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Abstract

Introduction The influence of brain temperature on clinical
outcome after severe brain trauma is currently poorly
understood. When brain temperature is measured directly,
different values between the inside and outside of the head can
occur. It is not yet clear if these differences are 'real' or due to
measurement error.

Methods The aim of this study was to assess the performance
and measurement uncertainty of body and brain temperature
sensors currently in use in neurocritical care. Two organic fixed-
point, ultra stable temperature sources were used as the
temperature references. Two different types of brain sensor
(brain type 1 and brain type 2) and one body type sensor were
tested under rigorous laboratory conditions and at the bedside.
Measurement uncertainty was calculated using internationally
recognised methods.

Results Average differences between the 26°C reference
temperature source and the clinical temperature sensors were
+0.11°C (brain type 1), +0.24°C (brain type 2) and -0.15°C
(body type), respectively. For the 36°C temperature reference
source, average differences between the reference source and
clinical thermometers were -0.02°C, +0.09°C and -0.03°C for

brain type 1, brain type 2 and body type sensor, respectively.
Repeat calibrations the following day confirmed that these
results were within the calculated uncertainties. The results of
the immersion tests revealed that the reading of the body type
sensor was sensitive to position, with differences in temperature
of -0.5°C to -1.4°C observed on withdrawing the thermometer
from the base of the isothermal environment by 4 cm and 8 cm,
respectively. Taking into account all the factors tested during the
calibration experiments, the measurement uncertainty of the
clinical sensors against the (nominal) 26°C and 36°C
temperature reference sources for the brain type 1, brain type 2
and body type sensors were ± 0.18°C, ± 0.10°C and ± 0.12°C
respectively.

Conclusions The results show that brain temperature sensors
are fundamentally accurate and the measurements are precise
to within 0.1 to 0.2°C. Subtle dissociation between brain and
body temperature in excess of 0.1 to 0.2°C is likely to be real.
Body temperature sensors need to be secured in position to
ensure that measurements are reliable.

Introduction
In rodent models of cerebral ischaemia, small (1° to 2°C)
increases in brain temperature significantly increase infarct
volume [1-3]. In patients with brain damage, the same risks are
thought to apply; temperatures within the febrile range are
widely perceived to increase the risk of a worse patient out-
come [4-6]. However, as there remains no clear evidence for
a causal relation, the influence of brain temperature on acute
clinical physiology, particularly on intracranial pressure (ICP),
is currently poorly understood [7].

The significance of raised brain temperature on outcome in
neurocritical care (NCC) patients remains controversial [8,9].
Studies can be cited that point in either direction: that a high
temperature [10] or a low temperature [11] is an indicator of
poor prognosis. As brain temperature is not measured rou-
tinely in NCC, body temperature is used as a surrogate for
intracranial temperature. However, differences between brain
and body temperature can occur which are often very subtle
(often smaller than 0.5°C) [12,13], so the performance or posi-
tioning of the temperature sensor placed within the brain or
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peripheral sites (e.g., rectum) becomes important. In short, are
the subtle differences observed between brain and body tem-
perature 'real' or due to measurement error? The aim of this
study was to assess performance and measurement uncer-
tainty of the body and brain temperature sensors currently
used in NCC.

Materials and methods
Evaluation of temperature sensors
The performance of three commonly used temperature sen-
sors for brain and body temperature measurement was under-
taken as a service evaluation. Ethical approval and patient
consent were therefore not sought. The sensors were: brain
type 1 (Raumedic, Neurovent-P-T, Eden Medical, Midlothian,
Scotland); brain type 2 (Camino 110-4BT, Integra Neuro-
sciences, Andover, UK); and a widely used (body type) gen-
eral purpose probe (Thermistor 400 series, Mallinckrodt
Medical, Tyco Healthcare, Gosport, UK). Brain and body type
sensors were of a thermistor type [14] but of different dimen-
sions. Sensors were selected randomly from different batches,
obtained from the manufacturers at different time intervals.

Sensor calibration
The temperature measurement evaluation of these probes was
undertaken through the use of ultra-stable organic triple-point
temperature references of 26.862°C (based on diphenyl ether
(DPE) and 36.314°C (based on ethylene carbonate (EC))
[15]. These temperature references were calibrated directly
traceable to the International Temperature Scale of 1990 [16]
as realised at the National Physical Laboratory [17] with an
expanded uncertainty of ± 0.005°C [18]. A detailed test pro-
tocol was established so that the sensors could be evaluated
on a common objective basis. Six of each of the three temper-
ature sensor types under test were calibrated separately (n =
18) in each triple-point cell (DPE and EC).

Measurement uncertainty
Uncertainty values were calculated according to guidelines
given in the internationally accepted Guide to the Expression
of Uncertainty in Measurement [18]. Briefly, the uncertainty
evaluation involves identifying and quantifying all the individual
sources of uncertainty of the temperature measurement. Two
classes of uncertainty are generally identified. Those obtained
by statistical means are known as type A (e.g., the standard
deviation of the mean) and those obtained by methods other
than statistical analysis are known as type B, often known as
systematic effects (e.g., the temperature uncertainty of the
fixed-point cell itself, the short-term repeatability of the individ-
ual sensors and the sensor batch repeatability; ie, quantifying
the agreement of the six sensors of each type).

In addition, the effect of a change in sensor position on the
measurement (immersion test) was assessed. In this test the
three types of sensors were immersed in turn into a column of
liquid at a uniform temperature (at the base of the re-entrant

well of the triple-point cell) and then withdrawn in 1 cm incre-
ments up the column. The immersion test was undertaken over
a period of 15 minutes for one sensor of each sensor type. A
further source of uncertainty was obtained by assessing the
change in temperature values using a different readout sys-
tem, that is, performing the measurement uncertainties but
using a different bedside data acquisition system (of the type
used on the NCC unit). These individual uncertainties are then
processed according to internationally agreed methodology to
determine the standard uncertainties (ie, one standard uncer-
tainty). For a fuller explanation of uncertainties and how to
develop rigorous uncertainty 'budgets' the interested reader is
referred to reference [18].

Results
Average differences between the temperature of the DPE tri-
ple-point cell (the reference source, nominally 26.8°C) and the
temperature sensors were +0.11°C (brain type 1), +0.24°C
(brain type 2) and -0.15°C (body type), respectively. For the
EC triple-point cell (temperature reference source nominally
36.3°C) the differences were -0.02°C (brain type 1), +0.09°C
(brain type 2) and -0.03°C (body type). Repeat calibrations the
following day confirmed that these results were within the cal-
culated uncertainties.

The results of the immersion tests are given in Figure 1. The
temperature performance of the body type sensor is clearly
influenced by the sensor position. A change in sensor position
(movement of the sensor up from the base (depth 10 cm) of
the re-entrant well) of between 4 to 8 cm results in a measured
difference between the sensor and reference temperature of -
0.5 to -1.4°C. The expanded uncertainty for the calibration, at
both triple-point temperatures, of sensors brain type 1, brain
type 2 and body type were ± 0.18°C, ± 0.10°C and ± 0.12°C,
respectively.

Discussion
In previous work undertaken at this Centre (Intensive Care Unit
of Salford Royal NHS Foundation Trust, Salford UK) small
temperature differences observed between body and brain
sites [19] led us to question whether such differences were
due to real physiological events or could in part/wholly be due
to sensor performance. This study specifically investigates the
sensor aspects of this issue.

In this study of the reliability of body and brain temperature
sensors used in the management of patients with severe brain
trauma it was necessary to undertake rigorous quantification
of all possible sources of measurement uncertainty. We con-
sidered the magnitude of each source of uncertainty sepa-
rately to produce an overall assessment according to agreed
international methods [18].

For the limited number of sensors tested, the performance was
within the manufacturer's specification for temperatures at
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near body temperature; all (brain and body) sensors were
within 0.1°C of the 36°C reference temperature source. The
body-type sensors tested at below normal body temperature
(reference source 26.8°C) did not perform as well as the brain
sensors (measurement error +0.24°C).

One difference between the brain and body type sensors was
that a change in position (immersion depth) of the body type
sensor caused a change in the temperature readout (Figure 1).
Such an immersion effect using the body temperature sensor
needs to be considered for its potential clinical implications,
that is, by changing the sensor position by 4 cm a clinically rel-
evant temperature difference occurred. This suggests that the
reliability of a patient's temperature could be in doubt if the
sensor is dislodged from its original in situ position. This effect
was not observed with the brain temperature sensors, sug-
gesting that the brain temperature sensors tested in this study
are less susceptible to ambient temperature than were the
body type sensors.

The results of this study therefore provide important informa-
tion of relevance to clinicians interested in the potential signif-
icance of changes in the relation between brain and body
temperature [19].

Conclusions
The result of this service evaluation of sensors in current use
for the measurement of brain and body temperature in critically
ill patients reveals that the temperature sensors (brain and
body) are fundamentally accurate and the measurements are

precise to within 0.1 to 0.2°C. Subtle dissociation between
brain and body temperature in excess of 0.1 to 0.2°C is likely
to be real. This should be confirmed with a larger study. Good
clinical practice in human thermometry is to ensure that body
temperature sensors are checked for secured positioning.
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Figure 1

Effects of immersion on temperature sensor readingsEffects of immersion on temperature sensor readings. Mean difference 
between temperature sensors (circles = brain type 1; squares = brain 
type 2; triangles = body type) and ethylene carbonate triple-point tem-
perature (26°C) reference source with sensor at intervals of 1 cm from 
base (10 cm depth of immersion) of re-entrant well. As an example for 
the body type sensor, full immersion is at 10 cm. Withdrawing the sen-
sor 4 cm up the re-entrant well changes the immersion depth to 6 cm 
and a corresponding change in the temperature reading of 0.5°C.

Key messages

• The brain temperature sensors are fundamentally accu-
rate and the measurements are precise to within 0.1 to 
0.2°C.

• When seeking to determine the clinical significance of 
these subtle temperature differences it is essential that 
the sensors are firmly secured in position.

• Observed dissociation between brain and body temper-
ature in excess of 0.1 to 0.2°C are likely to be 'real' and 
not due to sensor performance.
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