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Abstract

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that re-emerged in 2004 and has caused massive outbreaks in
recent years. The lack of a licensed vaccine or treatment options emphasize the need to obtain more insight into the viral
life cycle and CHIKV-host interactions. Infectious cDNA clones are important tools for such studies, and for mechanism of
action studies on antiviral compounds. Existing CHIKV cDNA clones are based on a single genome from an individual clinical
isolate, which is expected to have evolved specific characteristics in response to the host environment, and possibly also
during subsequent cell culture passaging. To obtain a virus expected to have the general characteristics of the recent E1-
226V CHIKV isolates, we have constructed a new CHIKV full-length cDNA clone, CHIKV LS3, based on the consensus
sequence of their aligned genomes. Here we report the characterization of this synthetic virus and a green fluorescent
protein-expressing variant (CHIKV LS3-GFP). Their characteristics were compared to those of natural strain ITA07-RA1, which
was isolated during the 2007 outbreak in Italy. In cell culture the synthetic viruses displayed phenotypes comparable to the
natural isolate, and in a mouse model they caused lethal infections that were indistinguishable from infections with a
natural strain. Compared to ITA07-RA1 and clinical isolate NL10/152, the synthetic viruses displayed similar sensitivities to
several antiviral compounds. 3-deaza-adenosine was identified as a new inhibitor of CHIKV replication. Cyclosporin A had no
effect on CHIKV replication, suggesting that cyclophilins -opposite to what was found for other +RNA viruses- do not play an
essential role in CHIKV replication. The characterization of the consensus sequence-based synthetic viruses and their
comparison to natural isolates demonstrated that CHIKV LS3 and LS3-GFP are suitable and representative tools to study
CHIKV-host interactions, screen for antiviral compounds and unravel their mode of action.
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Introduction

Chikungunya virus (CHIKV) re-emerged in 2004 and has

caused unprecedented outbreaks in Asia and Africa since 2005.

The estimated number of cases exceeds 2 million and over a

thousand infected travelers have returned to Europe and the USA

since 2006 [1,2]. CHIKV generally causes a fever that resolves

within several days, a maculopapular rash, and a characteristic

arthralgia that can be extremely painful and may persist for

months. During the recent outbreaks also more severe clinical

manifestations have been reported occasionally, such as neurolog-

ical complications and even deaths, usually in the elderly, patients

with underlying conditions, and newborns [3,4]. A licensed

vaccine or specific antiviral therapy are currently not available.

CHIKV is an alphavirus with an 11.7 kb positive-stranded

RNA genome that contains two open reading frames (ORFs). The

59 ORF encodes the nonstructural polyproteins P123 and P1234.

The latter results from translational read-through of an opal

termination codon that is present at the end of the nonstructural

protein (nsP) 3 coding sequence of most CHIKV isolates.

Assuming that CHIKV follows the typical alphavirus life cycle,

proteolytic processing of the nonstructural polyproteins by the

protease domain in nsP2 will ultimately lead to the release of nsP1,

nsP2, nsP3, and nsP4. These nsPs and their precursors possess a

variety of functions and the enzymatic activities, including

protease, helicase, methyltransferase, and RNA-dependent RNA

polymerase (RdRp) activity that drive CHIKV replication [5]. In

addition to replication of its genomic RNA, CHIKV also

transcribes a subgenomic (sg) RNA encoding a precursor

polyprotein that is processed by viral and cellular proteases into

the structural proteins C, E3, E2, 6K and E1. CHIKV nsPs will -

presumably together with host factors - assemble into replication

and transcription complexes (RTCs) that associate with membrane

structures derived from the plasma membrane and/or endosomes,

as observed for other alphaviruses [5–7].

The CHIKV strains that emerged during the 2005–2006

outbreaks had acquired a mutation (A226V) in the E1 envelope

glycoprotein, which facilitated transmission of the virus via a new

vector, the Asian tiger mosquito Aedes albopictus, and consequently

dramatically increased the epidemic potential of CHIKV [8,9].

Later studies suggested that recent Indian and Indian Ocean

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71047



epidemics have emerged separately as the result of at least three

independent events, and that convergent evolution of East-

Central-South African lineage strains in different geographical

regions ultimately led to the emergence of strains with the A226V

substitution in E1 [10–13]. More recently, other amino acid

positions and epistatic interactions were also shown to play an

important role in the emergence of these new CHIKV variants,

which are now even replacing endemic strains that have been

circulating in Asia for decades [14]. Aedes albopictus also thrives in

more temperate climates and its geographical distribution has

rapidly expanded. Over the past decades, parts of southern

Europe and large areas of the USA have been invaded by this

mosquito, providing imported cases of CHIKV with a competent

mosquito vector, thus paving the road for outbreaks in non-

endemic-areas such as the USA and Europe. Indeed, autochtho-

nous infections have been reported from Italy in 2007 and France

in 2010 [15,16]. The recent and ongoing CHIKV outbreaks are

characterized by their rapid geographical spread, high numbers of

infected people and high morbidity, emphasizing the need to gain

more insight into the replicative cycle of this important human

pathogen.

Infectious cDNA clones of viruses have become invaluable tools

that allow reverse genetics studies to elucidate the contribution of

specific amino acids or RNA structures to viraemia, virulence,

antigenicity, replication kinetics, interactions with host factors,

adaptation to new vectors, and many other aspects of the viral life

cycle. The use of cDNA clones is also instrumental in mechanism

of action studies to pinpoint the viral target of antiviral compounds

by selecting for and genotyping compound-resistant viruses,

followed by reverse engineering of the identified mutations to

assess their individual phenotypic contribution to resistance.

Finally, the generation of cDNA clones of reporter viruses, like

those expressing green fluorescent protein (GFP), greatly facilitates

high throughput screening, e.g. for antiviral compounds or host

factors that affect replication.

Several CHIKV cDNA clones have been constructed in the

past, which - except for the West African lineage strain 37997

strain that was isolated from a mosquito - were all based on clinical

isolates from infected humans [17–23]. Each natural isolate is

expected to have evolved its own specific characteristics in terms of

sequence, virulence and virus-host interactions as a result of

specific selective pressures within the infected host (tissue) and

possibly also during subsequent passaging in cell culture. Intrahost

evolution and quasispecies diversity is expected to be substantial,

especially compared to the relatively low level of interhost

variation when the consensus sequences of CHIKV genomes

isolated from different hosts are aligned. The low level of interhost

variation is a typical trait of arboviruses, due to evolutionary

constraints imposed by the alternating replication in vertebrate

and arthropod hosts. A recent study on the distantly related Ross

River virus indeed reported a high level of intrahost diversity [24].

The existing CHIKV molecular clones can be considered to

represent a single individual genome (or fragments of several

individual genomes) out of the whole spectrum of viruses present

in the CHIKV quasispecies population that has been shaped by

intrahost evolution and probably a complex set of environmental

factors. In contrast, most deposited CHIKV genome sequences

represent the consensus (or master sequence) of a viral quasispecies

population.

To obtain a virus that - in terms of virulence, sensitivity to

antiviral compounds, and CHIKV-host interactions - is expected

to have the general characteristics of the E1-226V CHIKV strains

that were circulating during the 2005–2009 outbreaks, we have

constructed a completely synthetic CHIKV cDNA clone based on

the consensus sequence of the aligned genomes of these recent

isolates. This new infectious clone, CHIKV LS3 (Leiden Synthetic

3), and a variant that expresses the eGFP reporter gene under

control of a duplicated subgenomic promoter (CHIKV LS3-GFP),

were created by custom DNA synthesis.

The properties and replicative cycle of the new synthetic viruses

were characterized in detail, and comparison with a field isolate

(ITA07-RA1) from the 2007 CHIKV outbreak in Italy demon-

strated that they have similar characteristics. The sensitivity of LS3

to a number of antiviral compounds was compared to those of

ITA07-RA1 and clinical isolate NL10/152. All compounds tested

had a similar antiviral activity against LS3 and the natural isolates.

These experiments also identified 3-deaza-adenosine as a novel

inhibitor of CHIKV replication. This study describes a detailed

characterization of the CHIKV replication cycle at the molecular

level and demonstrates that a new synthetic infectious clone-

derived virus is a useful and representative tool to gain more

insight into the replicative cycle of CHIKV, its interactions with

the host, and the mode of action of antiviral compounds, which

should aid in the development of antiviral strategies against this

important human pathogen.

Materials and Methods

Cells and Viruses
Vero E6, Ae. albopictus C6/36 [25] and 293/ACE2 cells [26]

were maintained in Dulbecco’s modified Eagle’s medium

(DMEM; Lonza), supplemented with 8% fetal calf serum (FCS;

PAA), 2 mM L-glutamine, 100 IU/ml of penicillin and 100 mg/ml

of streptomycin. 293/ACE2 cells were grown in the presence of

12 mg/ml blasticidin (PAA) and C6/36 medium was supplement-

ed with non-essential amino acids (Lonza). BHK-21 cells were

cultured in Glasgow’s Modified Eagles Medium (Gibco) supple-

mented with 7.5% FCS, 10 mM HEPES pH 7.4, 8% tryptose

phosphate broth (Gibco), and antibiotics. The mammalian cell

lines were grown at 37uC and C6/36 cells at 30uC in 5% CO2.

CHIKV strain ITA07-RA1 (GenBank accession number

EU244823) was isolated from Ae. albopictus during the 2007

outbreak in Ravenna, Italy, and was passaged twice on BHK-21

cells. CHIKV NL10/152 (GenBank KC862329) was isolated at

the Erasmus Medical Center in Rotterdam from the serum of an

infected traveler that returned from Indonesia and was passaged

twice on Vero cells. Working stocks of CHIKV were routinely

produced in Vero E6 cells at 37uC, typically yielding titers of

,107 PFU/ml. Infections were performed in Eagle’s minimal

essential medium (EMEM; Lonza) with 25 mM HEPES (Lonza)

supplemented with 2% FCS, L-glutamine, and antibiotics. After

1 h, the inoculum was replaced with fresh culture medium. All

procedures with live CHIKV were performed in a biosafety level 3

facility at the Leiden University Medical Center.

Construction of Synthetic CHIKV Full-length cDNA Clones
A cDNA clone of the synthetic CHIKV strain LS3-GFP, which

contains a duplicated subgenomic promoter and expresses the

eGFP reporter gene, was designed in silico as described in the

results section. Three DNA fragments together forming a cDNA

copy of CHIKV LS3-GFP were chemically synthesized (GeneArt,

Germany). Using standard cloning techniques, these fragments

were assembled and cloned into the AscI-NotI sites of vector

pUC19AN, a pUC19-derived plasmid in which the original

polylinker was replaced by one with AscI-NcoI-EcoRV-XhoI-NotI

sites. The resulting plasmid (pCHIKV-LS3-GFP) contains the

genomic cDNA of CHIKV LS3-GFP directly downstream of a

phi2.5 promoter and followed by a unique SpeI linearization site

Characterization of Synthetic Chikungunya Viruses
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for DNA linearization prior to in vitro transcription. The ‘wild type’

synthetic pCHIKV-LS3 construct was made by deleting the

920 bp eGFP-containing SacI fragment from pCHIKV-LS3-GFP

(Fig. 1). A third variant with a duplicated subgenomic promoter

and a multiple cloning site behind subgenomic promoter 1

(pCHIKV-LS3-MCS), which allows the introduction of e.g. a

reporter gene, was generated by removing the 737 bp AsiSI-PacI

fragment from pCHIKV-LS3-GFP. The constructs were verified

by sequencing.

In vitro Transcription and RNA Transfection
RNA was transcribed from plasmids with the phi2.5 promoter

[27] using the AmpliScribe T7 high yield transcription kit

(Epicenter), the m7GpppA RNA cap structure analog (NEB) and

0.7 mg of template DNA that had been linearized with SpeI. After a

3-h reaction at 37uC, template DNA was digested with DnaseI and

RNA was purified by precipitation with 7.5 M LiCl (Ambion).

The concentration of in vitro transcribed RNA was determined

with a NanoDrop spectrophotometer (Thermo Scientific) and its

integrity was checked by agarose gel electrophoresis. BHK-21 cells

(26106) were electroporated with 1 mg of RNA using program T-

20 of the Amaxa Nucleofector and Kit T (Lonza) according to the

manufacturer’s instructions. Electroporated cells were plated in 6-

well clusters and incubated at 37uC in the same medium used for

CHIKV infection experiments.

Sequencing of CHIKV Genomes
CHIKV RNA was isolated from virions using the QIAamp

Viral RNA mini kit. Four overlapping amplicons were generated

by a two-step reverse transcriptase (RT) PCR. In the first step

cDNA was synthesized using RevertAid H Minus Reverse

transcriptase (Fermentas) and primers AT-39 (GACTGCA-

GATGCCCGCCATT), AT-41 (CGCTCGGTCCAGG-

CAACTCT), AT-43 (CGTGGTGTTTGCCAACAGGC), or

AT-52 (CGCCGTTTTTTTTTTTTTTTTTTTTTTTTT). In

the second step 4 PCR products were generated using combina-

tions of primers AT-38 (ATGGCTGCGTGAGACACACG) and

AT-39, AT-40 (TGCACCCAAGTGTACCACAA) and AT-41,

AT-42 (CAGGAGAGTGCATCCATGGC) and AT-43, or AT-

44 (GAATGCGCGCAGATACCCGT) and AT-52. The resulting

RT-PCR products were purified and directly sequenced (50 ng

template) using the BigDye Terminator Cycle Sequencing Kit v1.1

(Applied Biosystems) and a 3130 Genetic Analyzer automatic

sequencer (Applied Biosystems). PCR conditions and primer

sequences are available upon request.

Virus Titration and Infectious Center Assay
Viral titers were determined by plaque assay on Vero E6 cells.

Six-well clusters containing confluent monolayers of Vero E6 cells

were incubated with 0.5-ml volumes of 10-fold serial dilutions of

CHIKV-containing samples. After a 1-h incubation at 37uC, the

inoculum was replaced with 2 ml of DMEM containing 1.2%

Avicel RC-581 (FMC BioPolymer), 2% FCS, 25 mM HEPES,

and antibiotics. After a 66-h incubation at 36uC, monolayers were

fixed with 3.7% formaldehyde in PBS and plaques were visualized

by crystal violet staining. For infectious center assays 10-fold serial

dilutions of electroporated cells were added to 6-well clusters

already containing a monolayer of 16106 BHK-21 cells per well.

After a 1-h incubation at 37uC, a DMEM/Avicel overlay was

applied and cells were incubated at 37uC for 48 h. Plaques were

visualized as described above.

RNA Isolation, Denaturing Agarose Electrophoresis and
in-gel Hybridization

Total RNA was isolated from 76105 cells by lysis in 0.5 ml of

20 mM Tris-HCl (pH 7.4), 100 mM LiCl, 2 mM EDTA, 5 mM

DTT, 5% (w/v) lithium dodecyl sulfate, and 100 mg/ml proteinase

K. After acid phenol (Ambion) extraction, RNA was precipitated

with isopropanol, washed with 75% ethanol, and dissolved in

1 mM sodium citrate (pH 6.4). Samples containing RNA from

4.76104 cells were mixed with 3 volumes of 67% formamide, 23%

formaldehyde, 6.7% glycerol, 13 mM MOPS (pH 7.2), 6.7 mM

NaAc, 2.7 mM EDTA, 0.07% SDS, and 0.03% bromophenol

blue. After denaturation for 15 min at 75uC, RNA was separated

in 1.5% denaturing formaldehyde-agarose gels using the MOPS

buffer system as described [28]. RNA molecules were detected by

direct hybridization of the dried gel with 32P-labeled oligonucle-

otides essentially as described previously [29]. Positive-stranded

genomic and subgenomic CHIKV RNAs were visualized with

probe CHIKV-hyb4 (59-TGTGGGTTCGGAGAATCGTG-

GAAGAGTT-39) that is complementary to the 39 end of the

genome. Negative-stranded RNA was detected with probe

CHIKV-hyb2 (59-AACCCATCATGGATCCTGTGTACGTG-

GA-39) that is complementary to the 39 end of the minus strand.

18S ribosomal RNA (loading control) was detected with the

oligonucleotide probe 59-ATGCCCCCGGCCGTCCCTCT-39.

Probes (10 pmol) were labeled with 10 mCi [c-32P]ATP (Perki-

nElmer) in a 1h reaction using 10 U of T4 polynucleotide kinase

(Invitrogen) in 10 ml of the supplied forward reaction buffer

(Invitrogen). Prehybridization (1 h) and hybridization (overnight)

were done at 55uC in 56SSPE (0.9 M NaCl, 50 mM NaH2PO4,

5 mM EDTA, pH 7.4), 56Denhardt’s solution, 0.05% SDS, and

Figure 1. Schematic overview of the synthetic infectious clone pCHIKV-LS3-GFP. The ‘wild type’ full-length clone pCHIKV-LS3, which lacks
the eGFP reporter gene, was generated by deleting the SacI fragment; the variant pCHIKV-LS3-MCS, containing a multiple cloning site (MCS)
preceded by subgenomic promoter 1, was generated by removing the AsiSI-PacI fragment.
doi:10.1371/journal.pone.0071047.g001
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0.1 mg/ml homomix I. Hybridized gels were washed twice in 56
SSPE with 0.05% SDS before they were exposed to Storage

Phosphor screens. After scanning with a Typhoon-9410 scanner

(GE Healthcare), quantification of RNA levels was done with

Quantity One v4.5.1 (Biorad) and corrections for loading

variations were made based on the quantity of 18S ribosomal

RNA in the same lane. The results of two or three independent

experiments were quantified (one representative experiment is

shown in figures).

Western Blot Analysis
Total protein samples were prepared by lysing 76105 cells in

0.5 ml of 46Laemmli sample buffer (100 mM Tris-HCl, pH 6.8,

40% glycerol, 8% SDS, 40 mM DTT, 0,04 mg/ml bromophenol

blue). Proteins were separated by SDS-PAGE in 12% polyacryl-

amide gels and were transferred to Hybond-LFP membranes (GE

Healthcare) by semi-dry blotting. After blocking with 1% casein

(Sigma) in PBS with 0.1% Tween-20 (PBST), membranes were

incubated overnight with rabbit antisera against CHIKV nsP1

(raised using the peptide EVEPRQVTPNDHAN), nsP4 (raised

using the peptide ASSRSNFEKLRGPV) or E2 [30] in PBST with

0.5% casein. Mouse monoclonal antibodies against b-actin

(Sigma), or the transferrin receptor (Zymed) were used for

detection of loading controls. Biotin-conjugated swine-a-rabbit

(DAKO) or goat-a-mouse (DAKO), and Cy3-conjugated mouse-

a-biotin (Jackson) were used for fluorescent detection of the

primary antibodies with a Typhoon-9410 scanner (GE Health-

care).

Metabolic Labeling with 3H-uridine
At various time points post infection approximately 26105

CHIKV-infected or mock-infected 293/ACE2 cells in 12-well

clusters were incubated with 40 mCi of 3H-uridine in medium and

incorporation was allowed to proceed for 60 minutes at 37uC.

Total RNA was isolated and analyzed in a denaturing agarose gel

as described above. For fluorographic detection of 3H-labeled

RNA, the gel was soaked in methanol for 1 hour (one change) and

then incubated with 3% 2,5-diphenyloxazole in methanol for at

least 3 hours. After incubation in milliQ for 30 minutes, the gel

was dried and a Fuji RX film was placed on top. Films were

developed after a 1–4 day exposure at 280uC and scanned with a

Biorad GS-800 densitometer. To check equal sample loading, the

gel was hybridized with a 32P-labeled 18S ribosomal RNA-specific

probe as described above. In addition, incorporation of 3H-uridine

into RNA was quantified by analyzing 2-ml samples of isolated

total RNA with a liquid scintillation counter (Beckman LS

6500 IC). In control samples, cellular transcription was inhibited

by adding Actinomycin D (Sigma) to a final concentration of

5 mg/ml.

Metabolic Labeling of Proteins with 35S-methionine and
35S-cysteine

At various time points post infection approximately 26105

CHIKV-infected or mock-infected 293/ACE2 cells in 12-well

clusters were starved in DMEM lacking L-methionine and L-

cysteine (Invitrogen) for 30 min., and subsequently incubated with

44 mCi EasyTag EXPRESS 35S protein labeling mix (PerkinEl-

mer) for 30 min. Total protein samples were analyzed by SDS-

PAGE as described above. Gels were stained with Coomassie to

check equal sample loading and 35S-labeled proteins were detected

by drying the gels and exposing them to a Storage Phosphor

screen, which was scanned 1–2 days later with a Typhoon-9410

scanner (GE Healthcare).

Indirect Immunofluorescence Microscopy
CHIKV- or mock-infected Vero E6 cells grown on coverslips

were fixed with 3% paraformaldehyde in PBS. After quenching

with 10 mM glycine in PBS, cells were permeabilized with 0.1%

Triton in PBS for 10 min. and coverslips were incubated with

primary antibodies diluted in PBS with 5% FCS for 1 h. Double-

stranded RNA was detected with a 1:200 dilution of mouse

monoclonal antibody J2 (English & Scientific Consulting). CHIKV

E2 was visualized with a 1:8000 dilution of a polyclonal rabbit

antiserum [30]. Detection of primary antibodies was done with

donkey-a-mouse-Cy3, goat-a-rabbit-Cy3 or goat-a-rabbit-

Alexa488 (1:500; Jackson). Nuclei were stained with Hoechst

33342. The coverslips were mounted with Prolong (Invitrogen)

and analyzed using an Axioskop2 Mot Plus fluorescence micro-

scope with Axiocam HRc camera and AxioVision software (Zeiss).

Virus Neutralization Assay
Mouse monoclonal antibodies raised against CHIKV particles

of strain ITA07-RA1 (IZSLER, Brescia, Italy) were heat-

inactivated for 30 min. at 56uC. Two-fold serial dilutions of the

neutralizing monoclonal antibody 1H7 and non-neutralizing

control antibody 3H9 [31] were incubated with an equal volume

of medium containing 100 PFU of CHIKV. These mixtures were

incubated for 60 min. at 37uC and transferred to 96-well clusters

containing 26104 Vero E6 cells per well. After incubation at 37uC
for 2 days, the wells were fixed with 3.7% formaldehyde and CPE

was detected by staining with crystal violet.

Antiviral Compound Assays
Chloroquine, 6-aza-uridine and ribavirin were dissolved in PBS.

Cyclosporin A and 3-deaza-adenosine were dissolved in DMSO.

Mycophenolic acid was dissolved in ethanol. All compounds were

obtained from Sigma. For CPE reduction assays, 96-well clusters

with ,16104 Vero E6 cells/well were incubated with 50 PFU of

virus per well, corresponding to a multiplicity of infection (MOI) of

0.005, and 2-fold serial dilutions of the compound in medium.

Wells without cells, uninfected cells, infected untreated cells and

infected cells treated with solvent alone were included as controls.

Four days post-infection cell viability was assessed using the

CellTiter 96H AQueous Non-Radioactive Cell Proliferation Assay

(Promega). CPE reduction experiments with ribavirin were done

with BHK-21 cells in a similar way, except that viability was

assessed 2 days post infection. For eGFP reporter gene assays,

,16104 Vero E6 cells/well in black 96-well plates were infected

with CHIKV LS3-GFP at an MOI of 0.05. After a 42-h

incubation in medium containing the compound, the cells were

fixed with 3% paraformaldehyde in PBS. eGFP expression was

quantified using a Berthold Mithras LB 940 plate reader, with

excitation and emission wavelengths of 485 and 535 nm,

respectively. The fluorescence in wells containing mock-infected

cells was used to correct for background signal. IC50 and CC50

values were calculated with GraphPad Prism 5 using the nonlinear

regression model.

Mouse Experiments
All animal experiments described in this paper were carried out

in the BSL3 facilities of the Erasmus Medical Center in

accordance with the Dutch guidelines for animal experimentation

and were approved by the institute’s independent animal ethics

committee. Twelve-day old C57BL/6 mice were injected intra-

peritoneally with 100 TCID50 of CHIKV S27, CHIKV LS3 or

CHIKV LS3-GFP. After the challenge the mice were monitored

daily for signs of illness or death. The infection was considered
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lethal when the animals reached humane end-points and needed

to be euthanized. Viral RNA was extracted from brain samples

using the automated MagnaPure method (Total nucleic acid

isolation kit, Roche Diagnostics, the Netherlands) according to the

manufacturer’s instructions, and quantified using a one-step RT-

PCR TaqMan protocol (EZ-kit, Applied Biosystems) and an ABI

PRISM 7500 detection instrument. The primers and probe used

for CHIKV RNA quantification were essentially as described [32]

except that probe Fam-CCAATGTCTTCAGCCTGGA-

CACCTTT-Tamra was used. Dilutions of virus suspensions of

known titer were included to make a calibration curve, which was

used to express results as TCID50 equivalents per gram of brain

tissue.

Ethics Statement
All animal experiments described in this paper were carried out

in the BSL3 facilities of the Erasmus Medical Center in

accordance with the Dutch guidelines for animal experimentation.

A Dutch Government-approved and independent animal exper-

imentation ethical review committee (Stichting DEC Consult)

approved the animal studies (permit nr. EMC2838/122-12-29).

Nucleotide Sequence Accession Numbers
The GenBank accession numbers for the full-length cDNA

clones pCHIKV-LS3, pCHIKV-LS3-GFP and pCHIKV-LS3-

MCS are JX911334, JX911335, and JX911336 respectively. The

Genbank accession numbers for the genomic RNA sequences of

CHIKV LS3, LS3-GFP, LCS3-MCS and NL10/152 are

KC149888, KC149887, KC149889, and KC862329, respectively.

Results

In silico Design and Construction of Synthetic CHIKV Full-
length cDNA Clones

The complete genomes of the 13 CHIKV strains carrying the

E1-A226V mutation (Table 1) that were available in GenBank at

the time of in silico design (November 2009) were aligned using

MAFFT [33] and the resulting consensus sequence formed the

basis for the synthetic full-length cDNA clones. A 40 nucleotide

polyA tail was added to the 39 end of the consensus sequence and

an A7435G point mutation was introduced to create a

translationally silent SacI restriction site required for cloning.

The virus encoded by the resulting sequence was termed CHIKV

LS3 (GenBank accession KC149888). Variants containing a

duplicated subgenomic promoter and a multiple cloning site

(CHIKV LS3-MCS; GenBank KC149889) or an eGFP reporter

gene (CHIKV LS3-GFP; GenBank KC149887) were also

designed. The eGFP reporter gene was placed under control of

the native subgenomic promoter and upstream of a second

subgenomic promoter that drives expression of the viral structural

polyprotein, as this configuration was previously reported to result

in a more stable reporter gene expression [18]. The CHIKV

cDNAs were placed downstream of a phi2.5 T7 promoter, and a

unique SpeI site for linearization prior to in vitro transcription

directly followed the polyA tail. The phi2.5 promoter was used

because the 59 ends of capped transcripts generated from this

promoter with T7 polymerase and the m7GpppA cap analog are

identical to the 59 end of the genomes of naturally occurring

CHIKV strains. In contrast, capped RNAs generated by in vitro

transcription from the frequently used SP6 promoter will contain

m7GpppG at their 59 terminus, i.e. will contain an additional 59-

terminal G residue. However, existing CHIKV cDNA clones that

contain the SP6 promoter also efficiently yield infectious virus and

it is assumed that the additional 59-terminal G residue is removed

during subsequent rounds of replication. In line with this, in vitro

transcribed RNA from pCHIKV-LS2, a variant of plasmid

pCHIKV-LS3 in which the phi2.5 promoter was replaced with

the SP6 promoter also yielded infectious virus.

Plasmid pCHIKV-LS3-GFP, the infectious clone encoding the

eGFP-expressing reporter virus, was created by assembling the

chemically synthesized DNA fragments as described in the

Materials and Methods section. Plasmid pCHIKV-LS3, the

infectious clone encoding the synthetic ‘wild type’ strain CHIKV

LS3, and plasmid pCHIKV-LS3-MCS were generated from

pCHIKV-LS3-GFP by deleting specific restriction fragments, as

described in Materials and Methods (Fig. 1).

In the original alignment, strains DRDE-07 (GenBank

U372006) and D570/06 (GenBank EF012359) shared the highest

sequence similarity with LS3, with 3 amino acid differences

(Table 2). However, a BLAST search performed in March 2013,

three years after the design of CHIKV LS3, and alignment of the

retrieved complete CHIKV genomes revealed that strains IND-

06-AP3 (GenBank EF027134), IND-GJ53 (GenBank FJ000065),

and CHIK31 (GenBank EU564335) share the highest degree of

nucleotide sequence identity with CHIKV LS3 (.99.9%), with

only 5–7 nucleotide differences respectively (table S1). Interest-

ingly, these Indian strains were not included in the original

alignment on which the LS3 sequence was based, as they do not

contain the E1-A226V mutation (Table 1). However, nsP1234 of

LS3 is identical to that of IND-06-AP3. At the amino acid level,

CHIKV LS3 differs at 4 positions from LR2006_OPY1 and at 3

positions from ITA07-RA1 (Table 2).

Growth Kinetics of Synthetic CHIKV Strains and
Comparison to a Natural Isolate

To determine whether infectious virus could be generated from

the synthetic CHIKV clones, in vitro transcribed RNA was

electroporated into BHK-21 cells. Strong eGFP fluorescence was

readily detected 16 h after transfection of CHIKV LS3-GFP

RNA. For CHIKV LS3 and LS3-GFP RNA specific infectivities of

approximately 105 PFU/mg of RNA were found in infectious

center assays, which is similar to what has been found for other

CHIKV cDNA clones [17,18]. Virus titers in cell culture

supernatants 16 h after electroporation, were generally in the

Table 1. CHIKV E1-226V strains that were aligned to produce
the CHIKV LS3 consensus sequence.

CHIKV strain Origin Year GenBank accession

BNI-CHIKV_899 Mauritius 2006 FJ959103.1

D570/06 Mauritius 2006 EF012359.1

LR2006_OPY1 La Reunion 2006 DQ443544.2

TM25 Mauritius 2006 EU564334.1

Wuerzburg 1 Mauritius 2006 EU037962.1

DRDE-07 India 2007 EU372006.1

ITA07-RA1 Italy 2007 EU244823.2

RGCB80/KL07 India 2007 GQ428212.1

RGCB120/KL07 India 2007 GQ428213.1

0810aTw Bangladesh 2008 FJ807898.1

0810bTw Malaysia 2008 FJ807899.1

RGCB355/KL08 India 2008 GQ428214.1

RGCB356/KL08 India 2008 GQ428215.1

doi:10.1371/journal.pone.0071047.t001
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range of 105–106 PFU/ml. This is lower than the peak viral titers

that are obtained during infection experiments, but can be

explained by the early time point of harvesting and the fact that

not all cells were transfected. As expected, electroporation of

BHK-21 cells with uncapped CHIKV RNA did not result in the

release of infectious virus.

To assess the stability of eGFP reporter expression, CHIKV

LS3-GFP was serially passaged (MOI 0.5) in both 293/ACE2 and

Vero E6 cells. Virus harvested during each passage was used to

infect Vero E6 cells at an MOI of 0.2 and immunofluorescence

microscopy revealed that at passage 10, over 95% of the E2-

positive foci still displayed robust eGFP expression. Sequencing of

cDNA obtained by RT-PCR amplification of RNA extracted from

extracellular virions revealed that, after 3 passages on Vero E6

cells, the consensus genome sequence of CHIKV LS3-GFP was

identical to the original in silico designed sequence. These results

demonstrated that the synthetic viruses are viable, genetically

stable, and able to retain stable expression of the reporter gene.

Since we aim to use CHIKV in siRNA screens and proteomics

studies to identify host factors involved in replication, various

human cell lines were evaluated for their ability to support

CHIKV replication. CHIKV LS3-GFP was able to productively

infect HeLa, MRC-5, Huh7, 293, and 293/ACE2 cells (data not

shown). Infection of HeLa and Huh7 cells was not very efficient

and these cells were therefore not used for any further

experiments. 293/ACE2 cells were selected for this study, as they

supported high levels of CHIKV LS3-GFP replication, could be

efficiently transfected with siRNAs, and - unlike regular 293 cells -

adhered well to tissue culture plastics. 293/ACE2 cells stably

express angiotensin-converting enzyme 2 (ACE2), the receptor for

SARS-coronavirus. ACE2 expression is not required for CHIKV

infection, but these cells were chosen because of the aforemen-

tioned advantages and the fact that they have been previously used

in our lab in siRNA screens for host factors that affect corona- and

arterivirus replication ([34]; de Wilde et al. submitted; Wannee

et al., in preparation). Using these cells in similar siRNA screens

with CHIKV and other alphaviruses would allow direct compar-

ison of data sets with those obtained for corona- and arteriviruses,

which could lead to the identification of common (broad spectrum)

pro- and antiviral host factors.

To determine whether the synthetic viruses behave like natural

isolates, their growth kinetics in Vero E6, 293/ACE2, and C6/36

cells were compared to those of ITA07-RA1, which was isolated

during the 2007 CHIKV outbreak in Italy (Fig. 2A–C). The

growth curves of CHIKV LS3 on all three cell lines were found

not to differ significantly from those of ITA07-RA1, with virus

titers reaching a maximum 14–18 h post infection (p.i.). Peak virus

titers on mosquito cells were approximately 1-log higher than

those on mammalian cells. CHIKV LS3-GFP replicated slightly

slower than the other viruses in all three tested cell lines, which is

not unusual for recombinant reporter viruses. eGFP expression

could be detected as early as 6 h p.i. and peaked around 22 h p.i.

The plaque morphology of the synthetic viruses was similar to that

of ITA07-RA1 (Fig. 2D). CHIKV LS3 induced a cytopathic effect

(CPE) indistinguishable from the natural isolate. On Vero E6 cells

early signs of CPE started to appear around 12 h p.i. and CPE was

complete by 24 h p.i. (Fig. 2E).

To study CHIKV-induced transcriptional host shut-off, the

incorporation of 3H-uridine into cellular and viral RNA was

analyzed by metabolic labeling of infected 293/ACE2 cells at

various time points post infection (MOI of 5). A strong reduction

in the incorporation of 3H-uridine into RNA was observed at 10–

12 h p.i. in cells infected with CHIKV LS3 or ITA07, as

determined by liquid scintillation counting of total RNA samples
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(Fig. 3A). Inhibition of cellular transcription with actinomycin D

for 30 min. prior to metabolic labeling at 12 h p.i. revealed the

contribution of viral RNA synthesis to the total signal. Fluoro-

graphic detection of 3H-labeled RNA analyzed in denaturing gels

also showed a decrease in cellular transcription during the course

of the infection, while the synthesis of CHIKV RNA became

clearly detectable by 6 h p.i (Fig. 3B). Transcriptional shut-off

occurred around 10–12 h p.i. and was induced by CHIKV LS3

and ITA07 with similar kinetics, although LS3 seemed to act

slightly faster. To examine CHIKV-induced translational shut-off,

the synthesis of 35S-labeled viral and cellular proteins during the

course of CHIKV LS3 infection was analyzed by metabolic

labeling of infected 293/ACE2 cells with 35S-Met and 35S-Cys

(Fig. 3C). A clear shut-off of host translation was observed 8–9 h

p.i. Beyond 9 h p.i. the bulk of newly produced protein appears to

be of viral origin, likely C, E1, E2 and their precursors (indicated

with * in Fig. 3C). CHIKV ITA07 and LS3 induced translational

Figure 2. Growth kinetics of CHIKV LS3, LS3-GFP and ITA07-RA1 on various cell lines. Growth kinetics of CHIKV on Vero E6 (A), 293/ACE2
(B) and mosquito C6/36 cells (C). Cells were infected at an MOI of 5 and the viral progeny titers in the supernatant were determined at various time
points post infection. (D) Plaque morphology of ITA07, LS3 and LS3-GFP on Vero E6 cells. (E) Induction of CPE by ITA07 (upper panel) and LS3 (lower
panel) on Vero E6 cells at different time points post infection.
doi:10.1371/journal.pone.0071047.g002

Figure 3. Transcriptional and translational shut-off induced by CHIKV. 293/ACE2 cells were infected with CHIKV LS3 or ITA07-RA1 at an MOI
of 5, and at the indicated time points post infection metabolic labeling with 3H-uridine (A, B) or 35S-Cys and 35S-Met (C) was performed to analyze
total RNA and protein synthesis, respectively. (A) Incorporation of 3H-uridine into viral and cellular RNA as measured by liquid scintillation counting of
total RNA samples taken at various time points post infection. (B) 3H-uridine incorporation into viral and cellular RNA during CHIKV LS3 infection as
detected by denaturing gel electrophoresis and fluorography. In control samples (ActD) 5 ug/ml Actinomycin D was added 30 min. prior to
metabolic labeling to inhibit cellular transcription. (C) Synthesis of 35S-labeled viral and cellular proteins during CHIKV LS3 infection. The control lane
labeled CHX contains proteins from cells treated with the translation inhibitor cycloheximide prior to metabolic labeling. CHIKV-specific proteins are
indicated with a *.
doi:10.1371/journal.pone.0071047.g003
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host shut-off in a similar manner (only results obtained with LS3

are shown in Fig. 3C).

Both CHIKV ITA07-RA1 and the synthetic viruses established

non-cytopathic persistent infections in C6/36 mosquito cells. All

characterization experiments have been performed in both 293/

ACE2 and Vero E6 cells, with similar results. For simplicity only

the results for 293/ACE2 cells are shown, except for immunoflu-

orescence experiments, which were done with Vero E6 cells as

they had a more suitable morphology.

Kinetics of RNA Synthesis of CHIKV ITA07-RA1 and the
Synthetic Viruses

The replication cycle of the synthetic viruses and ITA07-RA1

was characterized in more detail to assess whether the synthetic

viruses behaved like their natural counterpart. The kinetics of

RNA synthesis was analyzed by isolating total RNA from 293/

ACE2 cells infected with CHIKV LS3, LS3-GFP, or ITA07-RA1

at various time points post infection. Negative- and positive-

stranded RNAs were detected by hybridization with 32P-labeled

oligonucleotide probes (Fig. 4A). Both negative- and positive-

strand RNAs were readily detected in cells infected with the

various strains starting at 6 h p.i. The negative-strand RNA was

less abundant than the positive strand, it was easily detected

relatively early in infection (Fig. 4A top panel, Fig. 4B), and

appeared to decrease at later time points as has also been observed

for other alphaviruses. This apparent decrease is probably not only

due to degradation of minus strands, but at least partly due to a

hampered detection caused by the large excess of positive-strand

RNA present at late time points. This excess of positive-strand

RNA competes with the radioactively labeled minus-strand

specific probe. In support of this, we observed that mixing RNA

isolated from CHIKV-infected cells at 6 h p.i. with in vitro

transcribed positive-strand RNA reduced the amount of negative

strand that could be detected (data not shown). Furthermore,

when samples taken at 6 and 14 h p.i. were treated with single-

strand-specific RNase A/T1 before hybridization, the negative-

strand levels at the late time point were approximately 70% of that

at 6 h p.i, instead of the approximately 50% in untreated samples

(data not shown). Using a positive-strand-specific probe, both the

49S genomic and 26S sgRNA could be detected, and both RNAs

accumulated until 12 h p.i (Fig. 4A middle panel, Fig. 4C). The

ratio of genomic to sgRNA varied between 1:3.5 and 1:5.5 during

the course of infection, similar to the ratios reported for Semliki

forest virus and SINV [35]. The kinetics of RNA synthesis and

RNA accumulation levels were similar in CHIKV LS3- and

ITA07-RA1-infected cells. In cells infected with CHIKV LS3-

GFP, the additional subgenomic RNA encoding the eGFP

reporter gave rise to an extra band above the 26S RNA band,

and its expression level was calculated to be approximately half of

that of the 26S RNA. The individual levels of the two sgRNAs

expressed by CHIKV LS3-GFP were lower than those of ITA07

or LS3, but their combined abundance was comparable to that of

the viruses expressing a single sgRNA (Fig. 4C).

CHIKV Protein Synthesis and dsRNA Accumulation in
Cells Infected with ITA07-RA1 or the Synthetic Viruses

To monitor viral protein expression, 293/ACE2 cells were

infected with CHIKV LS3, LS3-GFP, or ITA07-RA1 and total

protein was isolated at various time points post infection. These

samples were analyzed by Western blotting with antisera against

the nonstructural proteins nsP1 and nsP4, and the structural

protein E2. Expression of nsP1, E2, and the E3E2 precursor could

be detected as early as 6 h p.i. and the proteins accumulated over

time, reaching a plateau around 12 h p.i. (Fig. 5). The RdRp nsP4

could not be detected in infected cells using a CHIKV nsP4-

specific antiserum capable of detecting the purified bacterially

expressed protein. This was probably due to the low affinity of the

antibody, the low expression level and relative instability of nsP4 in

infected cells, as was also observed for other alphaviruses [36]. In

addition, a quantitative proteomics study on CHIKV-infected cells

also suggested that at 10 h p.i. the amount of nsP4 was at least

200-fold lower than that of nsP1 (Treffers, Tas, de Ru, van Veelen,

Snijder and van Hemert, manuscript in preparation).

Indirect immunofluorescence analysis of Vero E6 cells infected

with CHIKV LS3, LS3-GFP, or ITA07-RA1 at various time

points showed that the localization and expression kinetics of E2

and dsRNA were similar for the natural isolate and the synthetic

viruses (Fig. 6). Double-stranded RNA, which is assumed to be

generated during replication of CHIKV in infected cells [37],

could be detected as early as 4 h p.i. and remained clearly visible

throughout the infection. The dsRNA localized to foci throughout

the cytoplasm. The E2 protein could be detected from 6 h p.i.

onwards with maximum expression reached by 12 h p.i. The E2

protein mainly localized to the plasma membrane of infected cells.

eGFP produced by the reporter virus was visible from 6 h p.i.

onwards, reaching a maximum level around 12 h p.i. (Fig. 6C).

Neutralization of CHIKV LS3 by a Monoclonal Antibody
Raised Against ITA07-RA1

CHIKV LS3 and ITA07-RA1 were compared in a neutraliza-

tion assay using the neutralizing monoclonal antibody 1H7 that

was raised in mice against CHIKV ITA07-RA1 virions, and

appears to recognize a linear epitope in E2 [31]. The non-

neutralizing mAb 3H9 was used as a control. Both the natural

isolate and CHIKV LS3 were neutralized with similar character-

istics by 1H7, while their infectivity was not affected by 3H9

(Fig. 7).

The Synthetic Viruses Cause Lethal Infections in a Mouse
Model

Newborn mice are highly susceptible to CHIKV infection and

they develop symptoms as lethargy, dragging of hind limbs, flaccid

paralysis, and reduced weight gain [38]. 12-day old mice were

injected intraperitoneally with 100 TCID50 of CHIKV LS3, LS3-

GFP or prototype strain S27 as a control. The animals were

euthanized when their humane end points were reached 3 or 4

days post infection and viral RNA levels in brain tissue were

analyzed (Fig. 8). Both synthetic viruses behaved like the natural

isolate in vivo, causing lethal infections with similar kinetics

(Fig. 8A). In addition, the viral titers in the brains of CHIKV

S27-infected mice were similar to those of mice infected with the

synthetic viruses (Fig. 8B).

Sensitivity to Antiviral Compounds
To evaluate their suitability for analyzing the potency and

mechanism of action of antiviral compounds, the sensitivity of

CHIKV LS3 and LS3-GFP to a number of such compounds was

determined and compared to ITA07-RA1. Cyclosporin A, which

through its effect on cellular cyclophilins inhibits the replication of

a variety of viruses, had no specific effect on CHIKV replication,

not even at a (cytotoxic) dose of 32 mM (data not shown). The

compounds 3-deaza-adenosine, 6-aza-uridine, chloroquine, and

mycophenolic acid were tested in CPE reduction assays with Vero

E6 cells infected at an MOI of 0.005 and analyzed 4 days p.i. They

were all found to inhibit CHIKV replication with IC50s in the low

micromolar range and with minimal cytotoxicity (Fig. 9A–D). No
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substantial differences were observed between the IC50 values

calculated for ITA07-RA1, LS3 and LS3-GFP. The four

compounds also clearly reduced eGFP reporter gene expression

in Vero E6 cells infected with CHIKV LS3-GFP (Fig. 9F). Slightly

lower IC50 values were obtained for 6-aza-uridine and chloro-

quine, and a significantly higher IC50 was observed for 3-deaza-

adenosine in this assay, compared to the CPE-based assay. This

might be due to the mode of action of 3-deaza-adenosine and/or

due to differences in experimental set-up compared to the CPE-

based assay (MOI 0.05 vs. 0.005; measurement 42 h p.i. vs. 4 d

p.i). Ribavirin is a known inhibitor of CHIKV replication, but in

our CPE reduction assay with Vero E6 cells it was not very

effective in inhibiting replication of the various strains, as IC50

values of over 400 mM were obtained (Fig. 9E, gray lines). This is

likely due to the inefficient conversion of ribavirin to its active

phosphorylated form in Vero E6 cells [39]. Therefore, we have

also analyzed the effect of ribavirin in a 2-day CPE reduction

assays with BHK-21 cells, which are able to metabolize ribavirin

[40,41] and found IC50s of 15–21 mM for the various strains.

Clinical isolate NL10/152 was also included in the assays and

appeared to be somewhat more sensitive to the antiviral

compounds than LS3 and ITA07-RA1. However, the slower

replication kinetics of this strain made it impossible to directly

compare NL10/152 and LS3 in the same CPE reduction assays,

despite the fact that virus yields and cytopathic effect of NL10/152

and LS3 were comparable (data not shown).

Discussion

The massive CHIKV outbreaks that have been occurring in

Asia and the Indian Ocean region since 2005 are associated with

the emergence of strains with the A226V substitution in the E1

glycoprotein, which allowed their transmission by a novel

mosquito vector, Aedes albopictus [8–13]. These East-Central-South

African lineage-derived strains even appear to be replacing the

Figure 4. Accumulation of negative- and positive-strand CHIKV RNA in infected cells. (A) 293/ACE2 cells were infected with CHIKV LS3,
LS3-GFP or ITA07-RA1 at an MOI of 5, total RNA was isolated at different time points post infection and strand-specific detection was performed with
radioactively labeled oligonucleotides complementary to the 39 end of either negative- (top panel) or positive-strand (middle panel) CHIKV RNA.
Cellular 18S ribosomal RNA was probed as a loading control (lower panel). The positions of genomic RNA, the 26S sgRNA and the second eGFP-
encoding sgRNA are indicated to the right of the middle panel. (B) Plot representing the kinetics of CHIKV negative-strand RNA accumulation, based
on quantification of data from panel A. After correction for variations in sample loading based on the 18S rRNA signal, the relative abundance of the
RNAs was determined by normalizing to the highest value observed (CHIKV LS3-GFP, 8 h p.i.). (C) Kinetics of CHIKV positive-strand RNA accumulation.
The relative abundance of RNA was calculated as before, except that data were normalized to the value measured for LS3 sgRNA at 12 h p.i (100%).
Genomic RNA levels are indicated with black lines, sgRNA levels with gray lines. The total level of both sgRNAs expressed by LS3-GFP is indicated with
the gray dotted line.
doi:10.1371/journal.pone.0071047.g004
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Figure 5. Western blot analysis of CHIKV nsP1 and E2 expression at different time points post infection. 293/ACE2 cells were infected
with CHIKV ITA07, LS3 or LS3-GFP at an MOI of 5. At the indicated time points cells were lysed, proteins were separated by SDS-PAGE and viral
proteins were detected by Western blotting. The anti-E2 antiserum also recognized the E3E2 (p62) precursor of E2. Actin and the transferrin receptor
were used as loading controls.
doi:10.1371/journal.pone.0071047.g005

Figure 6. Immunofluorescence analysis of dsRNA and E2 expression in time. Vero E6 cells grown on coverslips were infected with CHIKV
ITA07, LS3 or LS3-GFP at an MOI of 5. At the indicated time points the coverslips were fixed and stained with antibodies specific for dsRNA (A) or E2
(B). (C) eGFP fluorescence in CHIKV LS3-GFP infected cells (green). Nuclei (blue) were visualized by Hoechst staining.
doi:10.1371/journal.pone.0071047.g006
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Asian lineage CHIKV strains that have been endemic in the

region for decades. Since the 1980s, the geographic distribution of

Aedes albopictus has dramatically expanded and now also includes

large parts of the USA and several European countries. This

creates concern for locally transmitted outbreaks in Europe and

the USA, which could be initiated by viraemic travelers arriving

from countries where CHIKV is endemic, like India and

Indonesia. Locally transmitted CHIKV infections have indeed

already been reported from Italy in 2007 and France in 2010

[15,16] and recent studies suggest that also the USA is at risk for

locally transmitted CHIKV outbreaks [42,43]. Besides its large

medical and societal impact in endemic countries, the increased

risk of CHIKV outbreaks in Europe and the USA underlines the

importance of studying the replication of this important human

pathogen and its interactions with the host to develop safe and

effective vaccines and antiviral therapy.

Infectious cDNA clones have proven to be important tools to

study many aspects of the viral life cycle, and molecular clones of a

variety of natural isolates have been instrumental in several recent

CHIKV studies [17–23]. The existing CHIKV molecular clones

can be considered to be derived from a single genome (or

fragments of single genomes) out of the whole spectrum of viruses

present in a CHIKV quasispecies population. In contrast, most of

the complete CHIKV genome sequences that have been deposited

in GenBank represent the consensus (or master sequence) of a viral

quasispecies population. The diversity (and evolution) of a

CHIKV quasispecies population has probably been shaped by

the characteristics of the individual host and the specific tissue

source (serum) from which it was isolated. For Ross River virus it

was observed that the level of intrahost genetic variation in patient

serum samples, was considerably larger than that observed at the

epidemiological scale, which can be explained by the purifying

selection for replication in both arthropod and vertebrate hosts

[24]. Advances in sequencing techniques now allow a more

detailed view on quasispecies diversity and intrahost evolution, and

also for CHIKV a recent study has provided more insight into

quasispecies dynamics and the effect of purifying selection by host

alternation [44]. A link was observed between increased fitness as

a result of alternating passaging and reduced quasispecies

complexity, which restricted adaptability to novel selective

pressures like antiviral treatment or antibody-mediated neutrali-

zation [44].

Individual CHIKV isolates or molecular clone derived viruses

could have their specific properties in terms of replication kinetics,

vector specificity, dissemination within the host, virulence, virus-

host interactions or sensitivity to antiviral compounds. We were

interested in studying the general characteristics of the life cycle

and virus-host interactions of the E1-226V CHIKV strains that

were circulating during the 2005–2009 outbreaks. Therefore, we

have constructed a fully synthetic cDNA clone, CHIKV LS3,

based on the consensus sequence of the aligned genomes of these

recent E1-226V isolates, rather than on a single genome from a

clinical isolate. In addition, a variant that expresses the eGFP

reporter gene under control of a (duplicated) subgenomic

promoter was created (CHIKV LS3-GFP). The current possibil-

ities of gene synthesis allowed the design of these clones in silico,

with sequences tailored to our requirements, e.g. already

containing a reporter gene under control of a duplicated

subgenomic promoter and including (translationally silent) muta-

tions to create restriction sites that facilitate cloning and reverse

genetics studies.

Alignment of all 148 complete CHIKV genomes that were in

GenBank by June 2013 yielded a consensus sequence that differed

only at 3 nucleotide positions from the sequence of LS3 that was

designed 3 years earlier. These were position 7,435 at which we

introduced a translationally silent restriction site (G7435A), a

synonymous URC substitution at position 3,397, and position

10,670, which is a C in 68% of all deposited genomes (strains with

E1-226A), while the remaining (E1-226V) strains have a U at this

position. An interesting observation was that 6% of the sequenced

CHIKV strains, including the prototype strains S27 and Ross,

contain an arginine codon instead of the opal stop codon that is

present between the nsP3- and nsP4-coding regions of most

Figure 7. Neutralization of CHIKV ITA07 and LS3 by mouse
monoclonal antibodies raised against ITA07-RA1. 100 PFU of the
CHIKV strains were incubated with serially diluted antibodies in 96-well
clusters containing confluent monolayers of VeroE6 cells. After 2 days
the wells were fixed with formaldehyde and stained with crystal violet.
Either the neutralizing antibody 1H7 or non-neutralizing control
antibody 3H9 were used.
doi:10.1371/journal.pone.0071047.g007

Figure 8. Replication of synthetic CHIKV strains in vivo. (A)
Survival of mice after intraperitoneal injection with 100 TCID50 of CHIKV
LS3, LS3-GFP or S27 (5 mice per group). (B) CHIKV titers (in TCID50

equivalents per mg of tissue) in the brains of the mice infected with the
3 CHIKV strains.
doi:10.1371/journal.pone.0071047.g008
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Figure 9. Effect of antiviral compounds on the replication of various CHIKV strains. Dose dependent reduction of CHIKV-induced CPE by
(A) 3-deaza-adenosine, (B) 6-aza-uridine, (C) chloroquine and (D) mycophenolic acid in Vero E6 cells infected with CHIKV strains ITA07-RA1, LS3 and
LS3-GFP (MOI 0.005). (E) Antiviral effect of ribavirin on CHIKV replication in BHK-21 (black lines) and Vero E6 cells (gray lines). Cell viability was
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CHIKV isolates. The presence or absence of this opal codon

might be influenced by the passage history of the isolate as has

been observed for other alphaviruses [45]. This might also explain

why the sequence of the original clinical isolate of LR2006-OPY1

(Genbank DQ443544.2) contains the opal termination codon near

the end of the nsP3 coding region, while the infectious clone of this

strain (Genbank EU224268.1) contains an arginine codon at this

position.

To assess whether the synthetic viruses are representative

models, their characteristics were compared to those of the natural

strain ITA07-RA1. Like the natural isolate, the synthetic viruses

caused cytopathic infections in Vero E6 and 293/ACE2 cells

(Fig. 2E), whereas non-cytopathic persistent infections were

observed in the mosquito cell line C6/36. In vertebrate cells all

strains caused a shut-off of cellular translation around 8–9 h p.i.

and a strong inhibition of cellular transcription by 10–12 h p.i.

The accumulation of negative- and positive-strand viral RNA, the

kinetics of non-structural and structural viral protein expression, as

well as the growth kinetics and plaque morphology of the synthetic

viruses were indistinguishable from those of CHIKV ITA07-RA1

(Fig. 2–6). In addition, the synthetic viruses caused lethal infections

in 12-day old mice, with virus spreading to the brain, as observed

for natural isolates (Fig. 8). Although this demonstrates that the

synthetic viruses replicate in vivo, this mouse model does not allow

comparison of strains for more subtle differences in virulence and

pathogenesis. The genomic stability of CHIKV LS3-GFP was

assessed and after 3 passages its (consensus) sequence was found to

be identical to the original in silico designed sequence. The

expression of the eGFP reporter gene was stable for at least 10

passages, making the synthetic viruses suitable tools for high-

throughput screens for antiviral compounds, (reverse genetics)

studies into their mechanism of action, and systematic functional

genomics screens for host factors affecting CHIKV replication.

To evaluate whether CHIKV LS3 and LS3-GFP are suitable to

analyze the potency and mechanism of action of antiviral

compounds, their sensitivity to a number of such compounds

was determined and compared to ITA07-RA1. The lysosomo-

tropic agent chloroquine and nucleoside analog 6-aza-uridine

inhibited the replication of the synthetic viruses and natural

isolates with IC50s that were in the same range and comparable to

values previously reported by others [46–51]. The inhibitory effect

of chloroquine on the replication of many viruses including

alphaviruses has been known for decades. For CHIKV it is a

useful reference compound in cell-based studies, but a small scale

clinical trial on the island of La Reunion suggested it is not

effective in the treatment of CHIKV infections in patients [46].

The nucleoside analog 6-aza-uridine has previously been reported

to inhibit the replication of a variety of viruses, including CHIKV

[47,51]. The compound could interfere with cellular UTP

metabolism and may be incorporated into CHIKV RNA, leading

to chain termination and/or increased error frequency, ultimately

resulting in ‘error catastrophe’. Mycophenolic acid is a non-

competitive inhibitor of inosine monophosphate dehydrogenase

(IMPDH), causing a depletion of the intracellular guanosine pool.

It is a known inhibitor of various viruses, including CHIKV

[47,52]. Ribavirin is a synthetic nucleoside analog with broad

spectrum antiviral effect due to potential effects on the cellular

IMPDH enzyme, viral RNA synthesis and capping [39]. However,

not all cell lines are able to perform the necessary conversion of

this compound to its active phosphorylated form, explaining the

contradictory reports on the antiviral activity of this compound

[40,41,53]. In our hands, ribavirin inhibited CHIKV replication

in BHK-21 cells with an IC50 of around 18 mM, while it was

hardly effective in Vero E6 cells, with IC50 values of over 400 M.

The IC50 that we obtained with BHK-21 cells is in the same range

as those previously reported for the antiviral effect of ribavirin on

CHIKV replication [47,51]. Cyclosporin A, which through its

effect on the cellular cyclophilins, inhibits the replication of a

variety of viruses (for recent review see [54]), had no effect on

CHIKV replication. We identified 3-deaza-adenosine as a novel

inhibitor of CHIKV replication with an IC50 of approximately

6 mM and a CC50.50 mM. This compound has previously been

identified as inhibitor of a broad spectrum of viruses, although

many other +RNA viruses appeared to be rather insensitive or not

affected at all (reviewed in [55]). The antiviral activity of 3-deaza-

adenosine was attributed to its inhibitory effect on the cellular

enzyme S-adenosylhomocysteine hydrolase, leading to an accu-

mulation of S-adenosylhomocysteine, which inhibits S-adenosyl-

methionine-dependent methylation reactions [55]. In this manner

the enzyme plays a key role in S-adenosylmethionine-dependent

methylation reactions and inhibition of viral methylation reactions

(e.g. of viral RNA) apparently can be achieved at compound

concentrations that do not notably interfere with cellular

methylation reactions. Our observation warrants a more detailed

analysis of the mode of action of 3-deaza-adenosine and analogs,

also to evaluate their potential for use in antiviral therapy to treat

CHIKV infections. Overall, no large differences were observed

between the IC50 values calculated for ITA07-RA1, LS3 and LS3-

GFP, indicating that the synthetic viruses are suitable for use in

antiviral screens. For most compounds, a faster and simpler assay

with CHIKV LS3-GFP reporter virus showed a good dose-

dependent response that correlated well with results obtained in

the CPE-based assay.

Clinical isolate NL10/152 exhibited slightly slower replication

kinetics and appeared to be more sensitive to antiviral compounds

than ITA07 and the synthetic viruses. Differences in the sensitivity

to antiviral compounds among clinical isolates is not an

uncommon phenomenon. NL10/152 differs at 7 amino acid

positions from LS3 and it will be interesting to determine the

contribution of these mutations, in particular the R88S substitu-

tion in nsP4, to the slower replication kinetics (and higher

sensitivity to antivirals).

Taken together the detailed characterization of the CHIKV

replication cycle at the molecular level demonstrated that our new

synthetic consensus-based viruses behave like natural isolates and

are suitable tools to study various aspects of the CHIKV life cycle,

which should ultimately provide a basis for the development of

antiviral therapy.

Supporting Information

Table S1 Comparison of CHIKV LS3 with the genome
sequences of various closely related natural isolates.
Only differences between LS3 and each of the other strains are

summarized. Dots indicate that the nucleotide at that position is

identical to that at the corresponding position in the sequence of

LS3. Genomes were aligned with MAFFT and analyzed in

Jalview. Numbering is based on the sequence of LR2006_OPY1

normalized to untreated uninfected cells (100%). The 50% cytotoxic concentration (CC50) of the compounds is indicated in the top left of each panel.
(F) Dose-response curves showing the effect of five antiviral compounds on the eGFP expression in Vero E6 cells infected with CHIKV LS3-GFP (MOI
0.05) at 42 h p.i. Values were normalized to eGFP fluorescence in untreated infected cells (100%).
doi:10.1371/journal.pone.0071047.g009
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(and is equal to LS3 numbering). The nucleotide at position 10670

(indicated in gray) determines whether the strain has the A226V

mutation in the E1 protein. Strains with a T at this position have

the A226V mutation. Differences not included in the comparison

are the 35 nt, 5 nt and 23 nucleotides that are missing from the

3’UTR of the sequences of DRDE-07, D570/06 and ITA07-RA1,

respectively. The missing first 19 nt, missing last 13 nt and the

insertion of an A after position 11564 in the sequence of IND-06-

AP3 were also not included in this comparison.

(PDF)
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