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Abstract: Exogenous low pH stress causes cell death in root cells, limiting root development,
and agricultural production. Different lines of evidence suggested a relationship with cell wall (CW)
remodeling players. We investigated whether class III peroxidase (CIII Prx) total activity, CIII Prx
candidate gene expression, and reactive oxygen species (ROS) could modify CW structure during low
pH-induced cell death in Arabidopsis thaliana roots. Wild-type roots displayed a good spatio-temporal
correlation between the low pH-induced cell death and total CIII Prx activity in the early elongation
(EZs), transition (TZs), and meristematic (MZs) zones. In situ mRNA hybridization showed that
AtPrx62 transcripts accumulated only in roots treated at pH 4.6 in the same zones where cell death
was induced. Furthermore, roots of the atprx62-1 knockout mutant showed decreased cell mortality
under low pH compared to wild-type roots. Among the ROS, there was a drastic decrease in O2

•−

levels in the MZs of wild-type and atprx62-1 roots upon low pH stress. Together, our data demonstrate
that AtPrx62 expression is induced by low pH and that the produced protein could positively regulate
cell death. Whether the decrease in O2

•− level is related to cell death induced upon low pH treatment
remains to be elucidated.

Keywords: acidic stress; Arabidopsis thaliana; cell mortality; cell wall; cell wall remodeling; root tip;
root zone; ROS homeostasis; superoxide depletion

1. Introduction

Around 70% of arable soils are acidic (pH < 5.5) [1]. In these soils, a combination of unfavorable
factors occurs for plant development, such as mineral toxicity and low nutrient level, especially for
cations such as calcium [2]. These factors contribute to decreased root growth with a worldwide
negative impact on crop productivity [3]. A major part of acidic soils is encountered in developing
countries that are distributed in tropical and subtropical zones in which the economy is highly
dependent on agricultural production [4]. Thus, besides the scientific issue, understanding how acidity
affects plant growth is highly relevant for agriculture and food production safety.

In addition to the abovementioned factors present in acidic soils, exogenously applied low pH
conditions, such as those achieved by the addition of HCl in plant growth solutions, are used in
laboratory assays. It simulates soil stressful conditions, causing root growth inhibition in relevant
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dicot crops, such as Solanum lycopersicum [5], monocots, such as Triticum aestivum [6] or model plants
such as Arabidopsis thaliana [2]. The root growth arrest upon low pH is suggested to be an active plant
response to lessen cell death [5]. Cell death was reported within minutes of low pH treatment [2] and
was consistently observed in growing root hair cells [7], lateral root tips [2], primary root tip cells in
A. thaliana [8,9] or secondary root tips such as in S. lycopersicum [5]. Root cells are originating from
cell division in the meristematic zone (MZ) [10]. The cell wall (CW) structure and composition are
modified in the transition zone (TZ) where cells grow isodiametrically, prior to undergo a massive
polarized increase in size in the elongation zone (EZ) [10,11]. The level of expression of genes encoding
several CW-related enzymes, including class III peroxidases (CIII Prxs) is increased in EZ [12]. Finally,
after reaching their full size, the epidermis trichoblast cells start to differentiate and form root hairs
which elongate through tip growth [10].

While exposed to low pH, young developing root hairs either burst or stop their tip growth [7,13].
One hypothesis is that low pH may cause cell wall disturbances (CWDs), such as an excessive loosening,
leading to root hair bursting. Conversely, the arrest in root hair elongation upon low pH might indicate
the capacity of the CW to stiffen, thus protecting the structure from proton action and, therefore,
preventing bursting. The cell wall of excised lateral roots of Pisum sativum apparently loosened upon
low pH treatment [14]. In root tip tissues, the cell mortality due to the low pH is alleviated with
an increase in calcium concentration within culture medium [2,8]. Calcium plays crucial roles in
stabilizing an important class of CW polysaccharides, the homogalacturonans [15], as well as for the
maintenance of CW integrity (CWI) [16]. One interpretation is that increased calcium decreases low
pH-dependent CWDs, in turn suppressing the low pH-induced cell death. Transcription factors of the
SENSITIVE TO PROTON RHIZOTOXICITY (STOP) family control the expression of genes related to
CW integrity and are crucial for low pH tolerance in roots [17]. The cell wall-related genes were among
those which had expression levels that were the most affected by low pH stress in A. thaliana [18].
Recently, it was reported that increase in CWDs, such as loosening, precedes cell death due to the
low pH in TZ [19]. From the above cited reports, it seems that low pH toxicity is related to CW. Thus,
CW-related players are likely to be involved in cellular responses of roots cells to low pH stress.

Among the CW-related players, CIII Prxs (E.C.1.11.1.7) play crucial roles during root CW
remodeling [12,20]. These modifications are required for cell elongation and consequent root growth [10]
and also occur as a response to constraints [20]. Most of the 73 A. thaliana CIII Prxs are expressed in roots
and secreted to the apoplast [21]. They play biological roles in production and metabolism of reactive
oxygen species (ROS) in the apoplast [20,22]. Upon exogenous low pH treatment, the expression of 13
CIII Prx genes was shown to be differentially regulated in A. thaliana roots [18]. In addtion, mild or
strong low pH stress increased CIII Prx activity in S. lycopersicum roots [5]. These reports suggest that
CIII Prx genes are regulated either transcriptionally or post-transcriptionally in roots exposed to low
pH stress. Thus, our hypothesis is that individual CIII Prx isoforms might play a direct role in cell
mortality in roots upon exogenous low pH stress.

The ROS produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are
crucial for the formation and maintenance of CWI [23,24]. The oxido-reductase activity of CIII Prxs can
either promote loosening or stiffening of the CW, and this activity consumes hydrogen peroxide (H2O2)
as an electron donor [25]. Superoxide ions (O2

•−) can be produced by NADP (H) oxidation or CIII Prx
activity and O2

•− can also be converted spontaneously or by superoxide dismutase to H2O2 [20,25].
During the peroxidative cycle, CIII Prxs consume H2O2 and superoxide ions (O2

•−) to generate
hydroxyl radicals (•OH), which by themselves can promote CW loosening [26]. Thus, in concert with
NADPH oxidases, CIII Prxs are key players which control ROS levels in the apoplast. Prominently,
the ratio between H2O2 and O2

•− is finely adjusted spatially in the different root zones by CIII Prx
activity for maintenance or arrest of growth [27,28].

Reactive oxygen species homeostasis is tightly regulated by several intracellular [29] or apoplast
actors [22] to control their potential cellular toxicity. Peanut roots treated with low pH and Al3+

displayed increased ROS production causing cell death that was alleviated by addition of ROS
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scavengers [30,31]. Inhibition of total CIII Prx activity decreased ROS levels and sensitivity of barley
roots to low pH and aluminum, the latter being toxic only in acidic conditions [32]. On the other hand,
inhibition of NADPH oxidase and CIII Prx activity in S. lycopersicum greatly increased the sensitivity of
root cells solely to low pH [5]. Taking these cited reports into account, it seems that depending on the
type and magnitude of the acidic stress, ROS and CIII Prx activity can modulate cellular sensitivity to
low pH.

Out of the 73 CIII Prxs predicted to be encoded in the genome of A. thaliana, 38 isoforms were
detected in roots by proteomic analysis [33]. Hence, to identify which isoform(s) could be responsive
to exogenous low pH stress and/or how they could regulate ROS homeostasis during this stressful
seeming challenging. This issue has been tackled upon by acidic stress alone [5] or in combination
with aluminum stress [32]. However, these studies were usually performed through pharmacological
approaches, applying inhibitors of CIII Prxs or NAPDH oxidases [5,32]. These pharmacological
studies are useful to quickly block enzymatic activities or ROS production. However, pharmacological
inhibitors show two well-known disadvantages: cell toxicity or undesirable side-effects upon other
metabolisms. So far, it is not clear in which root zones CIII Prx activity is induced by low pH or whether
it has spatial coincidence with the low pH-induced cell death. Importantly, studies investigating the
role of specific CIII Prx isoforms are lacking so far.

In this article, we show that CIII Prx activity and disruption in ROS balance are spatiotemporally
correlated with low pH-induced cell death in roots of A. thaliana. Furthermore, by combining data
mining of previously published transcriptomics data and reverse genetics tools, we were able to show
that among the 73 CIII Prx encoding genes, AtPrx62 expression is induced in low pH-induced cell
death zones and could be necessary for this low pH sensitive response.

2. Results

2.1. Cell Death, CIII Prx Activity and ROS Distribution Colocalized in Wild-Type Roots Exposed to Low pH

First, we examined in wild-type roots (Col-0) exposed to low pH whether a spatial correlation
occurred between (i) cell death (monitored through Evans blue staining), (ii) CIII Prx activity (visualized
by guaiacol/H2O2), and (iii) ROS (O2

•− and H2O2) distribution (stained with nitro blue tetrazolium
chloride (NBT) and hydroxyphenyl fluorescein (HPF), respectively). The guaiacol/H2O2 assay, used to
visualize the CIII Prx activity, allows the detection of the total endogenous activity without distinction
among the isoforms.

In control roots treated at pH 5.8 for 2 or 3 h, cell death did not occur (Figure 1A,I) and CIII Prx
activity was detected along the entire root except in MZs (Figure 1C,K; Supplementary Materials Figure
S1B). Roots treated at pH 4.6 for 2 h showed cell death in the TZ and early EZ as indicated by the blue
color of Evans blue uptake, and this cell death progressed toward the MZ after 3 h of low pH treatment
(Figure 1B,J; Supplementary Materials Figure S1D). The treatment at pH 4.6 sequentially increased CIII
Prx activity in the TZ and then in the MZ, with a stronger signal observed in the stele (Figure 1D,L;
Supplementary Materials Figure S1C). Prominently, the CIII Prx activity increase in the TZ and MZ
occurred before the death of cells in these zones (Figure 1D; Supplementary Materials Figure S1).

The accumulation of superoxide ion (O2
•−) was visualized with NBT which forms a purple

formazan precipitate after oxidation by O2
•− [27]. Control roots treated at pH 5.8 for 2 or 3 h

accumulated O2
•− mostly in MZ, as compared to TZ and EZ (Figure 1E,M; Supplementary Materials

Figure S1A). This pattern was similar to the previously observed O2
•− distribution in A. thaliana root

MZ [27]. In sharp contrast, roots treated at pH 4.6 for 2 or 3 h showed no signal for O2
•− accumulation

in MZ (Figure 1F,N). Thus, upon low pH, the O2
•− distribution in the root tip was disrupted. This result

could not be interpreted as a direct effect of low pH on NBT staining, since the reaction was performed
after low pH treatment in phosphate buffer at pH 6.1 [27].

The H2O2 distribution in roots was examined with hydroxyphenyl fluorescein (HPF) which
becomes fluorescent after oxidation by H2O2 and peroxidases [27]. Control roots treated at pH 5.8 or
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4.6 for 2 or 3 h showed no detectable difference in H2O2 distribution. The fluorescence was similar and
pronounced in TZ, EZ, and root hairs (Figure 1G,H,O,P), similarly to previous report [27]. The hydrogen
peroxide level was also quantified by a highly sensitive fluorometric assay employing Amplex® Red.
Only a slight decrease in H2O2 levels could be observed after a 4 h treatment in roots at pH 4.6 as
compared to pH 5.8 (Supplementary Materials Figure S2).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 20 
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Figure 1. Spatio-temporal correlation between cell mortality, class III peroxidase (CIII Prx) activity,
and ROS distribution in roots of Arabidopsis thaliana Col-0 upon low pH stress. Col-0 seedlings were
treated at pH 5.8 (A,C,E,G,I,K,M,O) or 4.6 (B,D,F,H,J,L,N,P) for 2 h (upper panels) or 3 h (lower panels).
Cell mortality was examined staining with Evans blue. Endogenous CIII Prx activity (total activity
without distinction among the isoforms) was detected with a guaiacol/H2O2 assay. The detection of
O2
•− was performed using nitro blue tetrazolium chloride (NBT). The detection of H2O2 was realized

using hydroxyphenyl fluorescein (HPF). Scale bar: 200 µm. Three independent experiments (n = 10)
were performed with similar results and representative images are shown. Details of root zones are
presented in Supplementary Materials Figure S1.

2.2. Data Mining of Published Transcriptomics Data Searching for CIII Prx Genes Expression upon Low pH
Treatment: Identification of Candidate Genes of Interest

Our results showed a spatio-temporal correlation between the occurrence of cell death, the increase
in CIII Prx activity, and the decrease of O2

•− upon low pH stress. Thus, we took advantage of a
publicly available low pH transcriptomic dataset from A. thaliana roots [18] to search among the
73 CIII Prx-encoding genes—those that were the most induced after 1 or 8 h of low pH treatment.
Among them, AtPrx62 (At5g39580), encoding an A. thaliana CIII Prx from the phylogenetic group
2 [34], was the best candidate since its expression was induced 8.37 fold after 8 h of low pH treatment
(Figure 2A; Supplementary Materials Table S1 for full data and phylogenetic grouping). According to
published tissue-specific transcriptomics [35], AtPrx62 is expressed at high levels in epidermal and
stele cells at the beginning of the maturation zone in which root hairs start tip-growth (Figure 2B) close
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to the TZ in which low pH-induced cell death occurred (Figure 1I,J). A second-level candidate was
AtPrx71 (At5g64120) encoding another group 2 CIII Prx closely phylogenetically related to AtPrx62
(Supplementary Materials Table S1) showing a 3.23 fold induction of expression, but with a lower
expression level than AtPrx62 (Figure 2A) and a more distal expression pattern (Figure 2B). Finally,
AtPrx42 (At4g21960) (phylogenetic group 1) was selected as a control considering its strong constitutive
expression pattern (Figure 2; Supplementary Materials Table S1). Thus, we examined the sensitivity to
low pH of mutants impaired in AtPrx62 or AtPrx71 [36].
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data [18] was downloaded and edited. The mean of the log2(expression values) for each condition
(n = 3) was calculated as well as the ratio of absolute expression for low pH versus control absolute
heat map was also drawn for log2 (ratio) (blue to yellow). Note that AtPrx62 displayed the highest
ratio among the 73 CIII Prxs. AtPrx71 was selected as a second candidate for its intermediate ratio
despite its lower absolute expression values whereas AtPrx42 was chosen as a control considering its
strong constitutive expression (see Supplementary Materials Table S1 for full data and phylogenetic
grouping). (B) Tissue-specific expression map of the three selected genes from the electronic fluorescent
pictographic (eFP) browser [38]. Note that the absolute maximum expression values are different for
each gene.

2.3. Cell Viability and Total CIII Prx Activity in Atprx62 and Atprx71 Mutants Exposed to Low pH

Although cell viability was not examined in Lager et al.’s [18] work, the low pH stress seemed to
be less severe than in our conditions. Our treatment solution was based on a low ionic strength buffer
and low calcium supply, important for a rapid imposition of low pH stress [2,5,9]. The expression
of AtPrx62 was markedly induced only after 8 h, rather than 1 h of stress treatment in Lager’s work
(Figure 2A), when the stress exposure seemed to become critical. Thus, we extrapolated that our 2 to 3
h stress conditions (Figure 1) that roughly corresponded to the transcriptomics data obtained after 8 h
rather than 1 h of low pH treatment in the Lager et al. work [18].

As a first screening step, we applied our low pH stress conditions (3 h at pH 4.6) to seedlings of
the atprx62 and atprx71 mutants. Then, Evans blue staining was performed (Figure 3). Interestingly,
only the atprx62-1 knockout (KO) mutant [36] showed a clear reduced cell mortality phenotype as
compared to Col-0 (Figure 3). Indeed, the atprx62-1 knockdown (KD) mutant, that displayed residual
AtPrx62 expression (40–50%) [36], only displayed a tendency of reduction of cell mortality whereas
both atprx71-1 KO and atprx71-2 KD mutants [36] displayed a pattern similar to that of Col-0 (Figure 3).

Therefore, we proceeded to further analyze the atprx62-1 KO mutant. The roots of the genotypes
Col-0 and atprx62-1 treated at pH 5.8 repeatedly showed viable cells with negligible Evans blue staining
( Figures 4A,B and 5A). As expected, Col-0 roots treated at pH 4.6 showed increased cell mortality in
TZs and MZs (Figures 4J and 5A). However, atprx62-1 roots were significantly less sensitive to pH 4.6
than Col-0 roots as indicated by decreased Evans blue uptake (Figures 4K and 5A).

The CIII Prx activity showed similar patterns in the roots of Col-0 and atprx62-1 treated at pH 5.8 (
Figures 4C,D and 5B). However, Col-0 roots showed an increase in CIII Prx activity when treated at
pH 4.6 for 2 h (Figure 5B), with higher staining in the region that seemed to be stele cells (Figure 4L,
Supplementary Materials Figure S3). In the atprx62-1 KO mutant, there was also a slight increase in
CIII Prx activity in MZ and TZ compared to roots treated at pH 5.8 (Figures 4M, 5B, Supplementary
Materials Figure S3).

No difference in O2
•− distribution was observed in atprx62-1 roots as compared to Col-0 roots.

Both genotypes displayed similar patterns of reduced O2
•− labeling in MZs with NBT following low

pH treatment (Supplementary Materials Figure S4).
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Figure 3. Analysis of low pH-induced cell death phenotypes in atprx62 and atprx71 mutants treated
with strong low pH stress for 3 h. Roots treated at pH 5.8 or 4.6 for 3 h were stained with Evans blue.
The blue color indicates cell mortality. From left to right: Col-0, atprx62-1 KO mutant, atprx62-2 KD
mutant, atprx71-1 KO mutant, atprx71-2 KD mutant. KO: knockout; KD: knockdown; Scale bar: 200 µm.
This initial screening was performed with 10 biological replicates (roots from individual seedlings).
From at least 13 roots, five representative images are shown for each genotype upon pH 4.6. Note that
only atprx62-1 displayed a clear reduced cell mortality phenotype. For simplification, one image is
shown for each genotype upon pH 5.8 (control), but in none of the genotypes was there cell death in
these control root repeats.
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Figure 4. Low pH dependent spatio-temporal correlation between cell mortality, CIII Prx activity,
and AtPrx62 expression in Arabidopsis thaliana roots. Col-0 (A,C,E,F,H,I,J,L,N,O,Q,R) and atprx62-1(KO
mutant) (B,D,G,K,M,P) roots treated at pH 5.8 (A–I) or pH 4.6 (J–R) for 2 h were stained with Evans blue
for cell mortality (A,B,J,K), stained with guaiacol/H2O2 for CIII Prx activity (C,D,L,M) or hybridized with
AtPrx62 digoxygenin-labeled antisense (AS) or sense (S) probes used as negative controls (E–G, N–P).
Positive control with the AtPrx42 probes was performed as labeled (H,I,Q,R). The dashed lines (A–D; J–M)
show the upper limit of the regions of interest (ROIs) used for quantification on biological repeats (see
Figure 5). Scale bar: 200 µm. For cell mortality and CIII Prx activity, three independent experiments were
performed with similar results and representative images are shown (A – D; J – M). For in situ hybridization,
two independent experiments with 25 biological replicates (roots) were performed with similar results
and representative images are shown (E – I; N– R). Note that the spatiotemporal correlation between the
low pH-induced cell mortality (J), CIII-Prx activity (L), and AtPrx62 expression (N) occurring around the
transition zone in Col-0 was strongly reduced or lost in atprx62-1 (K,M,P). Note also that the specificity of the
AtPrx62 expression pattern (N) was attested by comparison with the similar background signals observed
with the AtPrx62 sense negative control probe in Col-0 (O) and AtPrx62 antisense probe in atprx62-1 (P).
Finally, note that the specificity of the induction of AtPrx62 expression upon low pH treatment (E,N) is
reinforced by the constitutive expression of AtPrx42 observed with the AtPrx42 antisense probe (H,Q).
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Figure 5. Comparison of cell mortality and CIII Prx activity in roots of Arabidopsis thaliana Col-0 and
the atprx62-1 (KO mutant) treated at pH 5.8 or 4.6 for 2 h. The pixels from the images were counted
in regions of interest extending up to 500 µm from root tips stained with Evans blue (cell death) or
up to 350 µm from root tips stained with a guaiacol/H2O2 assay (CIII Prx activity) (see dashed lines
in Figure 4A–D, J–M for examples). (A) The increase in pixels’ intensity indicates an increase in cell
death. (B) The increase in pixels intensity indicates an increase in CIII Prx activity. The bars are the
standard error of three independent experiments. Different letters (a, b and c) indicate significant
differences Statistical analysis was performed by Duncan’s test. Note the good correlation between low
pH-induced cell death and CIII Prx activity. Note that the decreased cell death observed in atprx62-1 as
compared to WT was not followed by a reduction in CIII Prx activity.

2.4. Tissue-Specific Expression Patterns of AtPrx62 and AtPrx42 in Roots upon Low pH Treatment

We next localized AtPrx62 expression through whole mount in situ hybridization. No significant
specific signal was detected in Col-0 roots treated at pH 5.8 and hybridized with the AtPrx62 antisense
probe (Figure 4E; Supplementary Materials Figure S5) when compared with hybridization with the
AtPrx62 sense probe used as a negative control (Figure 4F; Supplementary Materials Figure S5). The lack
of specific signal was also observed in atprx62-1 treated at pH 5.8 and hybridized with the AtPrx62
antisense probe (Figure 4G; Supplementary Materials Figure S5).

Interestingly, Col-0 roots treated at pH 4.6 and hybridized with AtPrx62 antisense probe showed
a significant signal in TZ, MZ, and early EZ (Figure 4N; Supplementary Materials Figure S5) when
compared with the sense probe hybridization (Figure 4O; Supplementary Materials Figure S5).
This signal was coincident with the zone of cell death (Figure 4J; Supplementary Materials Figure S5).
The lack of signal was also confirmed in roots of atprx62-1 treated at pH 4.6 and hybridized with the
antisense probe for AtPrx62 (Figure 4P; Supplementary Materials Figure S5). The specificity of the
AtPrx62 expression pattern at pH 4.6 was strengthened by the observation of a constitutive expression
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pattern for AtPrx42 (Figure 4H,I,Q,R; Supplementary Materials Figure S5). These results corroborated,
from a spatiotemporal point of view, the transcriptomics values and ratios (Figure 2A). Importantly,
the in situ hybridization has allowed demonstrating the spatiotemporal correlation between the low
pH-induced AtPrx62 expression and cell death zone (MZ, TZ, and early EZ) upon low pH treatment,
thus suggesting that AtPrx62 was involved in low pH-induced cell death.

3. Discussion

The cell wallremodeling players are involved in low pH-induced sensitivity responses such as
arrest in root growth or cell mortality in roots [2,5,9,17,18]. Class III peroxidases (CIII Prxs) and ROS are
remarkable CW remodeling players [20,25]. However, information about their involvement with low
pH-induced cell death is missing. Altogether, our results show a spatiotemporal correlation in A. thaliana
roots, between low pH-induced cell death, CIII Prx activity, AtPrx62 expression, and ROS distribution.

3.1. AtPrx62 Expression Is Spatiotemporally Correlated to Low pH-Induced Cell Death in Roots

We mined previously published transcriptomic data [18] to find CIII Prx gene candidates induced
during low pH stress that might be possibly involved in low pH-induced cell death. Among the 73
CIII Prx genes predicted in the A. thaliana genome [21], the involvement of AtPrx62 in low pH-induced
cell death was examined, because it is the CIII Prx encoding gene with the highest induction of its
expression (8.37 fold) upon low pH treatment (Figure 2A, Supplemental Materials Table S1).

Our results indicate that AtPrx62 spatiotemporal expression is positively correlated to the low
pH-induced cell death in MZ, TZ, and early EZ as described in our model (Figure 6). The most
compelling indications for this are as follows: (i) the expression of AtPrx62 in low pH-treated Col-0
roots increased in TZ, MZ, and early EZ, and this was correlated with the observed pattern of cell death
upon low pH stress; (ii) cell death was greatly suppressed in MZ, TZ, and early EZ of the atprx62-1 KO
mutant treated at pH 4.6 compared to Col-0, despite the increase in total CIII Prx activity at pH 4.6
observed in these zones for both Col-0 and atprx62-1.

Class III peroxidases belong to a large family dedicated to CW remodeling with 38 isoforms
identified in the A. thaliana root CW proteome [33]. These proteins could play either specific and
complementary roles (loosening or stiffening) with possible functional redundancy [20]. It is thus
challenging to investigate the biological function of specific isoforms. Thus, it was rather remarkable to
find that a KO mutant in a single CIII Prx isoform (AtPrx62) caused an effect on cell mortality due to the
fact of low pH. A KO mutation in AtPrx71, the gene with the third most induced expression (3.23 fold)
upon 8 h of low pH stress (Figure 2A; Supplementary Materials Table S1) did not result in any significant
difference with respect to cell death upon low pH compared to Col-0. Hence, our study illustrates the
importance of reverse genetic studies to uncover the functions of CIII Prxs [20]. In situ hybridization
has allowed refining the tissue-specific expression pattern of this gene. Indeed, while tissue-specific
transcriptomics argued for AtPrx62 expression in early MZ (Figure 1B), our results clearly showed that
the low pH-induced AtPrx62 expression occurred below this zone in MZ, TZ, and early EZ, i.e., in the
zones where low pH-induced cell death occurred (Figures 4 and 6), thus suggesting that AtPrx62 was
involved in low pH-induced cell death.

Intriguingly, AtPrx62 does not seem to be regulated by SENSITIVE TO PROTON RHIZOTOXICITY
1 (STOP1) [39], a transcription factor involved in low pH and Al3+ tolerance [8,39,40]. In the same way,
AtPrx62 is not a direct target of UPBEAT1, a transcription factor that regulates the expression of other
CIII Prx genes necessary to control the balance between H2O2 and O2

•− in root tips controlling root
growth [28]. However, AtPrx62 expression was upregulated in A. thaliana roots after 6 h of aluminum
stress [41] which is appreciably toxic for roots at low pH. Unfortunately, cell death was not assessed in
the quoted report, neither the gene expression level in a control at a pH higher than 5.0.
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Figure 6. Spatio-temporal model proposed for the action of AtPrx62 in roots of A. thaliana upon low
pH and the progression of cell death. In Columbia-0 (Col-0) roots, a reliable spatio-temporal correlation
was observed in EZs, TZs, and MZs between low pH-induced CIII Prx activity (total activity: without
distinction among the isoforms), AtPrx62 mRNA distribution, and cell death. The low-pH-induced
cell death and AtPrx62 mRNA accumulation were highly decreased in roots of atprx62-1 KO mutant
indicating that AtPrx62 was positively involved in the progression of low pH-induced cell death.
However, no decrease could be measured for the CIII activity in atprx62-1. The prominent disruption
in H2O2/O2

•− balance in root tips upon low pH stress was not dependent on AtPrx62 gene products.
Whether the observed decrease in O2

•− is linked to cell death upon low pH or is caused by arrest of its
production or by exacerbated scavenging, remains to be elucidated.

Although we have shown the involvement of AtPrx62 in cell death, we do not know yet if upon
low pH stress, the presumed AtPrx62 activity in the apoplast contributes to CWDs. The cell wall
disturbances seem to be relevant for the sensitive responses due to the low pH in roots [7,17,19].
With excessive loosening, it is a CWD that causes CW yielding in root hairs upon low pH [7]. Hence,
if the presumed AtPrx62 activity causes loosening of the root CWs upon low pH, it could accelerate
CWDs upon the stress. Recently, it was shown that in seed endosperm, AtPrx62 belongs together with
AtPrx69, AtPrx16, and AtPrx71 to a CIII Prx co-expression cluster that could contribute to the stiffening
of endosperm CW domains to control seed envelop rupture during early germination steps [36].
However, among these four genes, only AtPrx62, and to a lesser extent AtPrx71 were found to be
induced by low pH stress [18].

The CIII Prxs can regulate ROS levels by oxidizing aromatic compounds from CW components
leading to a stiffened CW structure [20]. Alternatively, they produce ROS which by themselves are
able to break covalent bonds between CW polymers causing the loosening of the CW structure [20,42].
This later role is the most plausible explanation for the bursting of root hairs treated with low pH [7,13].
A decrease in CW stiffness was reported in epidermal TZ cells before the onset of cell death in this root
zone [19]. Thus, if the enzymatic activity of AtPrx62 is related to CW loosening, it could exacerbate
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CWDs caused by low pH and also accelerate the progression of cell death (Figure 6). AtPrx10 and
AtPrx71 were also up-regulated after 8 h of low-pH treatment with the ratio of induction in pH 4.5
compared to pH 6.0 of 4.36 and 3.23 fold, respectively, but with lower absolute expression values
(Supplementary Table S1). AtPrx62 and AtPrx71 were found as being CW-targeted proteins in seed
endosperm of A. thaliana in the region of the envelop rupture [36]. The expression of AtPrx71 was
induced after CWDs due to treatment with isoxaben [43]. However, we observed no low pH-induced
cell death phenotype in the mutants. Thus, if the enzymatic activity of AtPrx62 exacerbated CWDs
upon low pH, it was likely to have consequences on cell survival.

Beyond the above considerations about AtPrx62 and CWDs in low pH-treated roots, the progression
of cell death in roots exposed to low pH was reported in a related work of our group as a result of a
programmed cell death (PCD) mechanism [19]. Before being targeted to the apoplast, unfolded secreted
proteins can accumulate in the endoplasmic reticulum causing stress that disturbs the most vital cellular
functions and can activate PCD [44]. The class III peroxidase AtPrx62 was shown to be upregulated
upon endoplasmic reticulum stress [45]. The cell wall disturbances can produce fragments of pectin
molecules called oligogalacturonides (OGs) [46] which can trigger plant immune response leading to
cell death [47]. Root hairs are rich in pectin [48] and very sensitive to low pH [7]. Suspension-cultured
cells of A. thaliana treated with OGs showed downregulation of AtPrx62 [49]. This information
seems relevant since exogenous low pH stress is assumed to modify pectin structure in roots [2].
Hypoxia stress, which is well known to induce PCD in roots, negatively regulates AtPrx62 expression
by the ethylene-responsive factor ERF73/HRE1 [50]. Hence, besides low pH stress, signaling pathways
from stress situations that ultimately triggers PCD seem to regulate AtPrx62 expression. Thus,
alternatively, we cannot exclude that AtPrx62 might be part of an orchestrated network leading to cell
death, rather indirectly acting as a player of ROS signaling pathway.

3.2. Low pH Disrupts the O2
•−/H2O2 Homeostasis in Roots

The CIII Prx activity controls ROS homeostasis by reducing their impaired electrons while
oxidizing CW components and, thus, changing, physically, CW properties [22,27,42]. Reactive oxygen
species production is linked to several signaling processes such as stomata closure or developmental
programs such as pollen tube formation, root hair tip-growth and CW architecture in plants [51].
Reactive oxygen species levels are tightly controlled in intracellular compartments [29] or in the
apoplast [22]. High ROS concentration occurs due to exacerbated production or failure in scavenging
and can cause oxidative stress damaging proteins, lipids and DNA [29,52]. Altogether, these damages
targeted on key cellular macromolecules can trigger cell death [52].

In our study, we observed an interesting pattern of ROS distribution in low pH-treated roots.
In Col-0, there was an increased CIII Prx activity in MZ and TZ, but decreased O2

•− levels in MZs.
No change in H2O2 levels was found in TZs, EZs, and root hairs at pH 5.8 or 4.6, similarly to a previous
report [27]. Cell death-induced by low pH coincidently occurred in MZs, TZs, and early EZs, before root
hairs fully undergo the tip-growth. Hence, excessive ROS levels could not be associated with low
pH-induced cell death in roots, as it could have been expected. The mitochondria-dependent release of
ROS was interpreted as a trigger for PCD in response to aluminum stress and low pH treatment in
peanut roots [31]. The inhibition of CIII Prx activity with SHAM decreased H2O2 production and cell
death due to aluminum stress and low pH in barley roots [32]. Unfortunately, the responses to low pH
alone could not be evaluated in the works cited above because of a lack of control at higher pH (>5.5),
but perhaps aluminum induced distinct ROS activities in stressed roots compared to low pH alone,
as reported here.

A balance between levels of O2
•− in MZ and H2O2 in TZ and EZ was shown to be accurately

adjusted in the root tip through CIII Prx activity [27]. This balance coordinates the rate of cell division
in MZ for normal root growth [28]. Low pH caused a striking decrease in O2

•− levels in MZ and
early TZ within 2 h of treatment, and, this apparently preceded both the increase in CIII Prx activity
and cell death, as reported here (Figure 6). It remains to be investigated whether a modification
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in the O2
•−/H2O2 balance upon low pH in roots could trigger to a signaling process inducing cell

death. Since the ratio between O2
•− and H2O2 is crucial for root development [27,28], this hypothesis

seems plausible.
It was reported that the horseradish CIII Prx can consume H2O2 and O2

•− to produce •OH
in vitro [26]. We did not examine O2

•− distribution and CIII Prx activity in roots before the first 2 h of
low pH stress, yet CIII Prx activity could explain the observed decrease in O2

•− in low pH-stressed
roots. However, there is no experimental evidence to understand how CIII Prxs could perform this
reaction in vivo. Furthermore, O2

•− distribution was not altered in the atprx62-1 KO mutant roots
treated at pH 4.6 compared to Col-0, indicating that AtPrx62 is likely not involved in the decrease of
O2
•− levels upon low pH stress (Figure 6).

Altogether, our results suggest that AtPrx62 could be a positive and spatiotemporal regulator
of cell death in root tip cells upon exogenous low pH stress. Our study further confirms that CW
remodeling players such as CIII Prxs are crucial for the occurrence of cell death in response to low pH
stress. The disruption of the H2O2/O2

•− homeostasis in roots upon exogenous low pH may be part of
a complex cell death signaling network and must be further elucidated.

4. Materials and Methods

4.1. Plant Material and Growth Conditions

Arabidopsis thaliana (Col-0) and T-DNA insertion lines in Col-0 background (atprx62-1 (GK_287E07,
knockout (KO) line), atprx62-2 (SALK_151762, knockdown (KD) line), atprx71-1 (SALK_123643, KO line),
and atprx71-2 (SALK_121202, KD line)) were originally obtained from the European Arabidopsis Stock
Center [53] and their KO and KD status was previously described [36].

Seeds of A. thaliana were sterilized with sodium hypochlorite solution (5%) for 10 min under
stirring and then washed with distilled water four times. The seeds were then transferred to Petri
dishes containing a modified Hoagland’s solution [9] with final pH adjusted to 5.8 and 0.8% agar.
Macronutrients consisted of 6 mM KNO3, 1 mM MgSO4, 4 mM Ca(NO3)2, and 2 mM NH4H2PO4.
Micronutrients were composed of 0.03 µM NiSO4, 14 µM ZnSO4, 20 µM H3BO3, 0.02 µM Na2MoO4,
0.02 µM CuSO4, 0.02 µM CoCl2, 30 µM FeSO4, and 20 µM MnSO4.

For all low pH treatments, at least 10 five-day-old seedlings were incubated in 250 mL Erlenmeyer’s
with 20 mL of treatment solution composed of 0.5 mM CaCl2 and 0.6 mM Homopipes buffer
(homopiperazine-1,4-bis(2-ethanesulfonic acid)) upon gentle stirring. The constant growth temperature
was 22 ◦ C and the light intensity was approximately 120 µE.m−2.s−1.

4.2. Evaluation of Total CIII Prx Activity and ROS Distribution in Roots Exposed to Low pH

The total activity of endogenous CIII Prxs in roots was probed using a guaiacol/H2O2 assay [54].
Before the experiments, 0.125 % v/v guaiacol (Fluka, Munich, Germany) diluted in 200 mM phosphate
buffer (pH 6.1) and stored at 4 ◦C. For the reaction, fresh 30% H2O2 was added to the guaiacol solution
to reach a final concentration of 1.65 mM and roots were immediately covered with this solution in
glass Petri dishes kept in the dark. After 5 min of incubation, the roots were gently washed by adding
abundant water to stop the reaction and were instantaneously imaged on bright-field in a Zeiss Axio
Zoom.V 16 stereomicroscope (Göttingen, Germany).

Superoxide (O2
•−) was detected in roots using nitro blue tetrazolium chloride (NBT) [27].

A solution of NBT (2 mM) was prepared in 20 mM phosphate buffer (pH 6.1). The roots were covered
with this solution in glass Petri dishes kept in the dark for 15 min and the reaction was stopped by
adding water. Immediately, the roots were imaged as described above.

H2O2 was detected in roots using hydroxyphenyl fluorescein (HPF) [27]. The final concentration
was 5 µM HPF in 20 mM phosphate buffer pH 6.1. The staining of roots with this solution was done in
the dark for 15 min. The reaction was stopped by washing the roots in 20 mM phosphate buffer (pH
6.1). Immediately, the roots were imaged using a Zeiss Axio Zoom.V 16 stereomicroscope coupled to a
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GFP long pass filter cube (excitation 485/12 nm and emission >515 nm). The fluorescence background
in roots stained with phosphate buffer alone was negligible.

H2O2 was quantified using two methods. (i) measurement of freely diffusing H2O2:
After treatments, 2 cm of the root tips were excised (3 independent experiments each using 10
seedlings) and incubated in plastic tubes containing 1 mL of solution composed of 50 µM Amplex® Red
(10-acetyl-3,7-dihydroxyphenoxazine, ampliflu™ red, Sigma, St. Louis, Missouri, USA) and 2 U/mL
horseradish Prx for 10 min in the dark. Following, the reaction was immediately stopped by adding
SHAM 3 mM. The fluorescence was read upon 570 nm of excitation and 585 nm of emission with a
spectrofluorimeter (Varian Cary Eclipse, Agilent®). (ii) measurement of total H2O2: the same protocol
was used except that root tips were first macerated before the reaction.

4.3. Transcriptomic Data Mining for CIII Prx Genes Involved in Low pH Response

We analyzed public transcriptomic data to search for CIII Prx encoding genes potentially involved
in low pH response. The data set NASC 470 from Lager’s work [18] was downloaded at [55] using
Expression Console™ 1.4.1.46 [56] to build an edited Microsoft Excel sheet [57]. The mean of the
log2(value) for each condition (n = 3) was calculated as well as the ratio of absolute expression at pH
4.5 versus control at pH 6. The 73 CIII Prx genes [37] were searched for within the transcriptomic data
using their probeset ID allowing the identification of ambiguous and non-ambiguous CIII Prxs [58].
Absolute heat map was drawn for the expression values (red to yellow to grey) with an arbitrary
threshold value set as 5. Absolute heat map was drawn for ratio of absolute expression (blue to yellow).

4.4. Evaluation of Cell Death

Cell death was evaluated by probing roots with Evans blue that can penetrate dead cells that lost
membrane selectivity [59]. After pH treatments the seedlings were stained with Evans blue aqueous
solution (0.25% w/v) for 15 min. Then, they were washed three times for 5 min each with distilled water
and bright field images were taken using a Zeiss Axio Zoom V16 stereomicroscope. All procedures
were performed in glass Petri dishes taking care of avoiding damages or root dehydration.

4.5. Image Analysis

To obtain semi-quantitative data, the images of Evans blue staining or of CIII Prx activity in
roots were analyzed using the ImageJ software [60]. These images were used to draw the contour
of each root tip, reaching 500 µm and 350 µm from the root tip for Evans blue staining and CIII Prx
activity, respectively, constituting the regions of interest (ROIs). In both cases, the mean gray values
of these ROIs were obtained. From each of these values, the mean gray value of the background of
the corresponding bright-field image was subtracted to compensate variations in the light intensity
between each image. The results were expressed as pixel intensity of the mean gray value. Thus,
the increase of pixels intensity was straightforward interpreted as an increase in cell death or increase
in total CIII Prx activity.

4.6. Whole Mount In Situ mRNA Hybridization

The protocol described in Hejatko’s work [61] was followed using the solutions described in detail
in Francoz et al. [58] using 5 day old seedlings. The samples (10–20 seedlings) were processed in 0.95–1
mL solution/condition in 24 well sterile plate or in 1.5 mL RNase free microtubes for the hybridization
step.The following minor modifications were introduced: use of Roti® Histol (Carl Roth, Karlsruhe,
Germany) for sample permeabilization, replacement of heparin with dextran sulfate in the hybridization
solution. The digoxigenin-labelled riboprobes for detection of AtPrx62 or AtPrx42 were previously
described [52]. The key parameters were as follows: (i) 125 µg mL−1 proteinase K for prehybridization;
(ii) hybridization with a digoxigenin-labelled riboprobe at a final concentration of 50 ng/kb/mL for 16 h
at 55 ◦C; (iii) immunodetection of hybridized probes with 1:2000 diluted anti-digoxigenin-alkaline
phosphatase (AP) Fab-fragments (Roche, Basel, Switzerland) [52]; (iv) BCIP-NBT reaction for 48 min in
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the dark; (v) final mounting of samples in 50% (w/v) glycerol; (vi) and microscope analysis using a
slide Nanozoomer slide scanner (Hamamatsu, Shizuoka, Japan) to produce whole slide scan at 20×
resolution with five 10 µm-z scans to ensure finding the correct focus for all samples. The scans were
analyzed using NDP view (Hamamatsu) and the images were directly extracted from the viewer to
assemble the Figure.

4.7. Statistical Analysis

We conducted randomized experiments. For each parameter analyzed at least three independent
experiments were performed. Each biological replicate was composed of at least 10 seedlings.
Means were compared by analysis of variance (ANOVA), followed by Duncan’s test. Only two means
were compared by Student’s t-test at the 5% significance level.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/19/7191/
s1. Supplementary Table S1: Transcriptomics data mining for CIII Prx multigenic family expression following low
pH treatment of A. thaliana roots reveals AtPrx62 as the most promising candidate gene for involvement in low
pH-induced cell death in roots. Supplementary Figure S1: Identification of root zones in 5 day old seedlings of
A. thaliana (Col-0) based on activity of CIII Prx and O2•− distribution. Supplementary Figure S2. Measurement
of H2O2 in root tips of A. thaliana (Col-0) after treatment at pH 5.8 or 4.6. Supplementary Figure S3. CIII Prx
activity in A. thaliana Col-0 and atprx62-1 (KO mutant) treated at pH 5.8 or 4.6 for 2 h. Supplementary Figure S4.
NBT reaction showing O2•− distribution in roots of A. thaliana Col-0 and atprx62-1 (KO mutant) treated at pH 5.8
or pH 4.6 for 2 h. Supplementary Figure S5. Biological replicates for whole-mount in situ hybridization.
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