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Simple Summary: Mathematical tumor growth models have been proposed for decades to capture
the growth of gliomas, an aggressive form of brain tumor. However, the estimation of the tumor
cell-density distribution at diagnosis and model parameters from partial observations provided
by magnetic resonance imaging are ill-posed problems. In this work, we propose a deep learning-
based approach to address these problems. 1200 synthetic tumors are first generated using the
mathematical model over brain geometries of 6 volunteers. Two deep convolutional neural networks
are then trained to (i) reconstruct a whole tumor cell-density distribution and (ii) evaluate the model
parameters from partial observations provided in the form of threshold-like imaging contours, with
state-of-the-art results. From the estimated cell-density distribution and parameter values, the spatio-
temporal evolution of the tumor can ultimately be accurately captured by the mathematical model.
Such an approach could be of great interest for glioma characterization and therapy planning.

Abstract: Reaction-diffusion models have been proposed for decades to capture the growth of gliomas,
the most common primary brain tumors. However, ill-posedness of the initialization at diagnosis
time and parameter estimation of such models have restrained their clinical use as a personalized
predictive tool. In this work, we investigate the ability of deep convolutional neural networks
(DCNNs) to address commonly encountered pitfalls in the field. Based on 1200 synthetic tumors
grown over real brain geometries derived from magnetic resonance (MR) data of six healthy subjects,
we demonstrate the ability of DCNNs to reconstruct a whole tumor cell-density distribution from only
two imaging contours at a single time point. With an additional imaging contour extracted at a prior
time point, we also demonstrate the ability of DCNNs to accurately estimate the individual diffusivity
and proliferation parameters of the model. From this knowledge, the spatio-temporal evolution of
the tumor cell-density distribution at later time points can ultimately be precisely captured using the
model. We finally show the applicability of our approach to MR data of a real glioblastoma patient.
This approach may open the perspective of a clinical application of reaction-diffusion growth models
for tumor prognosis and treatment planning.

Keywords: cellularity; deep convolutional neural network; glioma; magnetic resonance imaging;
reaction-diffusion model; tumor growth modeling
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1. Introduction

Gliomas are the most common primary brain tumors, and remain associated with a
poor prognosis. Among them, diffuse gliomas are known to be highly infiltrative tumors in
which invading tumor cells can be found as far as 4 cm from the gross tumor [1]. However,
the limited sensibility of magnetic resonance imaging (MRI)—the modality of choice for
glioma imaging—to changes occurring at the cellular level makes the delineation of the
whole tumor extent tedious and often leads to sub-optimal treatment plannings.

Knowledge of the whole tumor cell distribution, within and beyond the outlines of
the tumor visible on MRI, would instead allow us to refine surgery or radiation therapy
planning. Current standards for the planning of such therapies indeed rely on the addition
of a fixed margin to account for tumor infiltration, defining the clinical target volume [2,3].
From an estimated tumor cell distribution, dose deposition could instead be redistributed,
with a higher dose delivered to areas more likely to contain tumor cells and, on the other
hand, a lower dose delivered to surrounding healthy tissues, while keeping the total dose
unchanged [2]. Furthermore, evaluation of the tumor growth dynamics from repeated
medical imaging data would also be of great interest to better characterize the tumor,
anticipate its growth, and identify its probable migration pathways as well as areas prone
to recurrence.

Reaction-diffusion tumor growth models have been studied for decades to circumvent
the limitations of current medical imaging techniques and improve treatment planning in
gliomas [2,4–10]. These models rely on partial differential equations (PDEs) to capture the
spatio-temporal evolution of a tumor cell-density function over the brain domain, driven by
tumor cell migration and proliferation. The most commonly used form involves a logistic
reaction term and is referred to as the Fisher equation [11]:

∂c(x, t)
∂t

= d∇2c(x, t) + ρ c(x, t)(1− c(x, t)) (1)

where c(x, t) is the tumor cell-density at location x and time t normalized by the maximum
carrying capacity cmax of brain tissues (i.e., c(x, t) ∈ [0, 1], ∀x, t), d is the tumor cell diffusion
coefficient, and ρ is the tumor cell proliferation rate. A property of the well-studied
Equation (1) is that, under certain conditions and for constant coefficients, it admits a
traveling wave solution on the infinite cylinder with propagation speed v = 2

√
d ρ, whose

profile decays exponentially with decay constant λ =
√

d/ρ as the distance to the origin
tends to infinity and for large but finite times t [10,12].

Since their first introduction by Murray and colleagues in the early 1990s [4], reaction-
diffusion growth models have been continuously improved to successively integrate (i) a
variable tumor cell diffusion rate in white versus gray matter [13] and (ii) an anisotropic
diffusion tensor field accounting for the preferred migration of tumor cells along white
matter tracts, whose orientation can be assessed by diffusion tensor imaging (DTI) [14].
These improvements led to the formulation that is used throughout this work, presented
in Section 2.1. Tumor-induced mass effect [6,7], necrosis, and hypoxia [15,16], as well as
the effects of surgery [5], chemotherapy [4,17,18], and radiotherapy [18,19] have also been
introduced into reaction-diffusion glioma growth models, but are not considered in this
work. For a more detailed overview of reaction-diffusion glioma growth modeling, the
reader is referred to [2,4–10].

Although reaction-diffusion models have shown promising results for patient follow-
up and improved radiotherapy planning [2], their clinical application is still prone to severe
limitations. Indeed, the estimation of the parameter values and the tumor cell-density
distribution at diagnosis time—required to predict the tumor evolution at later times—but
also the validation of such models in vivo, implies to extract information on the tumor at
the cellular level from medical imaging data. To address this issue, Swanson and colleagues
have proposed in [8] to model the imaging function of MRI sequences Iseq(x, t)—indicating
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whether a tumor-induced abnormality is visible at location x and time t on the image—as a
simple tumor cell-density threshold function:

Iseq(x, t) =

{
1 if c(x, t) ≥ cseq

0 otherwise
(2)

where cseq is the tumor cell-density detectability threshold of the sequence. The abnor-
malities considered in [8] were the hyper-intense enhancing tumor core visible on T1-
weighted sequences with injection of gadolinium-based contrast agent (T1Gd) and the peri-
tumor vasogenic edema visible on T2-weighted sequences with or without fluid-attenuated
inversion-recovery (T2/T2 FLAIR). Based on these assumptions, the authors suggested
that the outlines of these abnormalities would correspond to iso-contours of the tumor
cell-density function—i.e., hyper-surfaces along which c has a constant value:

c(x, t) = cseq, ∀x ∈ ∂Ωabn (3)

where ∂Ωabn is the boundary of the visible abnormality.
Building upon this work, Konukoglu and colleagues proposed in [10] a fast marching

approach to construct an approximate solution of Equation (1) at imaging time which
satisfies Equation (3). This approach has the interesting property of not attempting to
dynamically solve the model but seeks to extrapolate the tumor invasion beyond its MR-
visible margins within the reaction-diffusion framework, with applications for radiotherapy
planning. It has, nevertheless, two major limitations: First, it requires the ability to extract a
tumor cell-density iso-contour from the image, from which the whole tumor cell distribution
is built. However, we showed in a previous work based on histological data that the
outlines of the edema visible on T2 FLAIR MR images do not coincide with a cell-density
iso-contour [20]. The proposed explanation is that, due to spatial discontinuities of the
tumor cell-density function at interfaces between white and gray matter as well as along
the brain domain boundary, Equation (2) does not necessarily imply Equation (3). The
second limitation of this approach is that the method still needs to specify the diffusivity
and proliferation rate of the tumor, which are unknown at imaging time and need to be
adjusted to each tumor.

The estimation of the model parameter values from medical imaging data has also
been addressed previously. In [21], the definition of the asymptotic speed of the tumor front
v = 2

√
d ρ is used to estimate the tumor cell diffusivity dwhite and dgray in white and gray

matter using a fast marching approach. However, the method does not allow us to separate
the individual contributions of d and ρ to v, hence ρ is supposed constant for all tumors.
Furthermore, this estimation is only valid for large times for which the traveling-wave
approximation holds. The approach was then further extended in [9] to take into account the
transient speed evolution and the curvature of the tumor front, but still considers a constant
ρ value for all tumors. Besides, these fast marching formulations make the assumption
that the outlines of the peritumor vasogenic edema visible on T2 MR images correspond
to an iso-contour of the traveling wave arrival time function. However, this hypothesis
might not be verified due to discontinuities appearing at the brain boundary voxels, which
could have been reached long before the imaging time. In [22], a Bayesian approach is
used to estimate both the diffusion and proliferation parameters of the model from two
imaging contours obtained by Equation (2) at two different times. The method was found
to accurately estimate the infiltration length λ =

√
d/ρ of the tumor, but less accurately

the tumor front propagation speed v = 2
√

d ρ, based on synthetic and real glioblastoma
(GBM) MRI data. In [18], parameter values of a two-species reaction-diffusion model
incorporating tumor-induced mass effect and response to chemoradiation are estimated
based on tumor cell-density distributions derived from longitudinal T1Gd, T2 FLAIR,
and diffusion-weighted (DW) MR data, with promising results. However, the cell-density
distributions used to initialize the model and fit the parameters were built piecewise from
the enhancing/non-enhancing tumor regions delineated on T1Gd/T2 FLAIR images as
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well as average diffusion coefficient (ADC) maps derived from DW-MR data, and are
therefore not guaranteed to be solution of Equation (1) nor to reflect the actual tumor
cell distribution.

Tumor source localization is another widely addressed problem in reaction-diffusion
glioma growth modeling. In [23], an inverse problem approach is used to estimate the
tumor source location from a given tumor cell-density distribution, with promising results.
However, to be applicable in clinical practice, the method still requires the ability to derive
a whole tumor cell-density distribution from medical imaging data.

Finally, several works have attempted to jointly estimate the tumor source location
and model parameters from patient imaging data. In [24], a PDE-constrained optimization
approach is used to assess the source location and parameter values of a reaction-diffusion
glioma growth model including an additional advection term. The tumor growth model
is coupled to a linear elastic model for the tumor-induced mass effect. Two optimization
criteria are used in the study: (i) the squared difference between the true and estimated
cell-density fields at given imaging times and (ii) the squared distance between the true
and estimated position of manually defined landmarks on staggered scans, that are dis-
placed as the surrounding brain tissues are deformed under mass effect. However, the
first criterion requires the knowledge of the true tumor cell-density field, which again
cannot be derived directly from imaging data. Promising results were obtained for the
landmark-based criterion on a real glioma case but strong assumptions are made on the
initial cell-density field—supposedly Gaussian—and no ground truth was available to
assess the model parameter estimation. In [25], the fast marching approach of Konukoglu
and colleagues [9,21] is used to assess the diffusivity ratio dwhite/dgray along with the tu-
mor source location, but a fixed proliferation rate ρ was again considered. More recently,
a Bayesian framework has been proposed to simultaneously estimate the tumor source,
emergence time, diffusivity, and proliferation rate from a combination of T1Gd, T2 FLAIR,
and [18F]fluoroethyl-L-tyrosine ([18F]FET) positron emission tomography (PET) images
in [26]. However, the study reported that these last three parameters cannot be individually
assessed from a single imaging time point. Finally, in [27] a numerical approach is proposed
to solve the ill-posed problem of estimating both the tumor initial location as well as its
diffusivity and proliferation rate, and is further applied on 206 GBM cases from the BraTS
dataset [28] in [29], for which actual parameter values are however not known. Although
the method has shown promising results and only requires a single imaging time point,
it still has three major limitations: (i) it only allows for the estimation of unscaled dimen-
sionless diffusion and proliferation parameters as the time between tumor emergence and
imaging is unknown, which restricts the absolute comparison of the estimated parameter
values between tumors and prevents the use of the model as a personalized prediction
tool for the tumor evolution over time, (ii) it makes strong assumptions regarding the
initial tumor cell-density distribution—a sparse set of Gaussian distributions with identical
standard deviation and a maximum density value of 1 over the set—and (iii) it relies on
many user-defined parameters, to some of which the method is reported sensitive [27,29].

In addition to their various limitations highlighted hereabove, none of the aforemen-
tioned works have jointly addressed the estimation of the tumor cell-density distribution at
diagnosis time and individual diffusion and proliferation parameters of the model, which
could however made it possible to anticipate the growth of the tumor at further times using
the model and thus adapt treatment strategies. Besides, most of these works considered a
spatially constant diffusion coefficient in white matter and/or an identical proliferation
rate for all tumors, which is not realistic. The introduction of an arbitrary diffusion tensor
field D(x) and a tumor-specific proliferation rate ρ would make the addressed problems
even more challenging.

Over the last five years, the advent of deep-learning techniques—and in particular
deep convolutional neural networks (DCNNs)—has opened tremendous opportunities
in the field of medical imaging, achieving state-of-the-art performance in many image
classification and segmentation challenges [30]. One interesting property of deep neural
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networks is their ability to approximate any function under certain conditions [31]. This
property makes the technique attractive for the problems addressed in this work. DCNNs
may indeed be used to approximate solutions of PDEs such as Equation (1) over complex
domains, and for spatially variable coefficients, as well as to estimate their parameter values
from partial observations provided in the form of threshold-like imaging contours.

In this work, we investigate the ability of DCNNs to address common pitfalls encoun-
tered in the clinical application of reaction-diffusion glioma growth models. In particular,
we focus on the following two tasks:

1. Reconstructing a whole brain tumor cell-density distribution compatible with the
reaction-diffusion model from a pair of contours obtained through a threshold-like
imaging process as in Equation (2) for two different detectability threshold values at a
given imaging time. These contours may for example correspond to the outlines of
the enhancing core and peritumor vasogenic edema on T1Gd and T2/T2 FLAIR MR
images, respectively.

2. Estimating the values of the diffusion and proliferation parameters of the model from
three imaging contours: (i) two contours obtained for a first detectability threshold
value (e.g., the vasogenic edema outlines) at two different imaging times and (ii) a
third contour obtained for a second detectability threshold value (e.g., the enhancing
core outlines) at the second imaging time.

We demonstrate the ability of DCNNs to perform these tasks accurately based on
1200 synthetic tumors grown over brain geometries derived from the MR data of six
healthy subjects. We also show the applicability of our approach on MR data of a real
glioblastoma patient.

2. Materials and Methods
2.1. The Reaction-Diffusion Model

The reaction-diffusion tumor growth model that is used throughout this work is
described by Equations (4)–(6) [6,25,32]:

∂c(x, t)
∂t

= ∇ · (D(x)∇c(x, t)) + ρ c(x, t)(1− c(x, t)) ∀x ∈ Ω, ∀t > 0

c(x, 0) = c0(x) ∀x ∈ Ω

D(x)∇c(x, t) · n∂Ω(x) = 0 ∀x ∈ ∂Ω

(4)

(5)

(6)

where c(x, t) is the tumor cell-density at location x and time t normalized by the maximum
carrying capacity cmax of brain tissues (i.e., c(x, t) ∈ [0, 1], ∀x, t), D(x) is the symmetric
tumor cell diffusion tensor at location x, ρ is the tumor cell proliferation rate, c0(x) is
the initial tumor cell-density at location x, and n∂Ω

(x) is a unit normal vector pointing
outwards the boundary ∂Ω of the brain domain Ω at location x ∈ ∂Ω. Equation (5) specifies
the initial condition of the problem whereas Equation (6) provides no-flux Neumann
boundary conditions reflecting the inability of tumor cells to diffuse across ∂Ω.

2.2. MR Data Acquisition

For the needs of this work, 6 healthy volunteers were enrolled for an MRI acquisi-
tion comprising a T1 BRAVO (echo time: ∼3 ms, repetition time: ∼8.3 ms, inversion time:
450 ms, flip angle: 12°, pixel bandwidth: 244 Hz voxel−1, slice thickness/spacing: 1/1 mm,
matrix: 240 voxel× 240 voxel× 172 voxel, field of view: 250 mm× 175 mm× 174 mm), a T2
FLAIR (echo time: ∼119 ms, repetition time: 7.2 s, inversion time: ∼2040 ms, flip angle:
90°, bandwidth: 122 Hz voxel−1, phase/slice acceleration factor: 2/2, slice thickness/spacing:
1.4/0.7 mm, matrix: 256 voxel × 256 voxel × 252 voxel, field of view:
256 mm× 245.8 mm× 176.4 mm), and an EPI-DTI (echo time: 77.1 ms, repetition time: 7 s,
inversion time: 108 ms, flip angle: 90°, bandwidth: 1953.12 Hz voxel−1, phase/slice ac-
celeration factor: 2/1, multiband factor: 3, slice thickness/spacing: 2/2 mm, matrix:
120 voxel× 120 voxel, slices: 72, field of view: 240 mm× 240 mm× 144 mm, directions:
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32, b-value: 1000 s mm−2) sequence. To correct for susceptibility-induced distortions (see
Section 2.3.1), a second DTI acquisition with reversed phase-encode polarity and only
6 directions was additionally performed. All acquisitions were performed on a 3 T Signa
PET/MR scanner (GE Healthcare, Chicago, IL, USA) with a Nova 32-channel head coil
(Nova Medical, Houston, TX, USA).

To illustrate our approach (see Section 2.6), similar T1 BRAVO, T2 FLAIR, and DTI
images as well as an additional T1Gd (echo time: 3.2 ms, repetition time: 8 ms, flip
angle: 8°, pixel bandwidth: 255 Hz voxel−1, slice thickness/spacing: 1/1 mm, matrix:
232 voxel× 231 voxel× 175 voxel, field of view: 230 mm× 190.3 mm× 144 mm) image ac-
quired on a 3 T Achieva scanner (Philips Medical Systems, Eindhoven, The Netherlands) of
a 69-year-old male patient with IDH-wildtype GBM were retrospectively analyzed.

2.3. Processing
2.3.1. DTI Data Processing

The acquired DTI data were first corrected for susceptibility-induced distortion, eddy
currents, and patient motion using the topup and eddy tools available as part of FSL [33]. A
water diffusion tensor field Dwater(x) was then reconstructed from the corrected DTI data
by least-squares fitting using FSL’s dtifit tool. The whole FSL script used for DTI data
processing is available in Appendix A.

2.3.2. Resampling and Registration

The acquired T1 BRAVO, T1Gd (GBM patient only), and T2 FLAIR images as well
as the corrected DTI data and the derived water diffusion tensor field were resampled
to an isotropic voxel size of 1 mm× 1 mm× 1 mm by linear interpolation. To correct for
patient motion throughout the acquisition, the T1 BRAVO and T2 FLAIR images were
rigidly registered to the b = 0 DTI image used as reference by maximization of their mutual
information [34]. All resampling and registration steps were performed using an in-house
software in C++ based on ITK [35] and VTK [36].

2.3.3. Skull Stripping

The brain volume was then segmented on the registered T2 FLAIR image using the
Otsu thresholding [37] followed by a morphological erosion with structuring element of
radius 2 voxel, a largest component extraction, a morphological dilation of radius 2 voxel, a
morphological closing of radius 8 voxel, and a morphological dilation of radius 1 voxel.

2.3.4. Brain Tissue Segmentation

The extracted brain domain was further segmented on the registered T1 BRAVO image
into white matter, gray matter, and cerebrospinal fluid using an in-house implementation of
the MICO intensity-based clustering algorithm comprising a bias field correction step [38].
Manual corrections were further applied to the mis-segmented basal nuclei and falx cerebri.
This last step is crucial to prevent the migration of tumor cells between brain hemispheres
via routes other than the corpus callosum, as highlighted previously [2]. The segmentation
results were finally merged into a single brain map. An example of T2 FLAIR and T1
BRAVO images with the corresponding brain mask and segmented brain map is depicted
in Figure 1.

2.3.5. Tumor Segmentation

For illustration purposes (see Section 2.6), the enhancing core and peritumor vasogenic
edema were also semi-automatically segmented on the T1Gd and T2 FLAIR images of the
GBM patient using combinations of thresholding, connected component extraction, and
morphological operations.
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(a) (b) (c)

Figure 1. Example of processed MR data. (a) Axial slice of the T2 FLAIR image with superimposed
segmented brain mask (red). (b) Corresponding slice of the T1 BRAVO image. (c) Segmented brain
map obtained with the MICO algorithm [38] followed by manual corrections.

2.3.6. Tumor Diffusion Tensor

A tumor diffusion tensor field D(x) was built piecewise from the DTI-derived water
diffusion tensor Dwater(x) and the segmented brain domain Ω as follows:

D(x) =


Dwhite(x) if x ∈ Ωwhite

Dgray if x ∈ Ωgray

0 otherwise

(7)

where Dwhite(x) and Dgray are the tumor cell diffusion tensor fields within the white and
gray matter domains Ωwhite and Ωgray, respectively, and 0 is the null tensor, with:

Dgray =

dgray 0 0
0 dgray 0
0 0 dgray

 (8)

where dgray is the mean diffusivity of tumor cells in gray matter.
The white matter tumor cell tensor field Dwhite(x) was built from the DTI-derived wa-

ter diffusion tensor Dwater(x) using the method proposed by Jbabdi and colleagues in [14].
This step is motivated by the observation that, for mechanical [39] and molecular [40]
reasons, tumor cells preferentially migrate along rather than across brain fibers, similarly
to diffusing water molecules. The method consists of increasing the degree of anisotropy of
the water diffusion tensor and scaling its mean diffusivity MD = Tr(Dwater)/3 to account
for the difference in diffusive behavior between tumor cells and water molecules, Tr(A)
being the trace of matrix A [14]:

Dwhite(x) =
3 dwhite

∑3
i=1 λ̃i(a)

3

∑
i=1

λ̃i(a) ei(x) e>i (x) (9)

where dwhite is the mean diffusivity of tumor cells in white matter, ei(x) is the ith eigenvector
of Dwater(x), and λ̃i(a) = li(a)λi, with:l1(a)

l2(a)
l3(a)

 =

a a 1
1 a 1
1 1 1

cl
cp
cs

, (10)

cl =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2 (λ2 − λ3)

λ1 + λ2 + λ3
, cs =

3 λ3

λ1 + λ2 + λ3
, (11)

where λi is the ith eigenvalue of Dwater(x), a ≥ 1 is a multiplicative factor introduced to
increase the anisotropy of the tensor, and cl , cp, and cs are the linear, planar, and spherical
anisotropy measures of Dwater(x), respectively.
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For reasons that will become clearer in Section 2.4, a unit tumor cell diffusion tensor
was built at this stage by fixing dwhite to 1. A value of 0.1 was chosen for the dgray/dwhite
ratio, as proposed previously in [13] to account for the restricted migration of tumor cells in
gray compared to white matter. This ratio was supposed constant among all subjects as it is
expected to depend exclusively on the structural organization of healthy white versus gray
matter and not on the tumor characteristics. Similarly, the anisotropy factor a was fixed
to 10 for all subjects, as suggested in [14]. An example of processed DTI data is depicted
in Figure 2. The processed MR data of the 6 volunteers used in this study are publicly
available at https://doi.org/10.5281/zenodo.6563613 (accessed on 17 May 2022). Further
details on these data are available in Appendix B.

(a) (b)

Figure 2. Example of processed DTI data. (a) DTI-derived water diffusion tensor field after susceptibility-
induced distortion, eddy currents, and patient motion correction using FSL [33]. (b) Tumor diffusion ten-
sor field with increased anisotropy in white matter (a = 10) and scaled diffusivity (dgray/dwhite = 0.1)
built from the water diffusion tensor field in panel (a) and the brain map in Figure 1c as described in
Section 2.3.6. The subpanel located at row i and column j of panels (a) and (b) corresponds to the
tensor component di,j.

2.4. Dataset Synthesis

A synthetic tumor dataset was generated from the processed MR data described
hereabove. 200 fictitious tumors were grown over the segmented brain domain of each
of the 6 volunteers from randomly picked seeds and parameter values using the reaction-
diffusion model in Equations (4)–(6), totaling 1200 synthetic tumors. For each tumor, the
cell-density distribution was sampled at four imaging time points t1, t2, t3, and t4.

Each tumor seed consisted of a 3 voxel × 3 voxel × 3 voxel neighborhood chosen
among all segmented white matter voxels whose initial (i.e., at time t = t0) normal-
ized tumor cell-density c was set to 1. For each simulated tumor, an infiltration depth
λ =

√
dwhite/ρ, a tumor front propagation speed v = 2

√
dwhite ρ, and two imaging time

intervals ∆t1 and ∆t2 were randomly chosen from uniform distributions (floating point
for λ and v, integer for ∆t1 and ∆t2). The value ranges of the uniform distributions are
provided in Table 1 and are of the same order of magnitude as in [19].

https://doi.org/10.5281/zenodo.6563613
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Table 1. Value ranges and units of the uniform distributions used to sample the tumor growth model
parameters for the generation of the synthetic tumor dataset.

Min Max Units

λ 0.5 2.0 mm
v 28.28 48.99 mm year−1

∆t1 90 180 d
∆t2 90 180 d

Two additional time intervals, ∆t3 and ∆t4, were fixed to 90 d for verification purposes
(see Section 2.6). Starting from tumor emergence time t0, the time intervals ∆t1−4 univocally
define the four imaging time points ti = t0 + ∑i

j=1 ∆tj, i = 1, . . . , 4.
For each sampled couple of (λ, v) values, a white matter diffusion rate value dwhite

and a proliferation rate value ρ were derived as:

dwhite =
λ v
2

(12)

ρ =
v

2 λ
(13)

In this manner, a wide diversity of tumors can be uniformly sampled within a realistic
range of infiltration depths λ and propagation speeds v. Independently sampling dwhite
and ρ values from uniform distributions may instead have resulted in tumors that are
too small (i.e., with too small dwhite and ρ values resulting in an empty Γ1 contour, see
Sections 2.5.1 and 2.5.2) or too large (i.e., with too large dwhite and ρ values resulting in
a brain domain almost filled with tumor cells). The empirical joint distribution of the
sampled (λ, v) values as well as the corresponding joint distribution of (dwhite, ρ) and
marginal distributions of dwhite and ρ are depicted in Figure 3.

For each synthetic tumor, a tumor cell diffusion tensor field D(x) was then obtained
by multiplying the unit (unscaled) diffusion tensor derived as described in Section 2.3.6 by
the derived value of dwhite. As a reminder, the ratio dgray/dwhite was considered constant
among tumors in this work (see Section 2.3.6). A tumor was finally grown from the sampled
seed, tumor cell diffusion tensor field D(x), and proliferation rate ρ using the model and
the simulated tumor cell distributions at times t1−4 were stored. Examples of synthetic
tumors are depicted in Figure 4. The corresponding model parameter values are provided
in Table 2.

Table 2. Parameter values used for the tumor simulations in Figure 4.

dwhite
[mm2 year−1] ρ [year−1] λ [mm] v

[mm year−1] t1 [d] t2 [d] t3 [d] t4 [d]

Tumor 1 10.87 31.77 1.71 37.16 175 328 418 508
Tumor 2 15.07 13.95 0.96 29.00 146 316 406 496
Tumor 3 41.49 11.31 0.52 43.33 137 242 332 422

The model was solved by a forward Euler finite difference approach using a GPU
implementation of the 3D standard stencil referenced in [41] for the computation of the
divergence term in Equation (4). A time step ∆t = 0.5 d was chosen, ensuring the numerical
stability of the method within the sampled parameter range. The processing time was
around 1 ms per iteration on a GeForce GTX 1080 GPU (NVIDIA, Santa Clara, CA, USA),
leading to total simulation times in range 0.72–1.08 s per tumor. All simulations were
performed using a Python wrapping of our Tumour Growth Simulation ToolKit (TGSTK)
written in C++/CUDA language based on VTK [36] and publicly available at https://
github.com/cormarte/tgstk (accessed on 17 May 2022). The toolkit documentation can be
found at https://cormarte.github.io/tgstk/html (accessed on 17 May 2022).

https://github.com/cormarte/tgstk
https://github.com/cormarte/tgstk
https://cormarte.github.io/tgstk/html
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Figure 3. Sampling of the model parameters. (a) Empirical joint distribution of the (λ, v) values
sampled from uniform distributions (blue marks) with superimposed sampling domain bound-
ary (red segments). (b) Corresponding joint distribution of the derived (dwhite, ρ) values using
Equations (12) and (13) (blue marks) with superimposed sampling domain boundary (red curves).
(c) Empirical marginal distribution of the derived dwhite values (blue bars) with superimposed theo-
retical distribution (red curves). (d) Empirical marginal distribution of the derived ρ values (blue
bars) with superimposed theoretical distribution (red curves).
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Figure 4. Examples of simulated tumor cell-density distributions at times t1−4 (1st to 4th columns,
axial slices) from the MR data of the same subject as in Figures 1 and 2. The corresponding model
parameter values are provided in Table 2.
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2.5. Deep Convolutional Neural Networks

Two deep convolutional neural networks were implemented and trained to respec-
tively address the cell-density estimation and model parameter estimation problems in-
troduced hereabove. All training steps were performed using the TensorFlow framework
(version 2.5.0) [42] in Python on a GeForce RTX 3090 GPU (NVIDIA, USA). The Python
code used for dataset generation and network training is available at https://github.com/
cormarte/DeepLearningGliomaGrowthModeling (accessed on 17 May 2022).

2.5.1. Cell-Density Estimation

The first problem addressed was to reconstruct a tumor cell-density distribution from
(i) two imaging contours—Γ1 and Γ2—obtained through an imaging process described by
Equation (2) for two detectability threshold values c1 and c2 at a given imaging time and
(ii) a unit (unscaled) tumor cell diffusion tensor field derived from DTI data as presented in
Section 2.3.6.

This approach is motivated by the asymptotic properties of the traveling wave solution
admitted by Equation (1) for constant coefficients and on the infinite cylinder, whose profile
decreases exponentially with decay constant λ (see Section 1). For such a solution, the value
of λ can be trivially estimated given the distance between two cell-density iso-contours,
and an approximate tumor cell-density distribution can subsequently be reconstructed for
a sufficiently large distance to the tumor core. Here, we assess the ability of deep neural
networks to build an approximate solution of Equations (4)–(6) in the more general case
of a complex domain and variable anisotropic diffusion tensor field, and from 2 imaging
contours obtained by Equation (2)—which do not necessarily coincide with cell-density
iso-contours as discussed previously [20].

In a clinical setting, the value of the white matter diffusion rate dwhite used to scale
the tumor cell diffusion tensor in Equation (9) is unknown, and its estimation will be
addressed in the next section. Therefore this information is not considered for this problem.
In contrast, the preferred migration directions of tumor cells along the white matter tracts
can be assessed from clinical DTI acquisitions as described in Section 2.3.6 and may be used
for the estimation of the tumor cell-density distribution. This motivates the introduction of
the unit unscaled diffusion tensor field as an input of this problem, in addition to the Γ1
and Γ2 contours.

To address this problem, a 3D DCNN based on the U-Net architecture [43] was
implemented, as it has been successfully applied to many medical imaging problems
previously [30,44]. The network consists of 4 down-sampling blocks, 4 up-sampling blocks,
and 1 output block. Each down-sampling block is made of 2 convolutional layers with
kernel size 3× 3 and stride 1, followed by a bias-adding layer and a rectified linear unit
(ReLU) activation layer. A convolutional layer with kernel size 2× 2 and stride 2 is added
at the end of the block to reduce the feature map dimensions by a factor 2. The up-sampling
blocks are identical to the down-sampling blocks except that the last convolutional layer is
replaced by a transposed convolution layer with kernel size 2× 2 and stride 2, followed by
a bias-adding layer and a ReLU activation layer to expand the feature map dimensions by
a factor 2. Skip connections are added between the output of the second ReLU activation
layer of each down-sampling block and the input of the corresponding upsampling block
with the same spatial dimensions, implemented as a concatenation operation. The output
block has the same structure as the down-sampling blocks except that the last convolutional
layer is replaced by a convolutional layer with kernel size 1× 1 and stride 1 followed
by a bias-adding layer but no activation layer to merge the last 32 feature maps into a
single tumor cell-density map. The network architecture with its feature map dimensions
is depicted in Figure 5.

The network takes as input tensors of shape 192× 192× 128× 8 (width × height ×
depth × channels). The first 2 channels are fed with the two binary regions respectively
delimited by Γ1 and Γ2. These regions were obtained by thresholding each generated tumor
cell distribution at the second imaging time point t2 with threshold values c1 and c2 of

https://github.com/cormarte/DeepLearningGliomaGrowthModeling
https://github.com/cormarte/DeepLearningGliomaGrowthModeling
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0.80 and 0.16, as previously proposed in [8] for the enhancing core and edema outlines,
respectively. The last 6 channels correspond to the 6 independent components of the unit
(unscaled) tumor cell diffusion tensor (see Section 2.3.6).

To evaluate the generalization ability of the model, the dataset was further split into
training and test sets in proportion 83–17% on a patient basis (i.e., the 200 tumors generated
from the MR data of the last patient are kept for evaluation purposes). The network was
trained using the Adam optimizer [45] (learning rate: 10−4, β1: 0.9, β2: 0.999, ε: 10−6) and
the mean absolute error (MAE) loss over mini-batches of size 1. Data augmentation was
performed by applying random shifts in range ±15 voxel in the three spatial dimensions
to each batch. Rotations were not applied as they would also imply transformation of the
tensor components [46], resulting in longer execution times for on-the-fly augmentation
or larger dataset size for offline augmentation. The training was stopped early after no
improvement in the test loss for 100 epochs. The network parameter values that provided
the best test loss value (MAE = 1.24× 10−4) were kept, which occurred after 876 epochs.

192x192x128x32

96x96x64x32

48x48x32x64

12x12x8x128

24x24x16x64

48x48x32x64

96x96x64x32

192x192x128x32

Cell-density

Conv 3x3 stride 1 + bias + ReLU

Conv 2x2 stride 2 + bias + ReLU

Deconv 2x2 stride 2 + bias + ReLU

Conv 1x1 stride 1 + bias

Concatenation

24x24x16x64

Down-sampling 
block

Up-sampling 
blockUnit tensor

Γ1 Γ2

Figure 5. Three-dimensional U-Net architecture [43] with its feature map dimensions used for
cell-density estimation. The network takes as input volumes of dimensions 192× 192× 128 with
8 channels corresponding to the 2 contours Γ1 and Γ2 and the 6 independent components of the
unit (unscaled) tumor cell diffusion tensor field, and outputs a cell-density map with the same
spatial dimensions.

2.5.2. Parameter Estimation

The second problem addressed is to estimate the value of the model parameters dwhite
and ρ (or equivalently of the derived parameters λ =

√
dwhite/ρ, and v = 2

√
dwhite ρ) from

(i) three imaging contours: two imaging contours—Γ1 and Γ2—obtained by Equation (2)
for two different threshold values c1 and c2 at imaging time t2 and a third imaging contour
Γ3 obtained for the same c2 threshold value at the earlier imaging time t1 and (ii) the unit
(unscaled) tumor cell diffusion tensor field. The time interval ∆t2 between t1 and t2 is also
considered as an input of the problem.

As for the cell-density estimation problem, the motivation for such inputs lies in the
properties of the asymptotic traveling wave solution of Equation (1) (see Section 1), whose
profile decay constant λ =

√
d/ρ can be assessed from two cell-density iso-contours at a

given time point as mentioned hereabove. In addition, the propagation speed of the tumor
front v = 2

√
d ρ can similarly be assessed from the distance between a same cell-density

iso-contour taken at two different time points given their temporal spacing. The knowledge
of λ and v can finally be used to assess the individual values of d and ρ. Here again, we
assess the ability of deep neural networks to generalize these properties in the case of
a complex domain and variable anisotropic diffusion tensor field from 3 threshold-like
imaging contours obtained by Equation (2). The same remark as for the previous section
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holds regarding the possibility of deriving a unit tumor diffusion tensor from DTI data,
which can provide additional information for the estimation of the steepness and speed of
the tumor front.

The DCNN implemented for this task is a convolutional encoder. The network consists
of 6 convolutional down-sampling blocks and a fully connected output block. Each down-
sampling block is made of 2 convolutional layers with kernel size 3 × 3 and stride 1,
followed by a bias-adding layer and a ReLU activation layer. A convolutional layer with
kernel size 2× 2 and stride 2 is added at the end of the block to reduce the feature map
dimensions by a factor 2. The output block flattens the 3× 3× 2× 8 output of the last
down-sampling block and concatenates a 1× 1 (width × channels) tensor to the flattened
vector to feed the imaging time interval ∆t2. A fully connected layer followed by a bias-
adding layer but no activation layer is finally used to merge the last 145 components into
2 scalar values for λ and v.

The network takes as input tensors of shape 192× 192× 128× 9 (width × height
× depth × channels). The first 3 channels are fed with the binary regions respectively
delimited by Γ1, Γ2, and Γ3. These regions were respectively obtained by thresholding
each generated tumor cell distribution at time t2 with threshold values of 0.80 (Γ1) and
0.16 (Γ2), and the distribution at time t1 with a value threshold value of 0.16 (Γ3) [8]. The
last 6 channels correspond to the 6 independent components of the unit (unscaled) tumor
cell diffusion tensor (see Section 2.3.6). To account for their different value range and scale,
the target values of λ and v were standardized using the theoretical mean and variance of
the respective uniform distributions from which they were sampled.

The same training/test splitting as for the tumor cell-density estimation network
was applied to the dataset. The network was trained using the Adam optimizer [45]
(learning rate: 10−4, β1: 0.9, β2: 0.999, ε: 10−6) and the mean squared error (MSE) loss. Data
augmentation was performed by applying random shifts in range ±15 voxel in the three
spatial dimensions to each input batch. Early stopping was applied if no improvement was
observed in the test loss for 100 epochs. The network parameter values that provided the
best test loss value (MSE = 6.75× 10−2) were kept, which occurred after 628 epochs.

2.6. Verification

To verify and illustrate our approach, we conducted the following numerical experi-
ment: Starting from the tumor cell-density distribution estimated at time t2 from Γ1 and Γ2
using our first network (Figure 5), as well as the values of dwhite and ρ estimated from Γ1,
Γ2, and Γ3 using our second network (Figure 6) and Equations (12) and (13), we computed
a tumor cell-density distribution using the reaction-diffusion model at times t3 and t4,
90 d and 180 d later, respectively. We then compared the estimated distributions to the
actual tumor cell-density distributions at times t3 and t4—i.e., those obtained for the true
cell-density distribution at time t2 as well as the true values of dwhite and ρ—using the
MAE computed voxelwise within the c > 0.01 contour. This latter restriction prevents
background or weakly invaded voxels to artificially lower the MAE. The Hausdorff distance
dH and the average symmetric surface distance (ASSD) dS between the imaging contours
obtained from the true and estimated tumor cell-density distributions for threshold values
of c1 and c2 were also computed for each test tumor and time point, as given by:

dH(A, B) = max
{

max
b∈B

{
min
a∈A

d(a, b)
}

, max
a∈A

{
min
b∈B

d(a, b)
}}

, (14)

dS(A, B) =
1

|A|+ |B|

(
∑
b∈B

min
a∈A

d(a, b) + ∑
a∈A

min
b∈B

d(a, b)

)
, (15)

where d(a, b) is the Euclidian distance between elements a and b, and |X| is the cardinal of
set X.
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It should be noted that minor post-processing was applied to the estimated tumor cell-
density distributions at time t2 provided by the first network prior to the computation of
the densities at times t3 and t4. First, the cell-density of non-brain voxels (i.e., cerebrospinal
fluid and background voxels) was set to 0. Indeed, small (∼10−5) but non-zero values
were observed for some of these voxels in the predicted tumor cell-density distributions.
Second, maximum densities were clipped to 1 as small overshootings were also occasionally
observed. Third, voxels located outside the largest connected region with densities above
1× 10−6 were also set to 0 since small local maxima (∼10−5) were sporadically observed far
from the tumor core, which gave rise to new tumor foci throughout the simulation. These
post-processing steps allow us to correct for inaccuracies in the non-constrained output of
our convolutional network and ensure numerical stability of the reaction-diffusion model
solution at later times.

Conv 3x3 stride 1 + bias + ReLU

Conv 2x2 stride 2 + bias + ReLU

Flattening + concatenation

Fully connected + bias

192x192x128x32

96x96x64x64

48x48x32x128

12x12x8x32

24x24x16x64

Down-sampling
block

6x6x4x16

Unit tensor

Γ1 Γ2

Γ3

λ

v

144+1

Δt2

Figure 6. Three-dimensional convolutional regressor architecture with its feature map dimensions
used for parameter estimation. The network takes as input volumes of dimensions 192× 192× 128
with 9 channels corresponding to the 3 contours Γ1, Γ2, and Γ3 and the 6 independent components of
the unit (unscaled) tumor cell diffusion tensor field as well as the time interval ∆t2 between Γ3 and
Γ2, and outputs estimated values of λ and v.

Sensitivity analyses of our approach were also performed by evaluating both network
outputs on the test set after application of a systematic variation of ±10% on the threshold
values c1 and c2 used to generate the Γ1, Γ2, and Γ3 input contours, reflecting the inherent
uncertainties in these values.

Finally, to demonstrate the applicability of our approach in a clinical context, a cell-
density map was generated from the retrospective MR data of the GBM patient (see
Sections 2.2 and 2.3). To this extent, the segmented enhancing core and edema regions (see
Section 2.3.5) were provided to the first network along with the derived unit tumor cell
diffusion tensor.

3. Results

The distribution of the mean absolute error computed over the test set between the
true and estimated tumor cell-density distributions at time t2 within the c > 0.01 contour is
summarized by a boxplot in Figure 7 (first plot). Boxplots of the Hausdorff distance and
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ASSD distributions computed over the test set between the true and estimated imaging
contours at time t2 for threshold values c1 = 0.80 and c2 = 0.16 are provided in Figure 8
(first plots). The corresponding median values are provided in Table 3. An example of true
and estimated tumor cell-density distributions at time t2 from the test set is depicted in
Figure 9 (first column), along with the corresponding absolute error map as well as the true
and estimated imaging contours for threshold values c1 = 0.80 and c2 = 0.16. Additional
examples are provided in Appendix C. All predicted tumor cell-density distributions at
time t2 used in Figures 7–9 were provided by the first network (Figure 5).
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Figure 7. Boxplots of the mean absolute error distribution within the c > 0.01 contour computed
voxelwise over the whole test set for times t2 = ∆t1 + ∆t2 ∈ [180, 360]d (see Table 1), t3 = t2 + 90 d,
and t4 = t2 + 180 d. Horizontal line: median, box: interquartile range, whiskers: ±1.5 interquartile
range, asterisks: outliers.
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Figure 8. Boxplots of the Hausdorff distance and average symmetric surface distance (ASSD) dis-
tributions computed between the true and estimated imaging contours over the whole test set for
times t2 = ∆t1 + ∆t2 ∈ [180, 360]d (see Table 1), t3 = t2 + 90 d, and t4 = t2 + 180 d. (a,b) Hausdorff
distances computed between the true and estimated imaging contours obtained for threshold values
of c1 = 0.80 and c2 = 0.16, respectively. (c,d) ASSD values computed between the true and estimated
imaging contours obtained for threshold values of c1 = 0.80 and c2 = 0.16, respectively. Horizontal
line: median, box: interquartile range, whiskers: ±1.5 interquartile range, asterisks: outliers.
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Figure 9. Example of true (1st row) and estimated (2nd row) three-dimensional tumor cell-density
distributions at times t2−4 (1st to 3rd column, axial slices) along with the corresponding absolute
error maps (3rd row) for a test tumor (d = 43.47 mm2 year−1, ρ = 11.22 year−1, t1 = 94 d, t2 = 264 d).
The imaging contours for threshold values c1 = 0.80 and c2 = 0.16 superimposed to the T1 and T2
FLAIR image are depicted in the 4th and 5th rows, respectively. The blue, red, and green segments
respectively correspond to the target, prediction, and overlapping contour voxels. MAE: mean
absolute error for c > 0.01, dH : Hausdorff distance, dS: average symmetric surface distance.
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Table 3. Median values of the voxelwise mean absolute error (MAE) between the true and estimated
cell-density distributions within the c > 0.01 contour as well as of the Hausdorff distance and average
symmetric surface distance (ASSD) between the true and estimated imaging contours for threshold
values of c1 = 0.80 and c2 = 0.16 computed over the test set for times t2, t3, and t4.

t2 t3 t4

Median MAE [10−2] 0.96 1.38 2.20
Median Hausdorff (c1) [mm] 1.00 1.41 2.24
Median Hausdorff (c2) [mm] 1.00 2.00 3.00
Median ASSD (c1) [mm] 0.03 0.12 0.19
Median ASSD (c2) [mm] 0.02 0.12 0.18

The distributions of the relative error on the values of λ and v computed at time t2
over the test set as well as on the values of dwhite and ρ derived with Equations (12) and (13)
are summarized by boxplots in Figure 10. The corresponding median relative errors were
3.41%, 3.30%, 5.86%, and 2.75% for λ, v, dwhite, and ρ, respectively. The true versus predicted
values of λ and v as well as of dwhite and ρ from the test set are plotted in Figure 11. The
corresponding Lin’s concordance correlation coefficients (CCC) [47] were 0.99, 0.95, 0.97,
and 0.99 for λ, v, dwhite, and ρ, respectively.
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Figure 10. Boxplots of the relative error on the predicted model parameter values evaluated on the test
set. (a) Relative errors on the estimated values of λ and v provided by the second network (Figure 6).
(b) Corresponding relative errors on the derived values of dwhite and ρ using Equations (12) and (13).
Horizontal line: median, box: interquartile range, whiskers: ±1.5 interquartile range, asterisks: outliers.

0.5 1 1.5 2

0.5

1

1.5

2 CCC = 0.99

λ (target) [mm]

λ
(p

re
di

ct
io

n)
[m

m
]

(a)

30 35 40 45 50

30

35

40

45

50 CCC = 0.95

v (target) [mmyear−1]

v
(p

re
di

ct
io

n)
[m

m
ye
ar

−
1
]

(b)

10 20 30 40 50

10

20

30

40

50
CCC = 0.97

dwhite (target) [mm2 year−1]

d
w
h
it
e

(p
re

di
ct

io
n)

[m
m

2
ye
ar

−
1
]

(c)

10 20 30 40 50

10

20

30

40

50
CCC = 0.99

ρ (target) [year−1]

ρ
(p

re
di

ct
io

n)
[y
ea
r−

1
]

(d)

Figure 11. Cont.
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Figure 11. Scatterplots of the true versus predicted values of the model parameters from the test
set. (a,b) True versus predicted values of λ and v provided by the second network (Figure 6).
(c,d) True versus estimated values of dwhite and ρ derived from the predicted values of λ and v
using Equations (12) and (13). For each plot, the identity function is superimposed in red and the
corresponding Lin’s concordance correlation coefficient (CCC) [47] is provided.

As for imaging time t2, the distributions of the mean absolute error computed over
the test set between the true and estimated tumor cell distributions at times t3 and t4
within the c > 0.01 contour are summarized by boxplots in Figure 7 (second and third
plot, respectively). Boxplots of the Hausdorff distance and ASSD distributions computed
over the test set between the true and estimated imaging contours at times t3 and t4 for
threshold values c1 = 0.80 and c2 = 0.16 are also provided in Figure 8 (second and third
plots). The corresponding median values are provided in Table 3. The true and estimated
tumor cell-density distributions at times t3 and t4 are depicted in Figure 9 (second and third
column, respectively) for the same test case as for time t2, along with the corresponding
absolute error maps as well as the true and estimated imaging contours for threshold
values c1 = 0.80 and c2 = 0.16. Additional examples are provided in Appendix C. A loss of
accuracy in the estimated tumor cell-density distributions over simulated time is observed
in Figures 7–9 and Table 3. The estimated tumor cell-density distributions at times t3 and
t4 used in Figures 7–9 and Table 3 were computed using the reaction-diffusion model as
described in Section 2.6 from (i) the cell-density distribution predicted at time t2 provided
the first network (Figure 5) and (ii) the predicted model parameter values provided by the
second network (Figure 6).

The results of the sensitivity analyses are summarized in Tables 4 and 5. Performance
indices are reported for all possible combinations of ±10% perturbations on the c1 and c2
values used to generate the input Γ1, Γ2, and Γ3 imaging contours of both CNNs.

Table 4. Median relative errors (MRE) and Lin’s concordance correlation coefficients (CCC) [47]
between the true and predicted values of λ and v provided by the second network (Figure 6) and of
dwhite and ρ derived using Equations (12) and (13), computed over the test set for all combinations
of ±10% perturbations on the c1 and c2 threshold values used to generate the input contours Γ1, Γ2,
and Γ3.

Perturbation on c1 | c2

−10% | −10% −10% |+10 % +10 % | −10% +10 % |+10 %

MRE CCC MRE CCC MRE CCC MRE CCC

λ 12.51% 0.92 18.55% 0.83 25.54% 0.82 18.90% 0.88
v 3.48% 0.94 3.88% 0.93 4.62% 0.91 4.12% 0.93
dwhite 13.43% 0.90 19.93% 0.81 28.25% 0.80 22.47% 0.86
ρ 13.00% 0.94 20.54% 0.89 17.04% 0.86 13.31% 0.91
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Table 5. Median values of the voxelwise mean absolute error (MAE) between the true and estimated
cell-density distributions within the c > 0.01 contour as well as of the Hausdorff distance and
average symmetric surface distance (ASSD) between the true and estimated imaging contours for
threshold values of c1 = 0.80 and c2 = 0.16 computed over the test set for times t2, t3, and t4. The
predicted cell-density estimations and parameter values used for the calculations were obtained for
all combinations of ±10% perturbations on the c1 and c2 threshold values used to generate the input
contours Γ1, Γ2, and Γ3 of both networks.

Perturbation on c1 | c2

−10% | −10% −10% |+10 % +10 % | −10% +10 % |+10 %

t2 t3 t4 t2 t3 t4 t2 t3 t4 t2 t3 t4

Median MAE [10−2] 3.10 3.14 3.38 2.94 2.95 3.26 3.70 3.41 3.63 3.86 3.46 3.57
Median Hausdorff (c1) [mm] 2.24 2.45 3.32 2.24 2.45 3.32 3.0 3.0 3.32 3.0 3.0 3.67
Median Hausdorff (c2) [mm] 1.00 2.00 3.00 1.0 2.0 3.0 1.0 2.0 3.16 1.0 2.0 3.16
Median ASSD (c1) [mm] 0.63 0.51 0.39 0.63 0.49 0.39 0.90 0.56 0.40 0.90 0.61 0.43
Median ASSD (c2) [mm] 0.12 0.16 0.19 0.11 0.14 0.18 0.12 0.17 0.24 0.11 0.15 0.22

Finally, the estimated tumor cell-density distribution for the studied GBM patient
provided by the first network (see Figure 5) is depicted in Figure 12 along with the T1Gd
and T2 FLAIR images with superimposed segmented enhancing core and edema contours,
respectively.
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Figure 12. T1Gd image (1st row), T2 FLAIR image (2nd row), and estimated three-dimensional tumor
cell-density distribution using the first network (3rd row) for an IDH-wildtype glioblastoma patient
in axial (1st column), sagittal (2nd column), and coronal (3rd column) planes. The contours of the
segmented enhancing core and peritumor vasogenic edema are superimposed in red on the T1Gd
(1st row) and in blue on the T2 FLAIR (2nd row) images, respectively.
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4. Discussion

Reaction-diffusion models have been studied for decades to capture the growth of
gliomas, but the ill-posedness of their initialization at imaging time and estimation of
their parameter values has restrained their use as a personalized predictive clinical tool.
In this work, we showed the ability of DCNNs to circumvent these limitations, opening
a wide range of opportunities in the field. Our approach only requires (i) deriving a
unit diffusion tensor field from clinical DTI data as described herein, accounting for the
preferential migration of tumor cells along white matter tracts and (ii) extracting three
imaging contours obtained through a cell-density threshold-like process described by
Equation (2) for two different threshold values and time points.

Regarding the second requirement, the outlines of the peritumor vasogenic edema
and enhancing core have been proposed previously [8], visible on T2 FLAIR and T1Gd
MR images acquired in routine for glioma follow-up, respectively. Nevertheless, it is
worth noticing that peritumor vasogenic edema does not strictly speaking correspond
to a region of tumor cell invasion but results from an accumulation of extracellular fluid
originating from tumor-induced alterations of the blood–brain barrier [48,49] and changes
in hydrodynamic pressure [50]. Consequently, the T2 FLAIR imaging process might not
be accurately described by Equation (2), as also supported by our previous histological
analysis in [20]. Furthermore, anti-angiogenic drugs are known to dramatically reduce
vasogenic edema without however stopping tumor progression [48]. Therefore, other MR
sequences or modalities could be better suited for the estimation of the tumor cell-density
distribution and parameters of reaction-diffusion glioma growth models. For instance,
ADC maps derived from DW-MRI data could more accurately reflect tumor cell invasion,
as proposed in [18,51]. PET imaging with radio-labeled amino acids could also provide
additional information to this extent, as suggested in [26,52].

Once the aforementioned prerequisites are met, our approach makes it possible to (i) ex-
trapolate a whole brain-tumor cell-density distribution within and beyond the visible out-
lines of the tumor that is compatible with the reaction-diffusion model in Equations (4)–(6)
and (ii) individually assess the value of the diffusion and proliferation parameters of the
model. Extrapolating tumor invasion is of utmost interest for radiotherapy planning since
it would allow us to define personalized margins which more accurately target the tumor
while avoiding irradiation of the healthy tissues, as previously discussed in [2,10]. The
independent assessment of the diffusivity and proliferation parameters of the model is
for its part of great interest to better characterize the tumor [22]. The combination of both
gives access to a fully personalized tool, initialized from clinical imaging data and allowing
us to anticipate the spatial–temporal growth of gliomas. Such a tool could, for example,
be of considerable interest for dose fractionation optimization in radiotherapy using a
reinforcement learning approach, as used in [53]. Furthermore, as it only depends on post-
processed data (binary segmentations and a DTI-derived water diffusion tensor) rather
than raw MR data, the proposed approach may be robustly extended to other scanners
and centers. In addition, the method is by design robust to variations in the time interval
between the two required MR acquisitions since the interval is provided as an input of the
second network for the estimation of the model parameters, which makes it well-adapted
to the clinical reality.

The proposed method was found to provide accurate estimations of the three-dimen-
sional tumor cell distribution from only two imaging contours at a single time point,
with a median voxelwise MAE below 10−2 within the c > 0.01 contour—as evaluated
on 200 synthetic tumors grown over the real brain domain of a test subject not used
for network training. Our method also provided accurate estimates of the individual
diffusion and proliferation parameters of the model from three imaging contours extracted
from two time points for the same test tumors, with median relative errors of 5.86%
and 2.75%, respectively (see Figure 10), and strong concordance (CCC ≥ 0.95) with the
true parameter values (see Figure 11). Furthermore, we showed that the spatio-temporal
evolution of the tumor cell-density distribution at later time points (90 d and 180 d later)
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can be accurately captured from the estimated distribution at imaging time and parameter
values using the reaction-diffusion model. The ASSD between the true and estimated
imaging contours obtained for threshold values of c1 = 0.80 and c2 = 0.16 were indeed
found to be lower than or equal to the pixel spacing (1 mm× 1 mm× 1 mm) in most cases
(see Figure 8). Nevertheless, a loss of accuracy in the estimated tumor cell-density over
simulated time was observed (see Figures 7–9 and Table 3), imputed to the amplification
of errors originating from uncertainties in the estimated model parameter values and
tumor cell-density distribution at imaging time. In particular, artefactual local maxima
in the tumor cell-density distributions predicted by the CNN were found to give rise to
new tumor foci over time. Post-processing steps were introduced to circumvent these
effects (see Section 2.6), but residual artefacts were still observed, resulting in a large
Hausdorff distance though small ASSD values for a few isolated cases (see outliers in
Figure 8a,b). Our approach was also found to be robust to uncertainties in the tumor cell-
density threshold values defining the input imaging contours of both CNNs. Indeed, all
combinations of±10% perturbations on both threshold values used to generate the contours
resulted in an increase in median relative error within reasonable ranges of 14.82–22.39%
and 10.25–17.79% for the diffusivity and proliferation rate, respectively. Finally, we also
demonstrated the applicability of our proposed method to actual MR data of a GBM patient,
for which we were able to reconstruct a tumor cell-density distribution compatible with
the imaging data. Nevertheless, the lack of biopsy samples combined with the multiple
treatments undergone by the patient prevented the validation of the estimated distribution,
which was left for a future prospective study.

Compared to the current state-of-the-art approach in [27], our method appears to
perform at least as well or better in most cases on the model parameter estimation problem,
by comparison of the reported relative errors on the parameter values in [27]. Nevertheless,
both methods were not evaluated on the same synthetic tumor dataset and no open-source
code was available in [27] for further comparison. Besides, once trained, the CNNs used in
this work no longer depend on any arbitrary parameters, as opposed to the method in [27]
for which adequate sparsity level and observation operator weighting need to be selected,
in addition to the many parameters involved in the numerical scheme (Gaussian standard
deviation, coarsening levels, initial solution guesses, tolerance thresholds, termination
criteria, ...) [27,29]. Our method also performs significantly faster: parameter estimation
on a single case is performed within around 0.1 s versus 1000 s for [27], which however
remains largely sufficient for the application in both cases. Furthermore, the proposed
approach allows for absolute parameter estimation, as opposed to [27] which only pro-
vides non-dimensionalized estimates that could not be scaled as the time between tumor
emergence and imaging is actually not known. Consequently, comparison of the estimated
parameter values between tumors or their application to predict tumor evolution over time
using the model are prevented. Nevertheless, contrary to [27], our method requires two
imaging time points to compensate for the ill-posedness of the problem and to allow for
dimensionalized parameter estimation—but in return makes no explicit assumption on
the initial tumor cell distribution. This latter requirement of our approach implies that the
tumor diffusivity and proliferation rate remain constant between the scans—which is in
any case also implicitly assumed between the tumor emergence and the single scan time
for the forward problem described in [27]. As a consequence, our method is expected to be
sensitive to any treatment administered between the scans that would significantly impact
the tumor model parameters (chemotherapy, radiotherapy) or solving domain (surgery).
Finally, as opposed to [27], our method considers a spatially variable tumor cell diffusion
tensor accounting for the preferential migration of tumor cells along white matter tracts,
but is restricted to monofocal tumors in the present form.

As a future work, tumor-induced mass effect should be further integrated into the
reaction-diffusion model since it is known to cause substantial deformations of the brain
parenchyma and distortions of the white matter tracts as the tumor grows, which should
also be taken into account for accurate treatment planning. Such effects have been pre-
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viously considered [6,7], but would introduce additional parameters to be estimated. In
addition, transient brain deformations would hardly be integrated into a regular grid-based
approach such as the finite difference method used in this work without loss of precision. A
finite element formulation over an unstructured mesh could be used instead but would be
much more computationally expensive—hence less suited for the generation of large high-
resolution datasets such as the one described herein. Tumor-induced destruction of the
white matter tracts should also be further considered, as an accurate capture of the original
orientation of the brain fibers within the tumor region is required for the evaluation of the
cell-density distribution and model parameter values using both DCNNs. A solution to this
problem has been previously proposed in [25]—though subject to limitations—in which
symmetry of the brain is exploited to artificially reconstruct the missing brain fibers. More
advanced methods should be investigated in this sense. Necrosis could also be integrated
into the model as proposed in [15,16], which would have avoided the counter-intuitive
correspondence between the hyper-dense (c ∼ 1) region of the estimated tumor cell-density
distribution and the necrotic area visible on MRI in Figure 12. Furthermore, the deep neural
networks presented herein remain little flexible as they would need to be retrained if differ-
ent imaging threshold values were considered, although transfer learning could be used
to benefit from the lower-level features learned herein and avoid retraining the networks
from scratch [54]. Ultimately, the threshold values could be fed to the networks along with
the binary contours, but this would make the problem even more complex and would
therefore require an even larger training dataset. Although real medical imaging data
were used in this work, the verification of our approach still relied on healthy subject data.
Therefore, the underlying hypothesis was made that the reaction-diffusion model defined
by Equation (4)–(6) and used for tumor synthesis is indeed able to accurately capture the
growth of real gliomas, which has never been extensively demonstrated so far to the best of
our knowledge. Validation of our approach on actual glioma patient data should be further
performed, but longitudinal imaging data with stereotactic biopsies of untreated glioma
patients remain scarce. Including the effects of treatments into reaction-diffusion models
has also been proposed previously [4,5,17–19], but again introduces additional parameters,
increasing the complexity of the problem. Alternately, the method could be applied to
large publicly available datasets such as the BRaTS dataset [28]. Whereas ground-truth
cell-density distributions and model parameter values are unknown for such datasets,
indirect validation by investigation of the predictive performance of the estimated model
parameters for tumor bio-markers could still be performed, as attempted in [29].

This work also highlights the added value of DCNNs for the resolution of ill-posed
problems that are hardly solved by classical optimization methods, and provides encourag-
ing results towards the full personalization of reaction-diffusion glioma growth models
from medical imaging data, which has remained unsolved for decades.

5. Conclusions

We proposed a deep learning-based approach to simultaneously address the problems
of estimating the tumor cell-density distribution at diagnosis and parameter values of a
reaction-diffusion glioma growth model from patient magnetic resonance imaging data.
We demonstrated the accuracy of our approach on synthetic tumors grown over actual
brain domains of healthy volunteers. We also showed the applicability of our method on
MR data of a real glioblastoma patient. Our promising results which point towards the full
personalization of glioma reaction-diffusion models may open up tremendous possibilities
in the field.
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[18F]FET [18F]Fluoroethyl-L-tyrosine
ADC Average diffusion coefficient
ASSD Average symmetric surface distance
CCC Lin’s concordance correlation coefficient
(D)CNN (Deep) convolutional neural network
DICOM Digital imaging and communications in medicine
DTI Diffusion tensor imaging
DW Diffusion-weighted
EPI Echo planar imaging
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IDH Isocitrate dehydrogenase
MAE Mean absolute error
MRE Median relative error
MR(I) Magnetic resonance (imaging)
MSE Mean squared error
PDE Partial differential equation
PET Positron emission tomography
ReLU Rectified linear unit
T1Gd T1-weighted sequence with injection of gadolinium-based contrast agent
T2-FLAIR T2-weighted sequence with fluid-attenuated inversion recovery

Appendix A. FSL DTI Data Processing

The DICOM files of both acquisitions—with and without phase-encoding polarity
inversion—were first converted into NIfTI format using dcm2nii.exe available in the MRI-
croGL software (version 1.0.20180623) [55]. The two resulting series of four files with
extensions .bvals, .bvecs, .json, and .nii were then renamed dti_pepolar_0 and dti_pepolar_1,
for the acquisition with and without phase-encode polarity inversion, respectively. An
acquisition parameter file acqparams.txt specifying for each acquisition the phase-encode

https://doi.org/10.5281/zenodo.6563613
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direction and the total readout time was then created and is provided in Listing A1. For GE
scanners, the total readout time tread [s] is given by:

tread =
(
ny facc − 1

)
secho × 10−6 (A1)

where ny is the acquisition matrix size along the phase-encode direction (DICOM tag
(0018,1310)), facc is the total phase acceleration factor given by the product of the ASSET
and ARC factors (DICOM tag (0043,1083), ASSET/ARC), and secho is the effective echo
spacing (DICOM tag (0043,102C)) [µs].

The Linux bash script used for DTI data processing using FSL (version 5.0.9-4) [33]
is provided in Listing A2. Lines 3–5 gather both b = 0 volumes into a single 4D volume
b0_merged.nii.gz. Line 7 executes topup on the merged volume with acquisition parame-
ters in acqparams.txt, which generates files b0_topup.nii.gz (the corrected b = 0 volumes),
topup_results_fieldcoef.nii.gz (the estimated susceptibility field), and topup_results_movpar.

txt (the estimated movement parameters). Line 9 computes the average of the two corrected
volumes in b0_topup.nii.gz and stores it as b0_topup_mean.nii.gz. Line 10 computes a brain
mask for b0_topup_mean.nii.gz using bet [56] and generates files b0_topup_brain_mask.nii.gz

(the computed brain mask) and b0_topup_brain.nii.gz (the masked volume). Lines 12–14 cre-
ate a file specifying for each 3D volume in the 4D volume dti_pepolar_0.nii (one 3D volume
per diffusion direction) the corresponding acquisition parameter line in the acqparams.txt

file. Line 16 runs eddy with the ‘replace outliers’ option --repol on dti_pepolar_0.nii, given
the previously detailed files and generates various result files including the corrected
4D volume dti_pepolar_0_eddy.nii.gz. Line 8 finally runs dtifit with the ‘save tensor’ op-
tion --save_tensor on the distortion-corrected diffusion data dti_pepolar_0_eddy.nii.gz, which
generates the fitted diffusion tensor file dti_pepolar_0_eddy_tensor.nii.gz and various tensor-
derived data.

Listing A1. Acquisition parameter file provided to topup. The first three numbers of each line specify
the phase-encode direction in the image coordinate system for the acquisition with (first line) and
without (second line) phase-encode direction inversion. The last number of each line is the readout
time tread given by Equation (A1).
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Listing A1: Acquisition parameter file provided to topup. The first three numbers of each
line specify the phase-encode direction in the image coordinates system for the acquisition
with (first line) and without (second line) phase-encode direction inversion. The last
number of each line is the readout time tread given by Equation (A1).

1 0 1 0 0.04427
2 0 -1 0 0.04427

Listing A2: Linux bash script for DTI data processing using FSL.
1 #!/bin/bash
2
3 fslroi dti_pepolar_1 b0_pepolar_1 0 1
4 fslroi dti_pepolar_0 b0_pepolar_0 0 1
5 fslmerge -t b0_merged b0_pepolar_1 b0_pepolar_0
6
7 topup --imain=b0_merged --datain=acqparams.txt --config=b02b0.cnf --out=

topup_results --iout=b0_topup
8
9 fslmaths b0_topup -Tmean b0_topup_mean

10 bet b0_topup_mean b0_topup_brain -f 0.25 -m
11
12 idx=""
13 for ((i=1; i<=33; i+=1)); do idx="$idx␣2"; done
14 echo $idx > index.txt
15
16 eddy_openmp --imain=dti_pepolar_0 --mask=b0_topup_brain_mask --acqp=acqparams

.txt --index=index.txt --bvecs=dti_pepolar_0.bvecs --bvals=dti_pepolar_0.
bvals --topup= topup_results --repol --out=dti_pepolar_0_eddy

17
18 dtifit --data=dti_pepolar_0_eddy --out=dti_pepolar_0_eddy --mask=

b0_topup_brain_mask --bvecs=dti_pepolar_0_eddy.eddy_rotated_bvecs --bvals
=dti_pepolar_0.bvals --wls --save_tensor

where ny is the acquisition matrix size along the phase-encode direction (DICOM tag
(0018,1310)), facc is the total phase acceleration factor given by the product of the ASSET
and ARC factors (DICOM tag (0043,1083), ASSET/ARC), and secho is the effective echo
spacing (DICOM tag (0043,102C)) [µs].

The Linux bash script used for DTI data processing using FSL (version 5.0.9-4) [33]
is provided in Listing ??. Lines 3–5 gather both b = 0 volumes into a single 4D volume
b0_merged.nii.gz. Line 7 executes topup on the merged volume with acquisition parame-
ters in acqparams.txt, which generates files b0_topup.nii.gz (the corrected b = 0 volumes),
topup_results_fieldcoef.nii.gz (the estimated susceptibility field), and topup_results_movpar.

txt (the estimated movement parameters). Line 9 computes the average of the two corrected
volumes in b0_topup.nii.gz and stores it as b0_topup_mean.nii.gz. Line 10 computes a brain
mask for b0_topup_mean.nii.gz using bet [56] and generates files b0_topup_brain_mask.nii.gz

(the computed brain mask) and b0_topup_brain.nii.gz (the masked volume). Lines 12–14
create a file specifying for each 3D volume in the 4D volume dti_pepolar_0.nii (one 3D
volume per diffusion direction), the corresponding acquisition parameters line in the
acqparams.txt file. Line 16 runs eddy with the ‘replace outliers’ option --repol on dti_pepolar_0

.nii provided the previously detailed files and generates various result files including the
corrected 4D volume dti_pepolar_0_eddy.nii.gz. Line 8 finally runs dtifit with the ‘save ten-
sor’ option --save_tensor on the distortion-corrected diffusion data dti_pepolar_0_eddy.nii.gz,
which generates the fitted diffusion tensor file dti_pepolar_0_eddy_tensor.nii.gz and various
tensor-derived data.

Appendix B Publicly Available Data

The processed MR data of the 6 healthy volunteers used for this study are publicly
available at https://lisaserver.ulb.ac.be/owncloud/index.php/s/KwEPG65gh1U7xNM.

Listing A2. Linux bash script for DTI data processing using FSL.
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Listing A1: Acquisition parameter file provided to topup. The first three numbers of each
line specify the phase-encode direction in the image coordinates system for the acquisition
with (first line) and without (second line) phase-encode direction inversion. The last
number of each line is the readout time tread given by Equation (A1).

1 0 1 0 0.04427
2 0 -1 0 0.04427

Listing A2: Linux bash script for DTI data processing using FSL.
1 #!/bin/bash
2
3 fslroi dti_pepolar_1 b0_pepolar_1 0 1
4 fslroi dti_pepolar_0 b0_pepolar_0 0 1
5 fslmerge -t b0_merged b0_pepolar_1 b0_pepolar_0
6
7 topup --imain=b0_merged --datain=acqparams.txt --config=b02b0.cnf --out=

topup_results --iout=b0_topup
8
9 fslmaths b0_topup -Tmean b0_topup_mean

10 bet b0_topup_mean b0_topup_brain -f 0.25 -m
11
12 idx=""
13 for ((i=1; i<=33; i+=1)); do idx="$idx␣2"; done
14 echo $idx > index.txt
15
16 eddy_openmp --imain=dti_pepolar_0 --mask=b0_topup_brain_mask --acqp=acqparams

.txt --index=index.txt --bvecs=dti_pepolar_0.bvecs --bvals=dti_pepolar_0.
bvals --topup= topup_results --repol --out=dti_pepolar_0_eddy

17
18 dtifit --data=dti_pepolar_0_eddy --out=dti_pepolar_0_eddy --mask=

b0_topup_brain_mask --bvecs=dti_pepolar_0_eddy.eddy_rotated_bvecs --bvals
=dti_pepolar_0.bvals --wls --save_tensor

where ny is the acquisition matrix size along the phase-encode direction (DICOM tag
(0018,1310)), facc is the total phase acceleration factor given by the product of the ASSET
and ARC factors (DICOM tag (0043,1083), ASSET/ARC), and secho is the effective echo
spacing (DICOM tag (0043,102C)) [µs].

The Linux bash script used for DTI data processing using FSL (version 5.0.9-4) [33]
is provided in Listing ??. Lines 3–5 gather both b = 0 volumes into a single 4D volume
b0_merged.nii.gz. Line 7 executes topup on the merged volume with acquisition parame-
ters in acqparams.txt, which generates files b0_topup.nii.gz (the corrected b = 0 volumes),
topup_results_fieldcoef.nii.gz (the estimated susceptibility field), and topup_results_movpar.

txt (the estimated movement parameters). Line 9 computes the average of the two corrected
volumes in b0_topup.nii.gz and stores it as b0_topup_mean.nii.gz. Line 10 computes a brain
mask for b0_topup_mean.nii.gz using bet [56] and generates files b0_topup_brain_mask.nii.gz

(the computed brain mask) and b0_topup_brain.nii.gz (the masked volume). Lines 12–14
create a file specifying for each 3D volume in the 4D volume dti_pepolar_0.nii (one 3D
volume per diffusion direction), the corresponding acquisition parameters line in the
acqparams.txt file. Line 16 runs eddy with the ‘replace outliers’ option --repol on dti_pepolar_0

.nii provided the previously detailed files and generates various result files including the
corrected 4D volume dti_pepolar_0_eddy.nii.gz. Line 8 finally runs dtifit with the ‘save ten-
sor’ option --save_tensor on the distortion-corrected diffusion data dti_pepolar_0_eddy.nii.gz,
which generates the fitted diffusion tensor file dti_pepolar_0_eddy_tensor.nii.gz and various
tensor-derived data.

Appendix B Publicly Available Data

The processed MR data of the 6 healthy volunteers used for this study are publicly
available at https://lisaserver.ulb.ac.be/owncloud/index.php/s/KwEPG65gh1U7xNM.
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Appendix B. Publicly Available Data

The processed MR data of the six healthy volunteers used for this study are pub-
licly available at https://doi.org/10.5281/zenodo.6563613 (accessed on 17 May 2022).
For each volunteer, a directory is provided containing the brain_domain.mha, unit_diffusion
_tensor.mha, and unit_proliferation_rate.mha files in MetaImage format. brain_domain.mha con-
tains the segmented brain map as derived in Section 2.3.4, stored as an unsigned short 3D
image. Values 0, 2, 3, and 4 correspond to background, cerebrospinal fluid, gray matter,
and white matter voxels, respectively. unit_diffusion_tensor.mha contains the six indepen-
dent components dxx, dxy, dxz, dyy, dyz, and dzz of the unit tumor cell diffusion tensor
as derived in Section 2.3.6, stored as a double 4D image. unit_proliferation_rate.mha con-
tains a dummy proliferation rate field stored as a double 3D image with value 1 for white
and gray matter voxels and 0 elsewhere, to be scaled by the proliferation rate ρ and fed
to the tgstkFiniteDifferenceReactionDiffusionTumourGrowthFilter (see https://cormarte.github.
io/tgstk/html/classtgstk_finite_difference_reaction_diffusion_tumour_growth_filter.html,
accessed on 17 May 2022).

Appendix C. Additional Results

Additional examples of true and estimated tumor cell-density distributions from the
test set for times t2−4 obtained as described in Section 2.6 are depicted in Figures A1 and A2,
along with the corresponding absolute error maps and imaging contours.
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Figure A1. Example of true (1st row) and estimated (2nd row) three-dimensional tumor cell-density
distributions at times t2−4 (1st to 3rd column, axial slices) along with the corresponding absolute error
maps (3rd row) for a test tumor (d = 46.20 mm2 year−1, ρ = 12.92 year−1, t1 = 130 d, t2 = 268 d).
The imaging contours for threshold values c1 = 0.80 and c2 = 0.16 superimposed to the T1 and T2
FLAIR image are depicted in the 4th and 5th rows, respectively. The blue, red, and green segments
respectively correspond to the target, prediction, and overlapping contour voxels. MAE: mean
absolute error for c > 0.01, dH : Hausdorff distance, dS: average symmetric surface distance.
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Figure A2. Example of true (1st row) and estimated (2nd row) three-dimensional tumor cell-density
distributions at times t2−4 (1st to 3rd column, axial slices) along with the corresponding absolute
error maps (3rd row) for a test tumor (d = 9.52 mm2 year−1, ρ = 25.77 year−1, t1 = 94 d, t2 = 225 d).
The imaging contours for threshold values c1 = 0.80 and c2 = 0.16 superimposed to the T1 and T2
FLAIR image are depicted in the 4th and 5th rows, respectively. The blue, red, and green segments
correspond to the target, prediction, and overlapping contour voxels, respectively. MAE: mean
absolute error for c > 0.01, dH : Hausdorff distance, dS: average symmetric surface distance.
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