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This study was designed to identify an immune-related gene signature (IRGS) associated

with breast cancer (BC) patient outcomes. Transcriptomic data from 1411 BC patients

in the TCGA and GEO databases were used to identify differentially expressed

immune-related genes (DEIGs) when comparing BC tumor and normal tissue samples.

We were able to construct a 27-gene IRGS that was able to effectively separate BC

patients into high- and low-risk groups that corresponded to significant differences in

overall and recurrence-free survival (OS and RFS, respectively). Besides, the relevance

of this signature to immune response and immune cell infiltration of BC tumors was

evaluated. These high- and low-risk BC patients were found to exhibit significantly

different immune responses and functional enrichment. We also identified patients in the

high-risk group exhibited significantly reduced immune cell infiltration of tumors relative

to low-risk patients. Together, the results of this analysis offer a novel overview of the

immune microenvironment within BC tumors and highlight key immunological genes

associated with patient survival outcomes.

Keywords: bioinformatics, immune, breast cancer, The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO)

INTRODUCTION

Breast cancer (BC) remains the most common form of cancer globally (1). There have been
numerous diagnostic and therapeutic improvements over the past 30 years that have facilitated
a∼33% reduction in BC mortality (2). At present, however, there has been relatively little focus on
immunotherapeutic BC treatment owing in part to the fact that these tumors typically exhibit low-
to-moderate levels of immunogenicity (3).While immunotherapies for the treatment of melanoma,
non-small cell lung cancer (NSCLC) and other tumors have become increasingly advanced, the
study of such approaches in the context of BC is still in its infancy.

Preclinical studies in recent years have clearly demonstrated that both local inflammation and
the immune landscape of the tumor stromal compartment can influence tumor development and
progression (4, 5). This has led to an increasing focus on the identification of specific immune-
related genes or gene signatures that can offer insight into BC progression and/or therapeutic
susceptibility. Immunological biomarkers have been successfully identified in a number of different
oncogenic contexts (6–9). For example, one recent study (8) was able to develop a signature of
27 immune-related genes associated with the overall survival (OS) of head and neck squamous
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cell carcinoma patients.Multiple immunological parameters have
been associated with BC patient outcomes, further efforts to
identify prognostic immunological biomarkers associated with
BC tumor microenvironmental status are thus warranted as they
have the potential to guide patient treatment and to aid in the
identification of novel immunotherapeutic interventions.

The tumormicroenvironment (TME) is composed of the local
stromal and immune cells which interact with and/or infiltrate
a given tumor (10). Altered immune responses within the TME
have been shown to be closely linked to tumor progression,
with immune dysfunction often being supportive of tumor
proliferation, migration, and metastasis. While in some cases
immune cells are able to detect and destroy tumor cells, in
many cases these tumors develop mechanisms that allow them
to evade immunological detection. The specific composition of
the immunological component of the BC TME is, at present,
poorly understood, as few studies have conducted a thorough
examination of the dynamics of immune cell infiltration into BC

FIGURE 1 | Volcano plots for expression of differentially expressed genes (Red represents the up-regulated genes, while green represents the downregulated genes)

(A) Differentially expressed genes (Downregulated, n = 1,456; Upregulated, n = 1,832); (B) Differentially expressed immune-related genes (Downregulated, n = 146;

Upregulated, n = 147). (C) Survival-associated DEIGs, a total of 38 survival-associated DEIGs showed in forest plot.

tumors or the plasticity of their responses therein owing to the
difficulties inherent in such analyses.

In the present study, we therefore conducted a computational
analysis wherein we leveraged transcriptomic data from BC
patient samples in order to generate an immunological gene
signature associated with patient survival outcomes. We then
systematically validated the prognostic relevance of this gene
signature and assessed its relationship to immune responses in
BC tumors. Together, our results highlight a novel overview
of the immune microenvironment within BC tumors and
highlight key immunological pathways associated with patient
survival outcomes.

MATERIALS AND METHODS

Patients’ Samples
We retrospectively analyzed publically available transcriptomic

and clinical data from 1411 total BC patients, with training data
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being derived from The Cancer Genome Atlas (TCGA; n =

1,222, 113 normal breast samples and 1109 BC samples) and
separate gene expression omnibus (GEO) microarray datasets
(GSE42568, 104 BC samples; GSE7390, 198 BC samples) being
used for validation. The GSE42568 data were collected using
the GPL570 platform (Affymetrix Human Genome U133 Plus
2.0 Array), while the GSE7390 data were collected using the
GPL96 platform (Affymetrix Human Genome U133A Array).
Batch effects were eliminated using the “combat” function
in the “sva” package. No ethical oversight was required
for this study, as all data were derived from publically
accessible sources.

Identification of Differently Expression
Immune-Related Genes
We utilized the “limma” package in order to normalize gene
expression data and to identify differentially expressed (DE)
genes when comparing BC and normal breast tissue samples
in the TCGA database (false discovery rate < 0.05 and
|log2 fold change| > 1). We then utilized lists of immune-
related genes (n = 2,404) from the Immunology Database and
Analysis Portal (ImmPort) (https://immport.niaid.nih.gov), in
order to identified DE immune-related genes (DEIGs) within
this dataset.

Development and Validation of a
DEIG-Based Prognostic Gene Signature
We utilized the “survival” R package (bioconductor.org/
packages/survivalr/) in order to identify DEIGs associated with
survival in our TCGA BC patient cohort through univariate Cox
analyses, with a log-rank p < 0.05 as the selection threshold
cutoff. We next utilized survival-related DEIGs in order to
construct an immune-related gene signature (IRGS) that was

TABLE 1 | Clinical characteristics for training and validation cohort.

Training cohort Validation cohort

TCGA (n = 1,069) GSE (n = 301)

Age (year) 58.09 ± 12.93 50.71 ± 10.8

T stage

T1 279 (26.1%) 136 (45.18%)

T2 617 (57.72%) 163 (54.15%)

T3 132 (12.35%) 2 (0.67%)

T4 38 (3.55%) 0 (0%)

Tx 3 (0.28%) 0 (0%)

N stage

N0 507 (47.43%) 242 (80.4%)

N+ 550 (51.45%) 59 (19.6%)

Nx 12 (1.12%) 0 (0%)

M stage

M0 1036 (96.91%) 301 (100%)

M1 22 (2.06%) 0 (0%)

Mx 11 (1.03%) 0 (0%)

predictive of BC patient survival. A least absolute shrinkage and
selection operator (LASSO) regression approach was used to
identify genes for incorporation into this signature. An IRGS-
based prognostic risk score was then assigned based on the
following formula: Risk score = expression of Gene 1 ∗ β1
+ expression of Gene 2 ∗ β2 +. . . expression of Gene n ∗

βn, with β corresponding to gene-specific regression coefficient
values that were generated based on our TCGA training dataset.
Median IRGS risk scores were then used to separate BC patients
into low- and high-risk subgroups. The formula derived from
the training dataset was then used to assess BC patients in
our GEO validation cohort. The prognostic relevance of this

TABLE 2 | 27-gene immune signature.

Gene symbol Gene ID Description Coefficient

ULBP2 80328 UL16 binding protein 2 0.072825488

CXCL9 4283 Chemokine (C-X-C motif)

ligand 9

−0.002404526

CXCL13 10563 Chemokine (C-X-C motif)

ligand 13

−0.000428563

S100A11 6282 S100 Calcium Binding

Protein A11

0.000205037

MMP9 4318 Mtrix metallopeptidase 9 0.000233893

ISG20 3669 Interferon-stimulated

exonuclease gene 20

−0.006115365

TFRC 7037 Transferrin receptor 0.002458656

SOCS3 9021 Suppressor of cytokine

signaling 3

−0.006167891

JUN 3725 v-jun avian sarcoma virus 17

oncogene homolog

−0.00134346

ROBO3 64221 Roundabout, axon guidance

receptor, homolog 3

0.273163929

IRF7 3665 Interferon regulatory factor 7 −0.006211324

IL18 3606 Interleukin 18 −0.004675985

TNFSF4 7292 Tumor necrosis factor ligand

superfamily, member 4

0.108822803

CCR7 1236 Chemokinereceptor-7 0.018881849

CCL24 6369 Chemokine (C-C motif)

ligand 24

0.084982098

VAV3 10451 VAV3 guanine nucleotide

exchange factor

−0.003920753

NFKBIE 4794 NFKB inhibitor epsilon −0.03103477

FGF7 2252 Fibroblast growth factor 7 0.088672495

NRG1 3084 Neuregulin 1 −0.26605368

SCG2 7857 Secretogranin 2 0.002140649

ADRB1 153 Adrenoceptor beta 1 −0.093132018

FLT3 2322 Fms-like tyrosine kinase 3 −0.066140388

IL2RG 3561 Interleukin 2 receptor,

gamma

−0.002806802

NPR3 4883 Natriuretic peptide receptor 3 0.007104248

SDC1 6382 Syndecan 1 0.000256454

SSTR1 6751 Somatostatin receptor 1 0.041379722

TNFRSF8 943 Tumor necrosis factor

receptor superfamily,

member 8

−0.463191784
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IRGS was assessed using univariate analyses for BC patients in
both the training and validation cohorts. We then evaluated
the independent prognostic relevance of IRGS scores through
multivariate analyses.

Functional Annotation and Analysis
Principal components analysis (PCA) was used to assess gene
expression patterns in grouped patients, while a gene set
enrichment analysis (GSEA) approach was used to determine
whether high- and low-risk BC patients exhibited distinct
gene signatures. In total, two sets of genes (immune system
process, M13664; immune response, M19817) derived
from the Molecular Signatures Database v4.0 (http://www.
broadinstitute.org/gsea/msigdb/index.jsp) were evaluated
in this analysis. In addition, the cancer hallmarks and
KEGG datasets from MSigDB were assessed through
this same approach, with FDR < 0.05 and normalized
enrichment score (NES) < 0.05 being used as significance
cutoff criteria.

Immune Infiltration Analysis
Immune and stromal cell populations in BC tumor samples
were evaluated in an effort to establish the relationship
between our IRGS signature and the BC TME. The
Estimation of Stromal and Immune cells in Malignant Tumor
tissues using the Expression data (ESTIMATE) approach
was leveraged in order to estimate immune and stromal
cell populations in BC tumor samples. In addition, the

CIBERSORT algorithm was used for immune cell type-specific
analyses. For TCGA BC data, both RNA-seq data and data
regarding tumor infiltration frequencies by different immune
cells including lymphocytes, monocytes, and neutrophils
were available to support these analyses. Pathologic BC
patient features in different risk groups were compared via
Student’s t-tests.

Statistical Analysis
R (v3.6.3; http://www.Rproject.org) was used for statistical
testing. The prognostic relevance of DEIGs was assessed via
univariate Cox regression analyses, with hazard ratio (HR)
values being used to determine the association between DEIG
expression and patient risk (with p < 0.05 as a cutoff threshold).
The “glmnet” package was used for LASSO regression analysis.
The final IRGS was generated based on the sum of the expression
levels of individual genes weighted according to individually
determined regression coefficients (β). Kaplan-Meier curves
and log-rank tests were used for prognostic evaluation.
Factors independently associated with patient prognosis were
identified through univariate and multivariate Cox regression
analyses. The “survival ROC” package was employed for a
time-dependent ROC curve analysis. Proportions of specific
immune and stromal cells were estimated using ESTIMATE,
and GraphPad Prism 8 (GraphPad Software Inc., CA, USA)
was used for figure preparation. A p-value < 0.05 was the
significance threshold.

FIGURE 2 | The heatmap and distribution of the 27 genes expression profiles in the high-risk and low-risk subgroups for the training cohort (A) and validation

cohort (B).
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RESULT

Identification of DEIGs From TCGA Dataset
When comparing BC and normal breast tissues in the TCGA
database, we were able to identify 3288 DE genes (1832
upregulated and 1456 downregulated) and 1293 DEIGs (1147
upregulated and 146 downregulated) (FDR < 0.05 and |log2 fold
change| > 1). Data were arranged in volcano plots (Figure 1).

Immune-Related Gene Signature (IRGS)
Construction and Validation
After patients lacking survival data were removed from our
TCGA and GEO datasets, we compiled BC patient data for both
a training cohort (n = 1,069) and a validation cohort (n = 301)
(Table 1). We initially identified 38 DEIGs that were significantly

associated with BC patient OS in the training cohort (Figure 1),
and we then employed a LASSO Cox regression approach in
order to identify, 27 of these genes for incorporation into the
final IRGS (Table 2). The prognostic relevance of IRGS-derived
risk scores was then evaluated in our training cohort, with BC
patients being divided into high- and low-risk subsets based
on the median risk score value within this group (−0.44899)
(Figure 2).

As expected, low-risk BC patients exhibited significantly
longer OS relative to high-risk BC patients (16.73 ± 1.066 vs.
8.963 ± 0.797 years, p < 0.0001) (Figure 3), and the prognostic
accuracy of this model was further supported by a time-
dependent ROC analysis that yielded an AUC value of 0.844.
We then sought to validate this IRGS risk score by applying the
same formula and cut-off values to our validation dataset, in

FIGURE 3 | Kaplan-Meier analysis of patients’ OS in the high-risk and low-risk subgroups of the training cohort (A) and validation cohort (B), Kaplan-Meier analysis of

patients’ RFS in the high-risk and low-risk subgroups of the validation cohort (C), the x axis represents the survival time (years), and the Y axis represents survival rate.

The AUC of ROC curve was 0.844 showing the superior predictive accuracy of survival (D).
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which we similarly observed longer survival in low-risk patients
relative to high-risk patients (17.965 ± 0.756 vs. 14.727 ± 1.005
years; p = 0.0006). We additionally found that recurrence-free
survival (RFS) in low-risk patients was also longer than in high-
risk patients (15.071± 0.778 vs. 9.511± 0.705 years; p= 0.0001).
Moreover, the prognostic impact of IRGS-derived risk scores
was evaluated in different molecular subtypes of BC. Similarly,
patients in the low-risk group showed longer OS in HR+/Her-2-
(16.671 ± 1.362 vs. 7.983 ± 0.503 years, p < 0.0001), HR+/Her-
2+ (16.318 ± 1.418 vs. 9.137 ± 2.114 years, p < 0.0001), and
triple negative BC (18.242 ± 3.711 vs. 9.938 ± 1.55 years, p <

0.0001) (Figure 4).
In a univariate analysis, we detected a significant relationship

between IRGS scores and BC patient OS in both the training

cohort (HR = 3.608, 95% CI 2.927–4.447, p < 0.001, Table 3)
and the validation cohort (HR = 1.725, 95% CI 1.157–2.574, p
= 0.008). A multivariate analysis similarly confirmed that IRGS
risk scores were independently associated with patient OS in both
the training cohort (HR= 3.315, 95% CI 2.653–4.143, p < 0.001)
and the validation cohort (HR = 1.523, 95% CI 1.006–2.305,
p= 0.047).

Functional Enrichment Analysis
PCA was used to investigate the different distribution patterns
between low- and high-risk groups on the basis of the IRGS and
whole gene expression profiles, the low- and high-risk groups
tended to separate into two sides in IRGS set (Figures 5A,B). We
additionally employed a GSEA functional annotation approach

FIGURE 4 | Kaplan-Meier analysis of patients’ OS in the high-risk and low-risk subgroups of the HR+/Her2– (A), HR+/Her2+ (B), and TN (C) BC.
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TABLE 3 | Univariate and multivariate analysis of IRGS and clinical factors of BC patients in training and validation cohort.

Characteristic Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Training cohort

Age 1.035 (1.021–1.05) <0.001 1.035 (1.02–1.05) <0.001

Gender 0.879 (0.123–6.303) 0.993 0.26 (0.033–2.08) 0.204

T stage 1.577 (1.262–1.971) <0.001 0.947 (0.703–1.277) 0.723

N stage 1.655 (1.372–1.997) <0.001 1.319 (0.96–1.81) 0.087

M stage 6.695 (3.666–12.225) <0.001 1.444 (0.653–3.375) 0.397

TNM stage 2.236 (1.75–2.858) <0.001 1.427 (0.825–2.467) 0.203

ER (-) 0.673 (0.454–0.996) 0.047 0.912 (0.493–1.69) 0.771

PR (-) 0.677 (0.468–0.978) 0.038 0.714 (0.402–1.269) 0.251

Her-2 (-) 1.189 (0.747–1.891) 0.466 0.86 (0.534–1.384) 0.534

IRGS 3.608 (2.927–4.447) <0.001 3.315 (2.653–4.143) <0.001

Validation cohort

Age 2.111 (1.208–3.692) 0.009 1.31 (0.72–2.382) 0.377

T stage 1.387 (1.177–1.635) <0.001 1.165 (0.976–1.39) 0.091

N stage 3.941 (2.443–6.358) <0.001 2.68 (1.543–4.655) <0.001

Grade 1.603 (1.177–2.182) 0.003 1.463 (1.062–2.015) 0.02

IRGS 1.725 (1.157–2.574) 0.008 1.523 (1.006–2.305) 0.047

which revealed that low-risk patient samples were significantly
enriched for genes associated with immune response and
immune system processes relative to samples from high-risk
patients (Figures 5C,D).

Moreover, GSEA has been implicated in KEGG (Figure 6A)
and cancer hallmarks (Figure 6B). The enriched cancer
hallmarks in low-risk group, including the interferon alpha
(IFN-α) response, the interferon-γ (IFN-γ) response, IL-
2/STAT5 signaling, IL-6/JAK/STAT3 signaling, epithelial
mesenchymal transition, TGF-β signaling and hedgehog
signaling. Besides, the enriched pathways for low-risk group
were predominantly involved in immune-related pathways,
including JAK-STAT signaling, VEGF signaling, Toll-like
receptor signaling, RIG-I-like receptor signaling, B cell receptor
signaling, T cell receptor signaling, natural killer cell-mediated
cytotoxicity, antigen processing and presentation, hematopoietic
cell lineage and others.

Clear Differences in Immune Infiltration
Are Evident When Comparing Low- and
High-Risk BC Patients
In order to examine the relative contributions of stromal and
immune cells in these BC samples, we utilized the ESTIMATE
algorithm in order to process these TCGA data. This analysis
revealed that high-risk BC patients exhibited a significantly lower
degree of immune infiltration relative to low-risk patients, with
immune scores differing significantly between these groups (p
< 0.0001) even though stromal scores did not (p = 0.8785)
(Figure 7). When we conducted an immune cell type-specific
analysis, we found that low-risk patients exhibited higher levels
of naive B cells, plasma cells, CD8T cells, CD4 memory activated
T cells, follicular helper T cells, regulatory T cells (Tregs), γδ

T cells, resting NK cells, monocytes, and M1 macrophages,
whereas high-risk patients exhibited higher levels of M0 and M2

macrophages (Figure 8A). Correlation analyses revealed IRGS
risk scores to be significantly negatively correlated with B cell,
CD4+ T cell, CD8+ T cell, dendritic cell, and neutrophil
enrichment, and to be positively correlated with macrophage
enrichment (Figure 8B). Besides, the immune cell type-specific
analysis was conducted in different molecular subtypes of BC,
we found that low-risk patients exhibited higher levels of CD8+
T cells and lower levels of M2 macrophages in all subtypes of
BC (Figure 9).

We additionally found that patients with lower M0 and M2
macrophage levels exhibited significantly longer OS on average
when compared to patients with higher levels of these cells (M0:
median OS 18.063 vs. 10.611 years, p = 0.047; M2: median OS
12.208 vs. 9.34 years, p = 0.001), whereas no such relationship
was detected for M1 macrophages (Figure 10).

DISCUSSION

Previous research strongly suggests that immune cell infiltration
of tumors can strongly impact patient clinical outcomes in
many different cancer types including BC, ovarian cancer,
and melanoma (11–13). While difficult to assess directly in
many cases, such immune infiltration can be effectively gauged
through analyses of gene expression datasets from patient tumor
samples. In the present study, we began by leveraging TCGA
and GEO BC patient datasets in order to identify BC-related
immune-related genes. We then examined the relationship
between gene expression patterns and BC patient clinical data
in order to identify survival-associated DEIGs, and generated an
IRGS risk model that could be used to effectively stratify BC
patients into low- and high-risk groups exhibiting significant
differences in survival, immune cell infiltration of tumors, and
immune/stromal content.
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FIGURE 5 | The low-risk and high-risk groups displayed different immune statuses. Principal components analysis between low- and high-risk groups on the basis of

the whole genome expression data (A) and the immune-related gene signature (B). Functional annotation of the IRGS by GSEA analysis: (C) Immune response, (D)

Immune system process.

The immune system is an essential mediator of clinical
outcomes in solid tumor patients. We were able to identify 38
total DEIGs associated with BC patient survival outcomes, and
we then used these DEIGs to construct our IRGS risk model.
IRGS risk scores allowed us to successfully stratify BC patients
into low- and high-risk groups with significant differences in
both OS and RFS, as well as a high AUC value. Recently, a
number of studies exploring the prognostic immune-genes for
BC patients were reported. Bai et al. (14) identified DEGs in
BC samples with high and low lymphocyte-specific kinase (LCK)
metagene scores. They obtained 115 genes, and found that 22 of
themwere independent predictors of OS in BC patients. Ren et al.
(15) screened 248 intersecting DEGs in stromal score differential
genes and immune score differential genes, they identified 31
prognosis-related genes from the tumor microenvironment for
BC patients. However, we utilized lists of immune-related genes

from the ImmPort to identified DE immune-related genes. To
the best of our knowledge, it is the first study to focus on
IRGS associated with BC patient survival. We also evaluated the
relevance of this signature to immune response and immune cell
infiltration of BC.

Among these 27 genes enrolled in IRGS, some have previously
shown to correlate with the tumorigenesis of BC. For example,
suppressor of cytokine signaling 3 (SOCS3), as an important
negative regulator of JAK/STAT pathways, serve as essential
signaling transduction intermediaries in response to a number
of different cytokines and immune responses in BC (16–
18). GSEA revealed that low-risk patient samples exhibited
gene expression patterns enriched for genes associated with
the immune system, while high-risk patients had lower levels
of immune cell infiltration. This may suggest that enhanced
immune infiltration is associated with better outcomes in BC
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FIGURE 6 | Functional annotation of the IRGS by GSEA analysis (A) KEGG; (B) Cancer hallmarks.

FIGURE 7 | Analysis of ESTIMATE algorithm to the TCGA dataset.

patients and that the further study of IRGS-related pathways may
highlight novel approaches to extending the life expectancy of
BC patients.

The TME is a current topic of intense scientific interest.
Different types of tumor-infiltrating lymphocytes (TILs) have
been found to be associated with significant differences in
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FIGURE 8 | Immune analysis. (A) The violin plot showed the immune cells infiltration in the low- and high-risk groups. (B) Correlation analysis between immune cells

and risk score.

BC patient outcomes, with T cells being the best studied and
understood of these TILs. T cells are typically the most abundant
immune cell type within BC tumors, and recent work indicates

that CD8+ T cells play a key role in preventing BCmetastasis and
in shaping overall patient outcomes (19–22). Consistent with this,
we found that CD8+ T cells were enriched in low-risk patients
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FIGURE 9 | The violin plot showed the immune cells infiltration in the low- and high-risk groups of the HR+/Her2– (A), HR+/Her2+ (B), and TN (C) BC.

and were negatively correlated with patient risk scores. Tumor-
infiltrating regulatory T cells (Tregs) have also been heavily
studied in the context of BC, although these previous studies

have yielded inconsistent findings (23–26). Some reports suggest
that Tregs are associated with poor patient prognosis, whereas
others suggest the opposite. In a meta-analysis conducted by
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FIGURE 10 | Survival analysis according the cell content of M0-macrophages, M1-macrophages, and M2-macrophages. The cut-off point between high and low

groups is median-value.

Shang et al. (27), Tregs infiltration was shown to be associated
with favorable outcomes in ER– BC, but with a poor prognosis in
ER+ BC patients, potentially explaining these discrepancies. In
this study, we found that Tregs were enriched in tumor samples
from low-risk patients. The relevance of B cell infiltration to
BC patient outcomes is not as well-understood, and the role
of these cells thus remains controversial in this context (28,
29). In the present study, we found B cell infiltration to be
significantly negatively correlated with BC patient risk scores,
and we observed significant enrichment of naive B/plasma cells
in low-risk patients. Future studies, however, will be required in
order to understand the exact prognostic relevance of these cells.

Tumor-associated macrophages (TAMs) have also been
thoroughly studied as key mediators of interactions between
tumors and the immune system (30). These TAMS are generally

grouped into two major subtypes: M1 and M2 macrophages.
M1 macrophages secrete inflammatory factors including TNF-
α and IL-12, and typically suppress tumor development. In
contrast, M2macrophages express immunosuppressive cytokines
and growth factors like IL-10, Arg-1, CD206, VEGF, and EGF,
and can thereby promote tumor proliferation, metastasis, and
angiogenesis (31). Several prior studies have demonstrated that
such M2 macrophage infiltration is associated with poorer
anti-tumor immune response, with increased ECM remodeling,
and with enhanced angiogenesis (32). In the present study,
we found that high-risk patient samples were enriched for
M2 macrophages, while patients with low levels of M2 cells
exhibited a significantly longer OS relative to patients with
high levels of these cells. The specific factors influencing M1-
and M2-macrophage polarization in the BC tumors of these
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patients are not clear. JAK/STAT signaling is well-known to
be a key regulator of such polarization (33), and our GSEA
results indicated that low-risk patients were enriched for IFN-γ
responses, IL-6/JAK/STAT3 signaling, and IL-2/STAT5 signaling.
IFN-γ can activate STAT1, thereby promoting M1 polarization
via the IFN-γ/JAK/STAT1 signaling pathway (34). In contrast,
IL-6/JAK/STAT3 signaling has largely been suggested to promote
M2 macrophage polarization (35, 36). Besides, many other
factors can influence macrophage fate determination including
SOCS1, SOCS3, and hsa-miR-155 (37). Indeed, reductions in
SOCS3 expression and enhanced STAT3 activation can promote
M2 macrophage polarization. In addition, the inhibition of
miR-155/SOCS1 expression by AKT1 can similarly support the
development of M2 macrophages (38).

This study has multiple limitations. For one, this was
a retrospective analysis, and future prospective studies are
therefore required. Furthermore, additional in vitro and in vivo
functional analyses will be needed to validate and expand upon
these results. In addition, while we made efforts to minimize
cross-study batch effects in our analyses, such effects cannot be
completely eliminated. Lastly, while we were able to attempt to
reconstruct the intratumoral immune landscape based on our
gene expression data, it is important to remember that such
cellular composition is not necessarily reflective of true cell-cell
interactions within these tumors. Further validation of all aspects
of results is therefore required.

CONCLUSION

Together, our results offer a novel approach to comprehensively
synthesizing immunological genes data in order to reliably

gauge BC patient prognosis. These findings may allow us to
identify previously unidentified molecular targets amenable to
immunotherapy-mediated treatment, thereby improving clinical
options for BC patients. However, future studies will be required
in order to validate the clinical utility and prognostic relevance of
the IRGS described in this study.
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