise floor N as a function of the noise temperature for three different modulations. (b) Three examples of amplitude time traces for different noise temperatures (corresponding to p
	Discussion
	Methods
	Sampling
	Data availability

	GieselerJ.NovotnyL.QuidantR.Thermal nonlinearities in a nanomechanical oscillatorNat. Phys.98068102013VillanuevaL. G.Surpassing fundamental limits of oscillators using nonlinear resonatorsPhys. Rev. Lett.1101772082013AldanaS.BruderC.NunnenkampA.Detection 
	Figure™4Direct amplification experiment.SNR of a 1thinspHz weak modulation signal detected by the system prepared at resonance (deltam=0) outside of the bistable regime, but still inside the instability tongue (inset). Circles are experimental data points
	We acknowledge financial support from the ERC- QnanoMECA (Grant No. 64790), the Spanish Ministry of Economy and Competitiveness, under grant FIS2016-80293-R and through the ’Severo OchoaCloseCurlyQuote Programme for Centres of Excellence in R&D (SEV-2015-
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




