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A deep learning and novelty detection framework 
for rapid phenotyping in high-content screening

ABSTRACT Supervised machine learning is a powerful and widely used method for analyzing 
high-content screening data. Despite its accuracy, efficiency, and versatility, supervised ma-
chine learning has drawbacks, most notably its dependence on a priori knowledge of ex-
pected phenotypes and time-consuming classifier training. We provide a solution to these 
limitations with CellCognition Explorer, a generic novelty detection and deep learning frame-
work. Application to several large-scale screening data sets on nuclear and mitotic cell mor-
phologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes 
without user training, which has broad implications for improved assay development in high-
content screening.

INTRODUCTION
Advances in microscope automation have facilitated the systematic 
study of cellular phenotypes resulting from genetic or chemical per-
turbations. Prevailing image analysis pipelines rely on supervised 
machine learning to classify cellular phenotypes based on user-de-
fined collections of statistical image features (Boland and Murphy, 
2001; Carpenter et al., 2006; Neumann et al., 2006; Bakal et al., 
2007; Jones et al., 2009; Ramo et al., 2009; Held et al., 2010; Mis-
selwitz et al., 2010; Sommer and Gerlich, 2013; Boutros et al., 2015; 
Mattiazzi Usaj et al., 2016). This approach has revealed new gene 
functions in various RNA interference (RNAi)-based screens (e.g., 
Goshima et al., 2007; Neumann et al., 2010; Schmitz et al., 2010; 
Gudjonsson et al., 2012; Sommer and Gerlich, 2013; Liberali et al., 
2014; Boutros et al., 2015; Cuylen et al., 2016). While supervised 

machine learning is in principle broadly applicable, it requires exten-
sive user interaction for the development of new biological assays.

A major limitation of supervised machine learning is the require-
ment for classifier training for each new assay or variation in the ex-
perimental conditions. The classifier training requires representative 
images for all expected phenotype classes. As possible phenotype 
morphologies are not always completely known a priori, screening 
assay development often involves extensive and time-consuming 
pilot screens that are inspected visually for manual annotation of 
phenotype classes (Conrad and Gerlich, 2010). This process can be 
facilitated by interactive learning (Jones et al., 2009), yet rare phe-
notype classes might not be represented in pilot screens. Moreover, 
current high-content screening analysis software relies on user-cu-
rated collections of feature extraction algorithms, which often re-
quire specific software adaptations when establishing new cell bio-
logical assays. Developing classifiers for new biological assays has 
hence remained a major bottleneck in high-content screening.

These limitations might be overcome by unsupervised learning 
methods, which estimate phenotypic content based on intrinsic 
data structure. However, high cell-to-cell variability and experimen-
tal noise often preclude sensitive and reliable detection of low-pen-
etrance phenotypes. The accuracy of unsupervised phenotype de-
tection can be improved by object features beyond the single-cell 
level, such as the temporal context (Zhong et al., 2012; Failmezger 
et al., 2013) or the cell population context (Rajaram et al., 2012; 
Liberali et al., 2014), but such information is not always applicable 
for a given biological assay. The detection of unknown phenotypes 
might be facilitated by novelty detection methods (Yin et al., 2008, 
2013; Manning and Shamir, 2014), yet the performance of such 
methods in genome-wide screening has not yet been tested.
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boundary for subsequent detection of any morphological devia-
tions in large-scale screening data—even for phenotypes that are 
not known a priori.

CellCognition Explorer provides a pipeline for integrated data 
analysis from raw images to phenotype scores (Figure 1). The soft-
ware package consists of two programs: The main CellCognition 
Explorer program provides interactive data visualization tools and 
the possibility of performing versatile analysis workflows using nov-
elty detection methodology, as well as conventional supervised 
learning methods. It is controlled by a simple graphical user inter-
face (Supplemental Figure S1) that works on all major computer 
operating systems. CellCognition Deep Learning Module is a sepa-
rate program for graphics processing unit (GPU)-accelerated high-
performance computing of deep learning features (Supplemental 
Figure S2). The implementation as two separate programs provides 
optimal flexibility for installation of the interactive data exploration 
and workflow design tool, while enabling the efficient computation 
of deep learning features by dedicated GPU hardware. Both pro-
grams are controlled by graphical user interfaces and distributed as 
open source software embedded within the CellCognition plat-
form (Held et al., 2010; http://software.cellcognition-project.org/
explorer/). Interoperability with widely used bioimage software 
packages, including ImageJ/Fiji (Abramoff et al., 2004; Schindelin 
et al., 2012), CellProfiler (Carpenter et al., 2006), and Bioconductor 
(Gentleman et al., 2004), is enabled via the standardized file format 
cellH5 (Sommer et al., 2013).

Cell phenotyping by novelty detection
The novelty detection algorithms implemented in CellCognition 
Explorer are designed to learn intrinsic cell-to-cell variability in an 
untreated negative control cell population autonomously, which 
sensitizes the classifier to perturbation-induced phenotypes. Ab-
normal cell phenotypes are then scored either based on the 
weighted cell object distance in feature space relative to the mean 
and covariance of a control cell population (Mahalanobis distance, 

The dependence of machine learning approaches on user-cu-
rated image features might be overcome by feature self-learning 
from the data. This can be achieved by deep learning methodology 
(LeCun et al., 2015), which has demonstrated impressive perfor-
mance in various domains, such as face recognition (Taigman et al., 
2014) and speech recognition (Sainath et al., 2013). Recent analyses 
of protein localization in budding yeast by deep learning indicates a 
high potential in bioimaging (Kraus et al., 2017; Parnamaa and 
Parts, 2017), but applicability to genome-scale human cell screening 
data has not yet been explored and an integration of novelty detec-
tion with deep learning is not available in community-standard soft-
ware for high-content screening.

We here present the novelty detection and deep learning soft-
ware CellCognition Explorer. The software yields phenotype scores 
based on deviation of cell morphologies from negative control im-
ages. We demonstrate that CellCognition Explorer enables sensi-
tive and accurate cellular phenotype detection in genome-scale 
screening data without the need for extensive user interaction for 
data annotation. In addition, deep learning of image-derived fea-
tures overcomes the dependence on user-curated feature analysis 
collections and accurate cell segmentation outlines. Hence, Cell-
Cognition Explorer greatly facilitates rapid screening assay develop-
ment even when cellular phenotypes are not known a priori.

RESULTS
CellCognition Explorer software
We have developed CellCognition Explorer, a machine learning 
framework for the detection of abnormal cell morphologies without 
prior user training. Two core technologies enable the unsupervised 
classification task. Deep learning methods infer numerical descrip-
tors of individual cell objects directly from the raw image pixel data, 
thus circumventing feature engineering and software adaptations 
for new biological assays. Novelty detection methods then learn a 
statistical model of the natural phenotype variation within the nega-
tive control cell population. This yields an accurate classification 

FIGURE 1: Data analysis workflows with CellCognition Explorer. Red boxes and arrows indicate the standard workflow 
with object detection, deep learning, and novelty detection as described in this paper. Blue boxes indicate previously 
described methods (Held et al., 2010) that can be combined with the new functionality (blue arrows) or with other 
high-content screening software via CellH5 (Sommer et al., 2013; dashed lines). Deep learning features are computed 
through a separate program (owing to specific high-performance computing hardware requirements). Workflow 
integration is achieved through CellH5 data exchange (Sommer et al., 2013).
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fluorescent histone 2B fused to mCherry (H2B–mCherry) were sub-
jected to RNAi depletion of 1214 genes previously identified as 
important for mitosis from a genomewide screen (Neumann et al., 
2010), using individual transfection of two different small interfering 
RNAs (siRNAs) per target gene, followed by live-cell imaging on an 
automated epifluorescence microscope. To establish a reference 
annotation, we detected cell objects based on local adaptive 
thresholding and watershed segmentation and calculated 239 con-
ventional numerical features describing texture and shape (Held 
et al., 2010). We then randomly subsampled 10,000 cell objects 
and manually annotated their “ground truth” phenotypes by clas-
sification into nine different morphology classes: normal interphase 
nuclei and various different outlier morphologies, representing mi-
totic stages, dead cells, and abnormal nuclear shapes (Figure 2a, 

MD; Pimentel et al., 2014), based on their likelihood after the mul-
tivariate probability density of control conditions is estimated (ker-
nel density estimation, KDE; Pimentel et al., 2014), or by fitting a 
nonlinear hyperplane to control cell objects (one-class support 
vector machine; Scholkopf et al., 2001) (see Materials and 
Methods). These methods can score and classify cell objects based 
on conventional precomputed numerical features (e.g., Boland 
and Murphy, 2001; Murphy et al., 2003; Carpenter et al., 2006; 
Held et al., 2010) or based on learned representations from the 
original image pixel data when combined with deep learning 
(Vincent et al., 2010; Durr and Sick, 2016; Kraus et al., 2016).

To test the performance of the novelty detection methods, we 
generated a data set representing the full spectrum of morphologi-
cal phenotypes for a chromatin marker. HeLa cells stably expressing 

FIGURE 2: Novelty detection with CellCognition Explorer. (a) Phenotype distribution in principal component subspace 
of 10,000 manually annotated HeLa cells stably expressing H2B-mCherry. The cell images were randomly selected from 
2428 RNAi experiments to establish a representative collection of all cellular phenotypes. The nine phenotype classes 
illustrate the most common nuclear and mitotic chromatin morphologies. Colors indicate phenotype groups as 
illustrated by examples. (b) Performance of different novelty detection methods. True positive and false positive rates 
(receiver operating characteristic curve) were calculated for the indicated methods based on the data shown in a. 
(c) Comparison of phenotype scoring by conventional supervised learning (Held et al., 2010) and novelty detection. 
Each dot represents one of 2428 different siRNAs; negative controls: no-targeting siRNAs; positive controls: siRNAs 
causing strong mitotic phenotypes. Phenotype scores are defined as the fraction of HeLa-H2B-mCherry cells deviating 
from normal interphase morphology. For detailed analysis results, see Supplemental Table S2. (d) Phenotype scoring of 
2428 siRNAs as in a by novelty detection using CellCognition Explorer. Red bars indicate the distribution of the top 100 
ranked siRNA hits identified by conventional supervised learning; see c.
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conventional supervised machine learn-
ing. The implementation of different anal-
ysis pipelines combining supervised and 
unsupervised methods is facilitated by the 
interactive visualization platform for cell 
objects (Figure 1).

We evaluated the accuracy of pheno-
type scoring based on deep learning–de-
rived features using the reference data as 
described above. We trained deep autoen-
coder neural networks to reduce the high-
dimensional image-pixel data to low-di-
mensional compressed code (Figure 3a; for 
details see Supplemental Tables S5–S7). 
The parameters of such networks are itera-
tively adjusted by minimizing the discrep-
ancy between the original data and its re-
construction based on the compressed 
code. The learned features then serve as an 
input for novelty detection as described 
above. The top-scoring RNAi phenotypes 
obtained by this method matched well the 
reference scoring by supervised learning 
(Figure 3, b and c). The total accuracy 
achieved by deep learning features was 
only slightly lower than that of classical fea-
ture collection (compare Supplemental 
Figures S4b and S4c), which has been 
highly optimized for the specific chromatin 
morphology assay. Thus, unsupervised deep 
learning can derive informative features for 

fully automated phenotype scoring by novelty detection, thereby 
overcoming dependence on manually curated feature sets.

Application to genomewide screening
To test the applicability of CellCognition Explorer to high-through-
put screening, we aimed to recompute phenotype scores for pub-
lished primary image data of a genomewide RNAi screen for mitotic 
regulators (Neumann et al., 2010). The original phenotype scoring 
of these screening data was based on classification using supervised 
learning (Neumann et al., 2010), in which the development of a reli-
able classifier required a multimonth phase of iterative pilot screen-
ing and visual inspection for classifier training (Neumann et al., 
2006, 2010). The analysis of millions of images during pilot screen-
ing had ultimately led to the discovery of many previously unknown 
phenotypes (Figure 4a). Identifying all abnormal cell morphologies 
prior to classifier training would abrogate the need to visually in-
spect the full data set, thereby solving a major bottleneck in data 
analysis.

We used the CellCognition Deep Learning Module to extract self-
learned features for phenotype scoring based on novelty detection. 
The top-ranked siRNAs according to phenotype penetrance were 
very similar to the originally published hit list (Figure 4b), even though 
information on abnormal phenotype morphologies from pilot screen-
ing was not taken into account. Hit lists generated by our new 
methods are hence highly enriched for abnormal cell morphologies, 
which greatly facilitates further phenotype analysis by visual inspec-
tion, supervised classification, or unsupervised clustering. 

To probe the versatility of our methods, we next reanalyzed 
primary image data from another large-scale RNAi screen for DNA 
damage repair regulators (Gudjonsson et al., 2012). The primary 
assay probed the regulation of DNA damage repair protein 

Supplemental Table S1, full data set available at http://software 
.cellcognition-project.org/explorer/). In the principal component 
subfeature space (Pimentel et al., 2014), interphase nuclei ap-
peared as a single compact cluster, whereas the different outlier 
phenotype groups scattered broadly in different regions.

All three novelty detection methods implemented in CellCogni-
tion Explorer accurately classified normal interphase nuclei as inlier 
objects and other morphologies as outliers, consistent with pheno-
type scoring with supervised analysis (Figure 2b). To extend the per-
formance tests to the full data set, we next quantified the abun-
dance of abnormal cell phenotypes in each of the 2428 RNAi 
conditions. The fraction of cells with outlier morphologies calculated 
with novelty detection methods consistently matched the reference 
state-of-the-art analysis using supervised learning by support vector 
machines (Held et al., 2010) (SVMs; Figure 2, c and d, and Supple-
mental Figure S3). Thus, novelty detection with CellCognition Ex-
plorer accurately identifies abnormal cell morphology phenotypes 
without the need for extensive data annotation.

Deep learning of cell features
The CellCognition Deep Learning Module automatically extracts 
numerical feature sets that adjust to specific cell morphology 
markers used in an assay. This is achieved by a convolutional auto-
encoder, a multilayered artificial neural network (Hinton and Sal-
akhutdinov, 2006) that learns a representation (encoding) for a col-
lection of images. This method requires only center coordinates of 
cell objects as an input and is thus independent of the accurate 
object segmentation contours that are normally necessary for con-
ventional user-curated feature sets to calculate shape features. 
The features derived by deep learning serve as an input for the 
novelty detection method (see above) and can also be used for 

FIGURE 3: Self-learning of cell object features with CellCognition Deep Learning Module. 
(a) Schematic illustration of deep learning using an AE with convolutional, pooling, and fully 
connected layers. (b) Phenotype scoring of 2428 siRNAs (see Figure 1a) by novelty detection 
and deep learning using CellCognition Explorer. Red bars indicate the distribution of the top 
100 ranked siRNA hits identified by conventional supervised learning as in Held et al. (2010). 
(c) Comparison of the top 100 screening hits determined either by novelty detection and deep 
learning of object features (blue) or by supervised learning and conventional features (yellow) for 
2428 siRNAs as in a and b. For comparison of novelty detection with conventional and deep 
learning features, see Supplemental Figure S4a. Scale bars, 10 μm.
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DISCUSSION
CellCognition Explorer bypasses the need 
for extensive pilot screening to capture all 
possible phenotype morphologies and 
thereby solves a major bottleneck of con-
ventional supervised approaches. CellCog-
nition Explorer yields a list of top-ranked 
screening targets directly from large-scale 
screening data, which can be used for mech-
anistic follow-up studies or further subclassi-
fied using conventional supervised methods.

By avoiding human bias arising from su-
pervised classifier training (Zhong et al., 
2012), novelty detection with CellCognition 
Explorer helps to improve the consistency 
between different screens. Furthermore, 
the independence from manually curated 
feature sets facilitates the development of 
new cell biological assays. The inference of 
image features by deep learning does not 
take the image segmentation contours into 
account and therefore has the potential to 
facilitate the analysis of cellular markers that 
are difficult to segment.

We here demonstrate how CellCogni-
tion Explorer can be used to detect novel 
phenotypes in nuclear morphology screen-
ing data. CellCognition Explorer supports 
processing of multichannel images and we 
are currently extending the software for 
segmentation of other cell compartments 
and cell tracking for kinetic readouts 
(Hoefler, unpublished observations).

Overall, the simple graphical user inter-
face of CellCognition Explorer and the inde-
pendence of centralized large-scale comput-
ing infrastructure is well suited to applying 
deep learning and novelty detection to di-
verse questions in cell biology. Hence, Cell-

Cognition Explorer provides new opportunities for high-content 
screening and for– exploratory research in diverse biological fields.

MATERIALS AND METHODS
Cell culture
A HeLa cell line stably expressed histone H2B fused to mCherry 
and lamin B1 fused to EGFP (Daigle et al., 2001) was generated 
from a HeLa Kyoto cell line as previously described (Schmitz and 
Gerlich, 2009). HeLa cells were cultured in DMEM (Life Technolo-
gies) supplemented with 10% (vol/vol) fetal bovine serum (FBS; 
Life Technologies), 1% (vol/vol) penicillin–streptomycin (Sigma- 
Aldrich), 500 μg ml−1 G418 (Life Technologies), and 0.5 μg ml−1 
puromycin (Calbiochem). Homogeneous expression levels of the 
two transgenes were ensured by fluorescence-activated cell sort-
ing. The cell line tested negatively for mycoplasm contamination 
in our quarterly testing routine. The parental HeLa cell line (“Kyoto 
strain”) was obtained from S. Narumiya (Kyoto University, Japan) 
and validated by a Multiplex human Cell line Authentication test 
(MCA).

siRNA library transfection
A total of 1114 genes of the MitoCheck genome-wide RNAi screen 
validation data set (Neumann et al., 2010) were targeted by two 

RNF168, which accumulates in bright nuclear foci (Figure 4c). The 
distribution of top-ranked siRNA hits derived from deep-learned 
features and novelty detection was very similar to that in the origi-
nal conventional supervised learning analysis (Figure 4d). Hence, 
CellCognition Explorer yields reliable phenotype scores in large-
scale screening data without prior user definition of aberrant phe-
notype morphologies.

To ensure broad applicability in biological laboratories, we 
designed our software to achieve high-throughput data process-
ing independent of expensive computing infrastructure. We 
therefore implemented the computationally intense deep learn-
ing module as separate software that runs on standard consumer-
grade graphics hardware on a desktop computer (see Materials 
and Methods).

With this, we completely processed both large-scale screening 
data sets. The genome-wide RNAi screen (Figure 4, a and b) was 
processed in less than 34 h in total. The autoencoder training on 
200,000 cell objects from negative control conditions took 2 h. After 
training, 19 million cells were classified with the novelty detection pro-
cedure (including feature generation) in 32 h, hence with a throughput 
of 593,750 cells/h. Thus, deep learning and novelty detection with 
CellCognition Explorer provide a versatile and powerful solution for 
rapid phenotype scoring in large-scale high-content screening.

FIGURE 4: Application of CellCognition Explorer to high-throughput RNAi screening. 
(a) Genomewide RNAi screen for mitotic regulators based on live-cell microscopy of HeLa cells 
expressing H2B-mCherry (Neumann et al., 2010). Images show representative examples for a 
normal interphase morphology and various phenotype morphology classes as defined in 
Neumann et al. (2010). (b) Phenotype scoring of 51,748 siRNAs by novelty detection and deep 
learning with CellCognition Explorer, using the primary image data of Neumann et al. (2010). 
Red bars indicate the distribution of the top 1000 ranked siRNA hits identified by conventional 
supervised learning as in Neumann et al. (2010). For details on analysis, see Supplemental Table 
S3. (c) Large-scale RNAi screen for DNA damage repair regulators (Gudjonsson et al., 2012). 
GFP-tagged RNF168 (red) visualizes spontaneous DNA damage in U2OS cells by accumulation 
in bright nuclear foci, which increase in number and intensity upon perturbed DNA damage 
repair (abnormal RNF168 distribution in siTRIP12 RNAi cell). DNA (green) is counterstained by 
DAPI. (d) Phenotype scoring of 2423 siRNAs by novelty detection and deep learning with 
CellCognition Explorer, using the primary image data of Gudjonsson et al. (2012). Red bars 
indicate the distribution of the top 100 ranked siRNA hits as identified in Gudjonsson et al. 
(2012). For details on analysis, see Supplemental Table S4. Scale bars, 10 μm.
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have a greater Mahalanobis distance than the chosen cutoff and 
therefore are considered abnormal. Cells from other experimental 
conditions are then assigned to the normal category (inliers) when 
their Mahalanobis distance is smaller than the calculated cutoff, or 
to the abnormal category (outliers) if the distance is greater. For all 
experiments shown in the article, >50,000 cells were sampled from 
negative control conditions for estimation of the parameters for out-
lier detection. For the chromatin morphology screen (Figure 2, c and 
d), a 10% cutoff was used. Negative control conditions in the screen 
for damage repair regulators (Figure 4, c and d) contained only very 
few outliers; a 5% cutoff value was hence chosen. The varying 
thresholds were empirically determined based on the expected 
number of outliers in the data sets.

Kernel density estimation
KDE is nonparametric estimation of a probability distribution 
(Pimentel et al., 2014). Conceptually, KDE is related to histograms. 
Instead of quantizing a discrete probability density by counting how 
many data points fall into each bin, KDE does not require binning 
and outputs a continuous function. KDE places a zero-centered ker-
nel function K of a bandwidth h on each data point followed by 
summing all these kernels:

x
n

K x xKDE 1
h h

i

n

i
1

∑( ) ( )= −
=  

(2)

A multivariate Gaussian density distribution was used as the ker-
nel K. The bandwidth h is given by the variance of the Gaussian 
distribution. In places where many data points are located, the esti-
mated density will be high, while at places where no or few data 
points lie, the density will approach zero. Similarly to the cutoff pa-
rameter of Mahalanobis distance, a separation into abnormal (out-
lier) and normal (inlier) locations was achieved by thresholding so 
that the resulting estimated density had 15% of the data points clas-
sified as novel and 85% classified normal. The choice of an appropri-
ate bandwidth is the key to KDE, because it determines the smooth-
ness of the resulting density (e.g., too small bandwidths lead to 
spiky nonoverlapping densities). Therefore, a cross-validation strat-
egy was used to estimate appropriate bandwidth from holdout data.

One-class support vector machine
Another nonparametric and nonlinear way to estimate densities in 
high-dimensional spaces is the OC-SVM (Scholkopf et al., 2001). 
Similarly to the standard two-class SVM (Vapnik and Lerner, 1963) 
the OC-SVM yields a separating hyperplane with a maximal margin 
to distinguish the majority of the data from the origin. When a 
Gaussian kernel is used in the SVM optimization framework, the 
hyperplane implicitly corresponds to nonlinear decision boundaries 
in input space (Boser et al., 1992). With this, the OC-SVM models 
arbitrary densities in high dimensions as opposed to more simpli-
fied ellipsoidal distributions when MD is used. Similarly to KDE, a 
parameter g (inverse SD of the Gaussian kernel) accounts for the 
smoothness of the resulting enclosing hyperplane. In the experi-
ments shown in the article, g was optimized empirically by a grid 
search on a logarithmic scale. The parameter n in OC-SVM–based 
novelty detection is the maximal fraction of data points in the train-
ing set that can be assigned being an outlier. In accord with the 
methods described previously, we set n = 0.15.

Self-learned feature representation with autoencoders
The novelty detection algorithms described above can be trained 
on a manually curated feature set (e.g., as in Held et al., 2010). Such 

siRNAs. To test target specificity, all siRNAs were mapped against 
the 2013 human genome (ENSEMBL V70), resulting in a unique 
match. siRNAs were delivered in 384-well imaging plates (Falcon) 
using solid-phase reverse transfection. Cells were seeded on the 
imaging plates using a Multidrop Reagent Dispenser (Thermo 
Scientific).

Automated microscopy
At 40 h after cell seeding, plates were imaged on a Molecular De-
vices ImageXpressMicro XL screening microscope using a magnifi-
cation 20×, 0.75 NA, S Fluor dry objective (Nikon). Four positions 
with two Z-sections each (4 μm offset) were acquired in each well. 
Images were flat-field-corrected with the Metamorph software 
(Molecular Devices) using images acquired in empty wells to com-
pensate for inhomogeneous illumination.

Image preprocessing for reference annotation with 
conventional supervised learning
To detect individual cells, we used local adaptive thresholding fol-
lowed by a watershed split-and-merge segmentation as provided in 
the CellCognition framework (Held et al., 2010). For each cell, the 
segmentation outline, its center of mass, and its bounding box were 
computed and saved to the cellH5 format (Sommer et al., 2013). 
Then 239 cellular morphology features describing the texture, 
shape, and intensity distribution of each single cell object were 
computed as in Held et al. (2010). As a reference annotation in the 
chromatin morphology screen, we trained a multiclass SVM on nine 
phenotype classes with 592 training examples, achieving a cross-
validation accuracy of 85.1%.

Outlier detection
An outlier is an observation that deviates so much from other obser-
vations as to arouse suspicions that it was generated by a different 
process (Hawkins, 1980). Novelty detection methods aim to identify 
outliers by inference based on intrinsic properties of the data with-
out any further annotations. We implemented three state-of-the-art 
novelty detection methods: Mahalanobis distance (MD; Mahalano-
bis, 1936), kernel density estimation (Pimentel et al., 2014), and one-
class SVM (OC-SVM; Scholkopf et al., 2001). All methods find nov-
elty based on preextracted morphology features or on data-adaptive 
learned feature representations by deep learning autoencoders.

Mahalanobis distance
MD is based on the parametric assumption that the extracted fea-
tures follow a multivariate Gaussian distribution (Mahalanobis, 
1936). The Mahalanobis distance (Eq. 1) incorporates the mean μ 
and the covariance matrix S (multidimensional spread) of the data:

x x S xMD T 1µ µ( ) ( ) ( )= − −−
 (1)

For estimation of the mean and covariance, data samples were 
drawn from negative control conditions. Negative control condi-
tions will also contain aberrant phenotypes (e.g., polypoid cells). To 
reduce the effect of strong outliers on the estimation process, some 
instances were excluded based on their univariate feature distribu-
tions (i.e., cells with the most extreme single feature values) prior to 
the estimation of the multivariate mean and covariance.

The mean feature vector represents the ideal normal cell, 
whereas the covariance estimates its multivariate spread. Once the 
mean and the covariance of the multivariate Gaussian distributions 
are estimated, an empirical cutoff distance is estimated (relative to 
negative control data) in such a way that 15% of the data points 
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Autoencoder training
AEs were trained with stochastic gradient descent (SGD) based on 
the sum of squared residuals of input and output as objective func-
tion (Vincent et al., 2010). The SGD method resembles a stochastic 
approximation of the gradient descent optimization method, where 
the true gradient of all the data is approximated by the gradients of 
so-called mini-batches, randomly selected subsets of the training 
data of a certain size m. All weights in the network are updated ac-
cording to the back-propagated gradients of the objective function. 
This process is repeated and each round is referred to as one train-
ing epoch. Empirically, we found that alternating two variants of 
SGD—Nesterov momentum (Nesterov, 1983) and adaptive gradient 
descent (AdaGrad; Duchi et al., 2011)—leads to fast convergence. 
Nesterov momentum adds a momentum term to the update rule to 
stabilize the learning process and to avoid local minima (Bengio 
et al., 2013). AdaGrad modifies SGD by introducing a per-parameter 
learning rate leading to faster convergence (Duchi et al., 2011).

For the AE used in chromatin morphology screening, we used 
first Nesterov momentum SGD updated for 128 epochs with a mini-
batch size of 128, a learning rate of 0.02, and a momentum of 0.8 
followed by AdaGrad updates for 128 epochs with a mini-batch size 
of 128 and a base learning rate of 0.1.

For the AE depicted in MitoCheck RNAi screening, we used a 
mini-batch size of 128. Nesterov momentum updates with a learn-
ing rate of 0.1 and a momentum of 0.5 were followed by AdaGrad 
updates with a learning rate of 0.1, both for 64 epochs. Then we 
reiterated with slightly adjusted values: a learning rate of 0.02 l and 
a momentum of 0.9 for the Nesterov updates and a learning rate of 
0.05 for AdaGrad.

For the AE shown in DNA damage repair RNAi screening, we 
used first Nesterov momentum SGD with a learning rate of 0.02, a 
momentum of 0.9, and a mini-batch size of 128 followed by AdaG-
rad with a learning rate of 0.05 and a mini-batch size of 64.

CellCognition Explorer software package. The CellCognition 
Explorer software package consists of two programs: 1) the Cell-
Cognition Explorer main program, from which the novelty detection 
methods (e.g., MD) and supervised learning algorithms (multiclass 
SVM) can be executed and visualized; and 2) a program for the gen-
eration of self-learned feature representations (codes).

CellCognition Explorer main program. The software imports im-
ages of cell populations and converts them into galleries of individ-
ual cells. Original multichannel raw images are preprocessed in ad-
vance: Thumbnails, features, and outlines are calculated and saved 
to cellH5/hdf5. The software stores experimental conditions along 
with cell objects to enable efficient data export and visualization of 
results by statistical plots, such as object class counts per condition. 
The software provides functions for cell segmentation and conven-
tional feature extraction as in Held et al. (2010) for multiple image 
channels.

The graphical user interface is designed to handle a few thou-
sand cells smoothly on a standard desktop PC. Larger data sets can 
be loaded in batches. The software is available as a binary stand-
alone version for Mac OSX and Windows 7.

CellCognition Explorer Deep Learning Module. With this pro-
gram, the user can train a deep learning AE from negative controls. 
The main input is a cellH5 file (Sommer et al., 2013) containing the 
image data and center positions of all detected cell objects, to-
gether with a position mapping (text-)file indicating negative control 
positions used for randomly sampling cells for the training process. 

features are defined a priori and do not depend on the actual data 
at hand. Hence, information for distinguishing novel phenotypes 
from normal morphologies might not be sufficiently expressed by 
general feature sets.

To overcome this limitation, we implemented a class of artificial 
neural networks (ANNs) termed autoencoders (AE) to learn a data-
dependent features representation directly from pixel data from in-
dividual cropped-out cells in an unsupervised manner. The bound-
ing box size for cropping can be chosen freely by the user. An AE is 
an ANN that adjusts its internal weights to reconstruct its input as 
closely as possible (subject to a given objective function) by first 
learning how to encode its inputs effectively in the encoding layer 
and then decoding this back to the original domain with an inverse 
decoding layer (Hinton and Salakhutdinov, 2006). Once an AE has 
learned how to encode cell images into a code, this process is iter-
ated to stack AEs in a hierarchical manner to generate deeper net-
works called stacked AEs (Hinton and Salakhutdinov, 2006). To en-
sure that an AE is not learning the simple identity function, the 
internal parameters have fewer degrees of freedom than its input/
output (contractive autoencoding).

Recent progress in designing deep learning networks for various 
tasks in computer vision has led to the incorporation of convolutional 
and pooling layers (e.g., Krizhevsky et al., 2012). Convolutional layers 
refer to learnable image filters usually of size 3 × 3 or 5 × 5 applied to 
the input images. Like other network weights in an ANN, these filters 
are simultaneously adapted during optimization to yield feature 
maps, which improve the overall network performance. To reduce 
the overall spatial dimensionality, convolutional layers are combined 
with max-pooling layers, which effectively downsamples the input 
image by selecting only the maximum pixel value for a defined 
neighborhood region (Krizhevsky et al., 2012)—in our experiments, 2 
× 2. We combined the stacked-contractive-AE model with convolu-
tional and pooling layers to achieve more expressive codes in the AE 
paradigm. For faster AE training, dropout layers have been proposed 
(Vincent et al., 2010), which randomly set a fixed percentage of in-
puts in each layer to zero. This compels the network to learn to re-
construct from corrupted inputs, which leads to less overfitting and 
faster training convergence.

To analyze the data shown in the article, we used AEs with a vari-
able sequence of one or more convolutional layers (Supplemental 
Tables S5–S7), followed by max-pooling layers and a central stacked 
AE. The convolutional and pooling layers are mirrored in the decod-
ing part of the AE with their corresponding inverse deconvolutional 
and unpooling layers. Between each pair of layers in the encoding 
part of the AE, optional dropout layers are inserted with a dropout 
probability ranging from 10 to 90%. The convolutional and fully con-
nected layers require a nonlinear activation function. In our imple-
mentation, sigmoid (s) and linear-rectifier (r) activation functions are 
supported.

Autoencoder layout
To analyze the screening data—chromatin morphology (Figure 3, b 
and c), MitoCheck RNAi screen (Figure 4, a and b), and DNA dam-
age repair RNAi screen (Figure 4, c and d)—we designed AEs such 
that an input image of a typical cropped single cell (40 × 40 pixels) 
is encoded through a series of convolutional layers, pooling layers, 
and fully connected layers, which successively reduce the input di-
mensions from 40 × 40 = 1600 image pixels to a code length of 144 
or 64. Note that the decoding part in each AE is composed of layer-
wise inversions of the encoding part. The layout of all AEs with pre-
cise information about the convolutional and dense layers can be 
found in Supplemental Tables S5–S7.
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After training, the resulting AE model can be used in the encoding 
step. The output file of the encoding step can be loaded directly 
into the CellCognition Explorer main program for novelty detection 
and/or supervised learning. CellCognition Explorer Deep Learning 
Module provides a graphical user interface to specify all processing 
parameters (Supplemental Figure S2). The software is provided as 
source code (LGPL) and as a binary installer using the docker frame-
work. For installation in MacOS X, a docker execution script is pro-
vided. 

Implementation details
CellCognition Explorer is implemented in Python 2.7, and the deep 
learning module makes use of the Theano (ver. 0.7.0) and lasagna 
(ver. 0.2) library for deep learning and GPU computing interfacing 
with NVIDIA CUDA (ver. 5.5). For the graphical user interfaces, 
PyQt5 (ver. 5.3.2) binding to the C++ library Qt (ver. 5.3.1) was used. 
Novelty detection methods are based on the sklearn library (ver. 
0.16.0). Image-based screening data are segmented and processed 
using CellCognition Analyzer (ver. 1.6.0) and analysis results were 
saved in the cellH5 format (ver. 1.3.1).

License
CellCognition Explorer is released under the GNU General Public 
License version 3 (GPLv3).

Computing hardware
All data shown in this article were processed on an HP-Z820 desktop 
workstation with Intel Xeon CPU E5-2665-0 @ 2.40 GHz (16 CPUs) 
equipped with 64 GB of RAM and an NVIDIA GeForce GTX TITAN 
X graphics adapter.
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