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Abstract: Fused filament fabrication (FFF) is gaining attention as an efficient way to create parts and
replacements on demand using thermoplastics. This technology requires the development of new
materials with a reliable printability that satisfies the requirement of final parts. In this context, a
series of composites based on acrylonitrile styrene acrylate (ASA) reinforced with basalt fiber (BF)
are reported in this work. First, several surface modification treatments are applied onto the BF
to increase their compatibility with the ASA matrix. Then, once the best treatment is identified,
the mechanical properties, coefficient of thermal expansion (CTE) and warping distortion of the
different specimens designed and prepared by FFF are studied. It was found that the silanized BF is
appropriate for an adequate printing, obtaining composites with higher stiffness, tensile strength,
low CTE and a significant reduction in part distortion. These composites are of potential interest in
the design and manufacturing of final products by FFF, as they show much lower CTE values than
pure ASA, which is essential to successfully fabricate large objects using this technique.

Keywords: fiber-reinforced composites; basalt fiber; ASA; additive manufacturing; fused filament
fabrication; mechanical properties; coefficient of thermal expansion; design; warping

1. Introduction

Additive manufacturing (AM), also known as 3D printing, comprises a set of technolo-
gies that makes the manufacturing of parts directly from a digital model possible, generally
in a layer-by-layer approach [1–3]. Among others, the polymeric material extrusion (PME)
technologies are the most implemented in industrial sectors due to their cost efficient and
easily scalable alternatives. In this field, fused filament fabrication (FFF, also known as
fused deposition modeling, FDM) uses a filament as feedstock for the manufacturing of the
parts, while fused granulated fabrication (FGF) uses pellets. As it happens with traditional
manufacturing processes of thermoplastics such as injection molding and extrusion, AM
processes requires the development of tailored materials. For PME, the material must
ideally have a low coefficient of thermal expansion (CTE), an adequate melt flow index and
good mechanical properties [4–6], so that both of the final requirements of the parts and
the manufacturing process conditions are satisfied.

The use of amorphous thermoplastics and short fibers as reinforcements is well studied
as a way to reduce the thermomechanical distortions that provoke cracking and warping
issues in parts manufactured by AM [5,7,8]. Materials with a low CTE make the design and
manufacture of parts that requires a high degree of dimensional stability possible, such as
autoclave tooling by PME [7]. Loading polymers with fibers reduces the CTE and increases
their stiffness, showing a better mechanical behavior against the internal tensions of the
deposited material as it cools down, while it also provides a better heat dissipation and

Polymers 2022, 14, 3216. https://doi.org/10.3390/polym14153216 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14153216
https://doi.org/10.3390/polym14153216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-0414-1970
https://orcid.org/0000-0003-2712-716X
https://orcid.org/0000-0001-9025-3826
https://orcid.org/0000-0002-5221-2852
https://doi.org/10.3390/polym14153216
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14153216?type=check_update&version=2


Polymers 2022, 14, 3216 2 of 13

a reduction in distortion parts like warping. The most studied fibers for this purpose are
carbon fibers (CF) and glass fibers (GF) [7,9–12].

Basalt fibers (BF) are gaining a lot of attention as a reinforcing material for polymers
because of its properties and its natural origin. From volcanic rocks (composed mainly
from plagioclase, pyroxene and olivine), BF has interesting properties such as a mechanical
performance between GF and CF, high thermal resistance and insulation, intrinsic fireproof
abilities and abrasion resistance at a reduced cost (eight times lower than CF) [13–16].
The use of BF in composites has been addressed in thermoplastic materials as well as in
thermoset resins [17–20]. For example, thermosetting resins (mainly epoxy) are typically
reinforced with continuous fibers in structural and civil applications [14,21]. Thanks to the
high thermal resistance of BF, they keep their properties even at high temperatures [22,23].
In thermoplastic polymers, the influence of the mechanical response of milled BFs embed-
ded in an ABS matrix was reported, obtaining the best results when using 5% of molten
BF with ABS [24]. Other authors have combined BF composites with polyurethane [25] or
polylactic acid (PLA) in the development or a biocompatible reinforced composites [26].
Some studies have already been conducted using BFs in AM technologies, employing ABS
or PLA as polymeric matrix by FFF [27–29]. However, there is still a wide field ahead to
further investigate these materials.

The good integration of the fibers (either CF, GF or BF) in the polymeric matrix is
a key factor in order to exploit their good mechanical properties. In this regard, the
surface functionalization of the fibers has been performed via chemical modification with
maleic anhydride [20,25,30], silane coupling agents [31–34] or with inorganic acid and
bases [35–37]. Plasma treatment has also been used for surface functionalization [38]. The
use of these strategies has reported improvements in the mechanical properties of the
composites. For instance, Taylor et al. used atmospheric plasma to increase the adhesion of
BF to a PP matrix processed by FFF and increasing its flexural modulus by 12% [39].

In this work, a series of composites suitable for injection molding and FFF using BF as a
filler using acrylonitrile styrene acrylate (ASA) as a polymeric matrix have been developed.
ASA is an amorphous polymer, with well-balanced mechanical properties and an enhanced
resistance to ultraviolet (UV) radiation, compared to ABS [40–42]. For this reason, ASA is
preferred in the industrial sector for the manufacturing of parts and objects for outdoor
applications. We have previously evidenced that the suitability of ASA as a polymer matrix
for composites reinforced with CF in AM technologies [43]. However, to the best of our
knowledge, no research has been conducted combining ASA and BF in the development of
novel composites, neither for traditional nor for AM technologies.

For this reason, different parameters such as filler content and different functionaliza-
tion strategies are explored in this study. The influence of these parameters in mechanical
properties have been studied, as well as analyzed by spectroscopic and microscopy tech-
niques. Finally, the influence of these fibers in the CTE of the composites is also assessed,
proving that the use of short BF can significantly reduce this value, as well as affect the
reduction in warpage. These improvements make these new materials rather interesting
for AM applications, especially in those where large parts and objects are required. The use
of ASA reinforced with BF will enable the production of manufacturing parts with higher
mechanical resistance, especially for outdoors applications.

2. Materials and Methods
2.1. Materials

ASA LI 941 NC was purchased from LG Chem Ltd. (Seoul, Korea). Chopped basalt
fibers (BF) of 0.16 mm length and 13 ± 1 µm diameter were purchased from Deutsche Basalt
Faser GmbH (Sangerhausen, Germany). The BF composition, according to the supplier, is
presented in Table 1. Sulfuric acid (H2SO4) and sodium hydroxide (NaOH) was purchased
from Scharlab (Barcelona, Spain). 3-Aminopropyltriethoxysilane (APTES) was purchased
from Alfa-Aesar (Kandel, Germany).
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Table 1. Chemical composition of the BFs used in this research.

wt% SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O Others

Minimum 45 12 5 6 3 0.9 2.5 2.0
Maximum 60 19 15 12 7 2.0 6.0 3.5

2.2. Surface Modification of the Basalt Fibers

The BFs were first calcined in a Mufla B180 ® oven, Nabertherm GmbH (Lilienthal,
Germany) for 1 h at 500 ◦C to remove any prior sizing by the manufacturer or any impurities
of the BFs. After calcination, the BFs were cleaned several times with distilled water and
dried for 2 h at 120 ◦C.

A treatment in either acidic or basic conditions was done by immersing the calcined
BFs (BF-c) in a 1 M H2SO4 or 0.37 M NaOH solution for 45 min under magnetic stirring at
40 ◦C. A silanization sizing was done using an APTES solution in distilled water with a
proportion of 1:18, under magnetic stirring overnight. In all cases, at least 50 g of calcined
BFs (BF-c) were used in each surface modification treatment and the BFs were washed
afterwards several times with distilled water, until the pH of the washing solution was
neutral. Then, the treated fibers were dried in the oven for 2 h at 120 ◦C. Hereinafter, the
BFs treated with acidic conditions, basic conditions and silanized will be referred as BF-a,
BF-b and BF-s, respectively.

2.3. Manufacturing of the ASA-BF Composites

All the raw materials (ASA and BFs) and their composites were dried for at least
4 h at 80 ◦C to remove any residual moisture. Then, approximately 100 g of neat ASA
and ASA with 5–10 wt% of the treated BFs (BF-c, BF-a, BF-b, BF-s) were processed in
a single-screw Noztek Pro laboratory extruder (Noztek, Shoreham, UK, L/D 26:14 cm,
60 rpm). A temperature of 240 ◦C was used for ASA and 260 ◦C for all composites. In all
cases, a continuous filament with a diameter of 1.75 mm was produced.

Part of these filaments was cut again in small pieces and used as feedstock for injection
molding (IM). At least 5 normalized tensile specimens (dog-bone type 1BA according UNE
EN ISO 527) of the different materials were injected in a Babyplast 10/12 P (Cronoplast
SL, Barcelona, Spain). The temperature profile of the injector was 230–240–235 ◦C in the
plasticization, chamber and nozzle areas, respectively.

Then, different objects were manufactured using a fused filament fabrication (FFF)
3D-printer Raise 3D Pro 2 (Impresoras 3D, Almería, Spain). The slicer software used was
ideaMaker, using a linear infill of 100% with an overlap of 20% between beads to generate all
the g-codes and a nozzle of Ø 0.4 mm. At least 5 normalized 1BA tensile testing specimens
were printed using a linear infill at 0◦ (XY orientation) and vertical (XZ orientation), with
a layer height of 0.2 mm (nomenclature according to AM standards [44]). Monolayers
of 10 × 10 × 0.1 mm (length, width and height) were printed for chemical analysis via
Fourier-Transformed Infrarred (FTIR) spectroscopy. Parallelepipeds of 20 × 5 × 5 mm
and 5 × 5 × 20 mm (labelled as XY and XZ, respectively), with a layer height of 0.2 mm
were printed to evaluate their coefficient of thermal expansion (CTE). V hollow-shaped
parallelepipeds were printed to evaluate the warpage behavior. The shape and dimensions
of those specimens are displayed in Figure 1. The objects were printed with a layer height
of 0.2 (FTIR monolayer at 0.1 mm height) and a printing speed of 30 mm/s and 20 mm/s
for XY and XZ specimens, respectively, according to ISO/ASTM 52,921 [45]. The printing
temperature for all the specimens was set to 235 ◦C for neat ASA and 260 ◦C for the
composites. The platform temperature was 100 ◦C in all cases.
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Figure 1. Specimen design to be printed for the characterization in this research, (a) 1BA tensile
testing (XY orientation); (b) FTIR monolayer; (c) CTE paralepidid (XZ orientation); (d) warping V
hollow specimen. Dimensions in mm.

Table 2 summarizes the composition of the ASA-BF composites, the surface treatments
applied, and the manufacturing processes used with the different composites developed in
this research.

Table 2. Summary of all the composites with denomination, composition and manufacturing pro-
cesses used in this work.

Denomination Composition BF Treatment Manufacturing
Process

ASA 100 wt.% ASA - IM/FFF
ASA + 5BF-c 95 wt.% ASA + 5 wt.% BF-c Calcined IM
ASA + 5BF-a 95 wt.% ASA + 5 wt.% BF-a Acid (H2SO4) IM
ASA + 5BF-b 95 wt.% ASA + 5 wt.% BF-b Basic (NaOH) IM
ASA + 5BF-s 95 wt.% ASA + 5 wt.% BF-s Silanization (APTES) IM/FFF

ASA + 10BF-s 90 wt.% ASA + 10 wt.% BF-s Silanization (APTES) FFF

2.4. Characterization

Mechanical characterization was carried out in injected and printed specimens in a
Shimadzu AGS-X (Shimadzu Europa GmbH, Duisburg, Germany) using a constant speed
of 1 mm/min, according to ISO 527.

The fibers and fracture surfaces of the tensile testing specimens were observed in a
SEM Nova NanoSEM 450 (FEI, Hillsboro, OR, USA) operated at 1.50 kV. The samples for
SEM were previously sputtered with a few nm layers of Au in a Balzers SCD 004 Sputter
Coater (Oerlikon Balzers, Schaumburg, IL, USA).

A Bruker Alpha spectrometer (Bruker, Billerica, MA, USA) was used for the Fourier-
transformed infrared (FTIR) spectroscopy analysis. The spectra were taken by attenuated
total reflectance (ATR) mode in the range of 4000–650 cm−1, with a spectral resolution of
4 cm−1. All the measurements were repeated at least 3 times.

The CTE was measured by thermomechanical analysis (TMA) in a TMA PT1000
dilatometer (Linseis, Robbinsville, NJ, USA), measuring the variation in the length of the
specimens by applying a heating rate of 5 ◦C/min from 20 ◦C to 80 ◦C. The measurements
were repeated 3 times in order to ensure the reproducibility of the results.

3. Results
3.1. Influence of the Surface Modification of BF in the Mechanical Properties of the Composites

First, different surface treatments were applied to the BFs in order to achieve the
best compatibility with the ASA matrix. For this purpose, a fixed amount of 5 wt% BF
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was used in all cases. The samples were prepared by injection molding. This was done
as a first step to identify the best mechanical performance of the ASA-BF composites
manufacturing the materials via FFF. A control in absence of BF was also done to compare
the mechanical properties. Figure 2 shows the characteristic strain-stress curves of the
different specimens. The characteristic mechanical parameters (Young’s modulus, tensile
strength and elongation at break) dissected from these curves are presented in Figure 3.
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As it can be observed in Figure 2, all the composites show an increase in their Young
modulus when compared to neat ASA. These results evidence that, as expected, a content
of only 5 wt% BF leads to more rigid materials, in agreement with previous findings [15,46].
In particular, all treatments led to an increase of approximately 10% in the Young modulus,
except for the fibers treated in acidic conditions (BF-a), where the increase was around 5–6%.
Only composites prepared with BF-s exhibited an increase in the maximum tensile strength
when tested, reaching values above 44 MPa. The rest of the composites showed lower
mechanical strength. This behavior indicates that BF-c, BF-a and BF-b did not promote an
enhancement in the adhesion between the BF with the ASA matrix.

Finally, the elongation at break decreased for all the BF composites, except for BF-b.
However, these differences are not really significant due to the large error associated to
these results. The only significant difference in this case is the embrittlement of the BF-a
composites, which is well in agreement with the decrease in the other mechanical properties.
However, interestingly, the rest of the composites exhibit a plastic deformation similar to
that of pure ASA, as it can observed in Figure 4. In the case of BF-a, some white lines
perpendicular to the axial deformation can be appreciated along the samples. This seems
to indicate an inhomogeneous plasticization, suggesting that the acidic treatment led to an
embrittlement of the BF, making it weaker than the BF-c. The rest of BF composites present
a continuous reduction of their section, evidencing a plastic behavior. This plastic behavior
was not expected, since usually the incorporation of fibers leads to a more drastic ductile to
fragile transition [43,47], suggesting a good integration of the fibers in the ASA matrix in
these cases.
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To gain further insight into the effect of the different treatments applied to the BFs,
SEM analysis was done to the different BFs, showed in Figure 5. BF-c and BF-b showed
a smooth surface, which seems to indicate that these treatments were not aggressive
enough to damage the structure of the BFs. The BF-b treatment did not lead to any
significant modification in the BFs, since the mechanical parameters dissected for BF-b
are not significantly different to those obtained for BF-c. In the case of BF-a, it shows
small cracks in the surface even before compounding the composite. Consequently, these
cracks are likely to act as nucleation points of crazes inside the composite during the
tension test [37]. This explains the weaker behavior of the BF-a composites observed in
Figures 2 and 3, compared to all other composites. SEM image of BF-s show enhanced
roughness in the surface and shows some regions where traces of the silane coupling agent
can be found. This increases the surface roughness of the fiber, while it also modifies the
wettability of the BFs, increasing their hydrophobicity. The combination of these two factors
causes an increase in the adhesion between the interface of the BFs with the polymeric
matrix, caused by the formation of Si-O covalent bond [35,48]. These results are also in
agreement with previous results from other authors, where different fibers were silanized
before compounding [15,31–34].
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In conclusion, the results obtained by the mechanical testing together with the SEM
analysis of the BFs after different treatments evidence that the surface modification of the
BF with the silane coupling agent leads to a better performance as a reinforcing agent in
polymer-based composites. For this reason, from here on, the research is only focused on
the BF-s composites.

3.2. ASA-BF Composites Prepared by FFF

After the study of the different treatments for the BF, filaments of ASA and ASA
containing 5 and 10 wt% BF-s were manufactured for FFF. Then, standardized specimens
for tensile test (in XY and XZ orientation) were printed as indicated in the materials and
methods section. In a similar way to what was done with the composites prepared by
injection molding, Table 3 shows the mechanical parameters dissected from the tensile test
curves for each of the materials printed in this study.

Table 3. Mechanical properties of specimen printed in XY and XZ orientation by FFF of ASA,
ASA + 5BF-s and ASA + 10BF-s.

Denomination
Young Modulus [GPa] Tensile Strength [MPa] Elongation at Break [%]

XY XZ XY XZ XY XZ

ASA 1.6 ± 0.1 1.03 ± 0.11 41.3 ± 0.2 17 ± 1 3.88 ± 0.16 1.9 ± 0.1
ASA + 5BF-s 1.8 ± 0.1 1.2 ± 0.1 42 ± 2 11 ± 1 4.96 ± 1.58 1.1 ± 0.2
ASA + 10BF-s 1.8 ± 0.1 1.01 ± 0.05 42.1 ± 0.6 4 ± 1 3.96 ± 0.30 0.5 ± 0.1
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In general, the mechanical properties of the XY specimens show higher values than
those of the XZ specimens. This anisotropy is characteristic of these AM processes [49–51].
The addition of fibers complicate the entanglement of the polymer chain in the interlayer
region to some extent, hindering the adhesion between the layers. This explains the lower
mechanical properties obtained in XZ orientation for composites compared with neat
ASA [43].

The XY composites exhibit a higher Young modulus values than neat ASA XY, in a
similar way to what was previously observed in Figure 3 for the composites prepared
by injection molding, when the incorporation of BF-s increases the stiffness and strength
compared with neat ASA. In this case, an increase from 5 wt% to 10 wt% of BF-s does not
enhance the mechanical properties but maintains the ductility of the composite compared
to ASA.

Then, the fracture surfaces of the BF composites were examined by SEM (Figure 6),
where the distribution of BF-s within the polymer matrix can be appreciated after tensile
test. The fibers act as a proper reinforcement, increasing the tensile strength but might act as
well as potential crack initiation points that lead to the previously observed embrittlement
of the material. In addition, the porosity observed can be attributed to the presence of air
bubbles that may remain entrapped during the compounding and by the different CTEs of
the phases involved (polymer and fiber), which create a localized porosity preferably at the
end of the fibers [52].
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Figure 6. SEM images of fracture surface after tensile testing of ASA and ASA composites manufac-
tured by FFF.

Infrared spectroscopy analysis of the composites by FTIR in ATR mode was done to
identify any supramolecular interactions between the ASA matrix and the BF. Figure 7
shows the spectra of the neat ASA (black), together with those of ASA + 5BF-s (red) and
ASA + 10BF-s (blue). For comparative purposes, all the spectra were normalized to the
C≡N stretching band at 2237 cm−1. Some differences in the stretching of the -CH2 and
-CH3 bands in the range of 2800–300 cm−1, associated with the aliphatic chains of ASA and
to a lesser extent to the hydrophobic moieties of the APTES immobilized on to the BF-s,
were observed. These differences suggest that there are some interactions taking place
with the BF-s. These results, together with the microscopy analysis presented in Figure 6,
support that in this case the silanization of the BF has led to a significant increase in the
compatibility with the ASA matrix.
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Figure 7. ATR spectra of ASA (black), ASA + 5BF-s (red) and ASA + 10BF-s (blue). Green frame
indicates the region of interest.

Thermal expansion coefficient of the BF-s composites was dissected from TMA anal-
ysis. Figure 8 shows the dimensional change (∆L) of the specimens as a function of the
temperature for ASA and 5–10 wt% BF-s composites, manufactured in two different print-
ing directions. When the BF-s content is increased, a significant decrease in the ∆L of
the specimens tested is observed for both XY and XZ specimens. This is caused by the
nature of the BF, having an intrinsic CTE close to zero. When the two printing orientations
(i.e., XY, XZ) are compared, a clear anisotropy is observed, with ∆Lvalues 60% lower for
XY specimens.
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represent the specimens tested vertically (labelled as XZ) and hollow symbols represent the specimens
printed horizontally (labelled as XY); (b) cartoon depicting the disposition of the specimens in the
printing platform for easier interpretation of (a).

The CTE values, obtained from the TMA curves, are summarized in Table 4. It can
be observed that the printing direction has a clear influence in the CTE, and 10 wt% BF-s
ASA composites decrease the CTE down to a 65–75% when compared to neat ASA, for
both XY and XZ printing directions. The anisotropy intrinsic in the FFF manufacturing
process is also evidenced by CTE analysis, leading to worse reinforcement properties when
the materials are printed vertically, due to the deficient adhesion between layers during
the deposition of the molten polymeric layers [53]. In a similar manner, this also causes
that ASA and its composites have a higher tendency to increase its size, preferably in this



Polymers 2022, 14, 3216 10 of 13

direction. In the XZ configuration, the BFs are not so interconnected to each other, so they
are not able to prevent in the same amount the deformation in this direction than in XY.

Table 4. CTE of ASA, ASA + 5BF-s and ASA + 10BF-s in the linear region of 40–70 ◦C printed in XY
and XZ orientation.

Denomination CTE
[µm/m ◦C]

XY XZ

ASA 69.3 ± 16.8 115.4 ± 24.3
ASA + 5BF-s 60.9 ± 13.1 91.2 ± 21.6

ASA + 10BF-s 52.1 ± 12.6 79.9 ± 20.8

The incorporation of fibers restrains the mobility of the polymer chains [43,54], justify-
ing the reduction CTE in the composites. In the XY specimens, the fibers are preferentially
oriented along the printed bead [7], accounting for the greater CTE reduction in this direc-
tion than XZ, where fibers contribute to a lesser extent to these mechanisms. To the best
of our knowledge, this is the first investigation of 3D-printed ASA composites reinforced
with BF, but other authors have also reported the influence of the printing direction on the
CTE using other polymer matrixes and reinforcements. Arif et al. [55] studied the influence
of PEEK composites reinforced with carbon nanotubes and graphene nanoplatelets via FFF,
with a clear anisotropy between the two printing orientations. This anisotropy is affected
not only by the printing orientation but also by the raster angle of the layers [56]. More
interestingly, Hoskins et al. [57] reported the influence of 20 wt% CF on the CTE using ABS
as a polymeric matrix. In their case, they observed a difference of practically one order of
magnitude, from 19.4 µm/m ◦C to 128 µm/m ◦C in XY and XZ orientation. Similar results
were also reported by Billah et al. [12] for ABS reinforced with CF and GF, reaching CTE
values down to 22 and 43 µm/m ◦C, respectively. In our case, we show that with smaller
amounts of BF (5–10 wt%), the CTE, particularly in the XZ direction, decreases substantially,
below 100 µm/m ◦C. Moreover, in our case, the difference in the CTE values between XY
and XZ is smaller, indicating that the anisotropy of these materials is smaller.

Reducing the CTE has a significant impact on the performance of the printed parts
by not only improving dimensional accuracy, but also minimizing their distortion. An
illustrative example is presented in Figure 9, where it is shown that the composites printed
with BF do not exhibit any warping compared to the pure ASA after cooling, due to their
lower CTE. In the part printed with ASA + 10BF-s, some agglomerates are observed locally.
This may explain why a further increase in the tensile strength was not observed from 5 to
10 wt% FB-s, implying that 10 wt% BF may lead to local defects when printing.
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These results match previous studies carried out by the authors [58] and others, where
carbon fiber is used to reduce the warping of printed parts [59,60]. Hence, BFs are a
potential alternative to CF to reduce the distortion of parts manufactured by FFF.

4. Conclusions

In this work, we have evidenced the potential of ASA-BF composite materials for
additive manufacturing as an alternative to CF and GF. Different surface treatments for
the BFs have been studied, obtaining the best performance for silanized BFs with APTES
(BF-s). On the other hand, the BFs treated in acidic conditions led to very brittle and weak
composites, due to the appearance of cracks in the BF during this treatment. Then, different
composites with 5 and 10 wt% BF-s were manufactured by FFF. It was observed that an
increase from 5 to 10 wt% BF-s did not lead to a significant enhancement in the mechanical
properties, although it was proved that the silanization treatment avoids the embrittlement
of the material, as it happens for other composites. This was evidenced by microscopy and
spectroscopic analysis of the composites, proving that the BF-s are well embedded in the
ASA matrix. Finally, the CTE of the composites was also evaluated. We proved that the
BF-s are able to decrease this parameter in different printing directions. This represents a
major advantage in FFF, since low CTE values prevent the delamination of the objects and
warping issues. Hence, we consider that these materials are a promising alternative to the
current composites used in FFF, with a potential implementation in large format additive
manufacturing applications, where big parts and components can be designed and printed
on demand.
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