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Abstract

This study aims to explore the predictive noninvasive biomarker for obstructive

coronary artery disease (CAD). By using the data set GSE90074, weighted gene co‐
expression network analysis (WGCNA), and protein–protein interactive network,

construction of differentially expressed genes in peripheral blood mononuclear

cells was conducted to identify the most significant gene clusters associated with

obstructive CAD. Univariate and multivariate stepwise logistic regression analyses

and receiver operating characteristic analysis were used to predicate the diagnostic

accuracy of biomarker candidates in the detection of obstructive CAD.

Furthermore, functional prediction of candidate gene biomarkers was further

confirmed in ST‐segment elevation myocardial infarction (STEMI) patients or

stable CAD patients by using the datasets of GSE62646 and GSE59867. We found

that the blue module discriminated by WGCNA contained 13 hub‐genes that could
be independent risk factors for obstructive CAD (P< .05). Among these 13 hub‐
genes, a four‐gene signature including neutrophil cytosol factor 2 (NCF2, P= .025),

myosin‐If (MYO1F, P= .001), sphingosine‐1‐phosphate receptor 4 (S1PR4,

P= .015), and ficolin‐1 (FCN1, P= .012) alone or combined with two risk factors

(male sex and hyperlipidemia) may represent potential diagnostic biomarkers in

obstructive CAD. Furthermore, the messenger RNA levels of NCF2, MYO1F,

S1PR4, and FCN1 were higher in STEMI patients than that in stable CAD patients,

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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although S1PR4 showed no statistical difference (P> .05). This four‐gene signature
could also act as a prognostic biomarker to discriminate STEMI patients from

stable CAD patients. These findings suggest a four‐gene signature (NCF2, MYO1F,

S1PR4, and FCN1) alone or combined with two risk factors (male sex and

hyperlipidemia) as a promising prognostic biomarker in the diagnosis of STEMI.

Well‐designed cohort studies should be implemented to warrant the diagnostic

value of these genes in clinical purpose.
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FCN1, MYO1F, NCF2, noninvasive diagnostic biomarkers, obstructive coronary artery disease,
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1 | INTRODUCTION

Cardiovascular diseases (CVDs) continue to be the
leading cause of morbidity and mortality worldwide.1

Epidemiological investigations have indicated that age is
an independent risk factor for CVDs.2 Moreover, recent
studies have revealed that patients with age over 65 years
presenting with obstructive coronary artery disease
(CAD) usually portend poorer outcomes compared with
younger individuals, including a higher rate of 5‐year
mortality, all‐cause mortality, recurrent myocardial
infarction, and stroke.3,4 Early‐stage detection and
diagnosis of obstructive CAD can reduce the mortality
ratio, especially in younger individuals.5 Certainly, a
better understanding of the pathogenesis of obstructive
CAD could help the development of effective therapeutic
interventions, resulting warranted to decrease mortality
and improve the patientʼs quality of life.

CAD is a chronic inflammatory disease and inflam-
mation is the response of the immune system to the
presence of exogenous and endogenous antigens.
Previous studies have suggested that the proinflamma-
tory response plays critical roles in the pathogenesis of
obstructive CAD, including both the innate and adaptive
immune responses,6,7 which contribute to the plaque
instability.8 The proinflammatory response is mainly
mediated by the activation of peripheral blood mono-
nuclear cells (PBMCs), followed by their migration to
local vascular tissues.9 Therefore, screening diagnostic or
prognostic biomarkers based on high‐throughput expres-
sion profiles of PBMC is a powerful weapon for
obstructive CAD diagnosis and prognosis.

Recently, Ravi et al10 have reported that the proin-
flammatory chemokine, CXCL5, in PBMCs, played a
protective role in obstructive CAD and was associated with
the severity of CAD in geriatric patients. In this study, they
contributed a data set of the whole genome messenger RNA

(mRNA) expression profiles of PBMCs and clinical
characteristics of 143 samples (93 subjects with obstructive
CAD and 50 subjects free of obstructive CAD; data set:
GSE90074).10 This data set provides us an opportunity to
search novel potential biomarkers for obstructive CAD.
Despite the numerous studies concerning the obstructive
CAD pathogenesis, noninvasive diagnostic biomarkers with
high sensitivity and specificity for early‐stage obstructive
CAD detection, are still needed.

Therefore, in this current study, differentially expressed
genes (DEGs) in PBMCs between patients with obstructive
CAD and free of obstructive CAD were identified, following
by Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis. Subse-
quently, through unsupervised hierarchical clustering and
weighted gene co‐expression network analysis (WGCNA),
the relationship between gene sets and phenotypes of CAD
was ascertained. By using the bioinformatics methods and
receiver operating characteristic (ROC) analysis, a potential
four‐gene signature including ficolin‐1 (FCN1), myosin‐If
(MYO1F), neutrophil cytosol factor 2 (NCF2), and sphingo-
sine‐1‐phosphate receptor 4 (S1PR4), were further identified
as biomarkers to discriminate obstructive CADs from
nonobstructive CADs. Furthermore, the accuracy of this
four‐gene signature was further explored for its accuracy to
discriminate ST‐segment elevation myocardial infarction
(STEMI) patients from stable CAD patients as well as may
offer the potential novel therapeutic strategies for stable
CADs.

2 | MATERIALS AND METHODS

2.1 | Microarray data set information

In this study, the data set GSE90074 (deposited by
Saranya Ravi et al)10 was retrieved and downloaded from
the Gene Expression Omnibus (GEO) database in the
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National Center of Biotechnology Information (NCBI),
based on the platform of Affymetrix Human Genome
U133 Plus 2.0 Array (Santa Clara, CA).10 This data set
includes the mRNA expression data of PBMCs and
clinical characteristics of 143 samples (93 subjects with
obstructive CAD and 50 subjects without obstructive
CAD). Most of those diagnosed with obstructive CAD
were men (61%) and had a previous diagnosis of
hyperlipidemia (80%) or myocardial infarction (MI; 44%).

For the validation of the WGCNA findings in obstructive
CAD, the gene expression data of PBMCs from STEMI
patients were also retrieved from the NCBI GEO database.
The data set, GSE62646, includes 14 PBMCs samples from
stable CAD patients as control and 28 PBMCs samples from
STEMI patients.11 The data set, GSE59867, includes 46
PBMCs samples from stable CAD patients as control and 11
PBMCs samples from STEMI patients.12

2.2 | Identification of differentially
expressed genes

After normalizing the data, analysis of DEGs was
performed using the package limma of R (version
3.3.3), and the gene with P‐values less than .05 was
considered as a statistically significant DEG. The
heatmap was visualized by using the heatmap package
for “R” statistical software (version 3.3.3), as described
previously.13-15

2.3 | Enrichment analysis

KEGG pathway and GO, including cellular component,
molecular function, and biological process, were
analyzed using the package clusterProfiler (version
3.2.14) of R (version 3.3.3), as described previously.13,14

2.4 | Weighted gene co‐expression
network analysis

WGCNA package (version 1.60) in R was used to identify
key modules based on the expression levels of DEGs in
the data set GSE90074. The module is a cluster of closely
interconnected genes, based on the dendrogram height.
Modules were detected by using unsupervised clustering
and dynamic branch cut methods (WGCNA: an R
package for weighted correlation network analysis).15

The gene modules were signified by different colors and
the gray module showed the genes that cannot be
merged. Weight =0.7 and power of β =5 (scale free
R2 = 0.8) were used to construct modules, and a
threshold ≥0.7 was used to export network to Cytoscape
(Figure S1).

2.5 | Protein–protein interactive
network construction and hub‐gene
identification

Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING; https://string‐db.org/) was
used to evaluate the protein–protein (PPI) network
among genes in the enriched modules. PPI networks
were constructed using Cytoscape (version 3.6.0), as
described previously.15 The gene with PPI network nodes
and co‐expression network nodes ≥5 was identified as the
hub‐gene.

2.6 | Gene set enrichment analysis

Gene set enrichment analysis (GSEA), including KEGG
and GO enrichment analysis, is an effective method to
compare the significant different priori defined sets of
two groups. GSEA was performed with the gene
expression of NCF2, MYO1F, S1PR4, and FCN1 in
obstructive CAD patients using phenotype labels
“high‐expression” vs “low‐expression” group by the
GSEA software (http://software.broadinstitute.org/gsea/
index.jsp), as described previously.15 Gene sets used
in this study were c2.cp.kegg.v5.2.symbols.gmt down-
loaded from the Molecular Signatures Database
(MSigDB; http://software.broadinstitute.org/gsea/msigdb/
index.jsp). P< .05 was used as the cut‐off criterion.

2.7 | Statistical analysis

All statistical analyses were carried out using “R”
software (version 3.3.3). Univariate and stepwise multi-
variate logistic regression (MLR) analyses were carried
out to determine independent factors for the diagnosis of
CAD by using the hub‐genes in the blue module and
clinical risk factors. Receiver operating characteristic
(ROC) curve analysis was used to calculate the value of
area under the curve (AUC) for the selected genes and
clinical risk factors to evaluate their predictive abilities
for the diagnosis of CAD by using the package pROC, as
described previously.5 Here, P< .05 was considered
statistically significant.

3 | RESULTS

3.1 | Identification and enrichment
analysis of DEGs

To find diagnostic biomarkers for obstructive CAD, we set
up a workflow shown in Figure 1. Based on the WGCNA
pipeline we modified, 1193 downregulation genes and
1041 upregulation genes were identified in PMBCs from
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patients between obstructive CAD and free of obstructive
CAD (Table S1). The top 50 significantly upregulated and
downregulated genes are listed in Figure 2A. KEGG
pathway enrichment analysis showed that the most
significant upregulated genes were mainly involved in
inflammatory response, such as Epstein‐Barr virus
infection, chemokine signaling pathway, necroptosis,
phagosome, NOD‐like receptor signaling pathway, nuclear
factor‐κB signaling pathway,16 leukocyte transendothelial
migration,17 and antigen processing and presentation18

(Figure 2B). All of these pathways were reported with
important roles in CAD. However, only ribosome and
spliceosome pathways were enriched in the most
significant downregulated genes (Figure 2C). GO analysis
showed that the top five upregulated biology processes
were mainly involved in immune response, such as
immune response‐regulating signaling pathway, immune
response‐activating signaling transduction, regulation of
innate immune response, activation of innate immune

response, and immune response‐regulating cell surface
signaling pathway (Figure 2D). Likewise, the top five
downregulated biology processes were mainly involved in
RNA processing and biogenesis, such as noncoding RNA
processing, ribonucleoprotein complex biogenesis,
ribosome biogenesis, rRNA processing, and rRNA
metabolic process (Figure 2E). Together, both above
KEGG and GO pathway enrichment analysis indicated
that these significant upregulation genes were mainly
involved in the immune responses, which would
contribute to atherogenesis.19,20

3.2 | Module constructing and
screening

To search potentially key genes associated with obstructive
CAD, we performed WGCNA with the most significant
2234 genes mentioned above to identify key modules of
highly correlated genes. First, the hierarchical clustering

FIGURE 1 Flowchart describing the schematic overview of the current study design. After enrichment analysis and weighted gene
co‐expression network analysis (WGCNA) of differentially expressed genes (DEGs), we identified the blue module as the key module. Then,
through construction of co‐expression and Protein–protein (PPI) network for the blue module, we identified 13 hub‐genes in the blue
module. By using univariate logistic regression (ULR) analysis, all the 13 hub genes can be independent risk factors for obstructive coronary
artery disease (CAD). Stepwise multivariate logistic regression (MLR) analysis was used to identify the preferred model among the
hub‐genes, and the receiver operating characteristic (ROC) curve analysis was used to evaluate the accuracy of genes in the identified
preferred model. The expression levels and ROC curve analysis of genes in the preferred model were further analyzed in stable CAD and
ST‐segment elevation myocardial infarction (STEMI) patients. At last, gene set enrichment analysis (GSEA) was used to predict the potential
mechanisms of identified biomarkers in the development of obstructive CAD. In all, this four gene‐signature could be a good biomarker for
both obstructive CAD and STEMI
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tree (dendrogram) resulted in three significant modules
with various colors, including blue, brown, and turquoise
modules (Figure 3A, Table S2). Furthermore, the analysis
of the correlation between modules and clinical character-
istics showed that all three significant modules were
significantly correlated with CAD obstruction and class
(Figure 3B). In addition, the turquoise module is
correlated with diabetes and body mass index (BMI),
and the blue module showed a significant correlation with
hyperlipid (Figure 3B). This suggested that the tree highly

preserved modules may be closely associated with BMI
and hyperlipid of obstructive CAD.

Further, KEGG pathway enrichment analysis showed
that the blue module was mainly involved in osteoclast
differentiation, tuberculosis, and phagosome; while the
turquoise module, in, viral carcinogenesis, endocytosis, and
Epstein‐Barr virus infection (Figure 4A). Furthermore, GO
analysis showed that the top five biology processes in the
blue module were mainly involved in leukocyte migration,
cell chemotaxis, leukocyte chemotaxis, myeloid leukocyte

FIGURE 2 Identification and enrichment analysis of DEGs in peripheral blood mononuclear cells (PBMCs) between patients with or
without obstructive CAD. A, Heatmap of the DEGs (top 25 upregulated genes and 25 downregulated genes). Each row represents the
messenger RNA (mRNA) and each column represents one sample which annotated by a different color, respectively. The expression level of
each mRNA in one sample is represented in the shade of red or blue, which represents upregulated or downregulated genes, respectively.
B,C, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the upregulated (B) and downregulated genes (C). The size
and the color intensity of a circle represent the numbers of enriched genes and −log 10 (P‐value), respectively. D,E, Gene Ontology (GO)
enrichment analysis of upregulated (D) and downregulated genes (E). The vertical and horizontal axes represent GO term and −log 10
(P‐value) of the corresponding GO term, respectively. Different colors reflect main categories of GO terms: BP, biological process; CC,
cellular component; MF, molecular function. CAD, coronary artery disease; DEG, differentially expressed gene
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FIGURE 3 Modules enriched by
WGCNA analysis and their correlation
with clinical traits. A, Gene clustering and
module identification by WGCNA
analysis based on the data set GSE90074.
Top: the result of hierarchical clustering
was shown in clustering dendrogram.
Each line represents one gene. Bottom:
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weighted gene co‐expression network
analysis
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activation, and cytokine secretion, indicative of leukocyte
stimulation and migration in patients of obstructive CAD.
KEGG and GO pathway analyses of the genes in the blue
module showed similar findings as those by the total

significant genes, which indicated that genes in the blue
module played critical roles in the development of
obstructive CAD by involving enhanced leukocyte activa-
tion and migration (Figure 4B).21
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(A)

(B)

FIGURE 5 Identified hub genes from the blue module by the construction of co‐expression and protein–protein interactive (PPI)
network. A, Co‐expression network by the enriched modules via WGCNA. Filled color represents the log 2 (fold change) of each gene, and
border color represents the module that each gene belongs. B, PPI network of genes in the blue module. Filled color represents the fold
change of each gene. WGCNA, weighted gene co‐expression network analysis
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3.3 | Detection of potential key
messenger RNAs associated with
obstructive coronary artery disease

Based on the co‐expression network construction by
WGCNA, genes in the blue module showed closer
contact with each other than that in other modules
(Figure 5A). Therefore, we used the blue module for
further deep analysis. For each mRNA in a blue module,
we evaluated the intramodular connectivity by
co‐expression network and PPI network construction.
Then, 13 hub genes with co‐expression network nodes ≥5
were screened (Figure 5B, Table 1). The GO analysis
revealed that these genes were mainly involved in the
biological process of immune‐related processes, such as
the immune system process, immune response, and
regulation of the immune system (Table S3). Totally,
these results suggested that these genes could play pivotal
roles in the pathogenesis of obstructive CAD.21

3.4 | Combination with risk factors and
a cluster of four hub genes increases the
diagnostic prediction for obstructive CAD

Due to the above‐mentioned observations, we further
explored whether these hub genes in the blue module
were associated with obstructive CAD by univariate
logistic regression (ULR) analysis. We found that all the
hub genes could be independent risk factors for
obstructive CAD (Table 2).

Then, stepwise MLR analysis showed that four genes
showed the lowest Akaike information criterion (AIC)
value, which could remove other confounding factors and
got the best result of data fitting. Four genes, including

NCF2 (P= .025), MYO1F (P= .001), S1PR4 (P= .015), and
FCN1 (P= .012), were outstanding in the current stepwise
MLR analysis, which had a significant association with
prognosis of obstructive CAD. Next, we explored whether
these four genes (FCN1, MYO1F, NCF2, and S1PR4) were
associated with obstructive CAD by performing ROC
curve analysis in the same population. We found that the
AUC was 0.606 for FCN1, 0.604 for MYO1F, 0.648 for
NCF2, 0.626 for S1PR4, and 0.700 for the combination of
these four genes (Figure 6A‐E). The mRNA levels of
FCN1, MYO1F, NCF2, and S1PR4 were significantly
higher in PBMCs from obstructive CAD patients than
those from nonobstructive patients (P< .05, Figure S2).
Taken together, these results demonstrate a high diag-
nostic accuracy of four‐gene signature as a novel
biomarker for obstructive CAD.

As we know, CAD has many clinical risk factors,
including age, sex, BMI, hypertension, hyperlipidemia,
diabetes mellitus, and the degree of coronary artery
obstruction. Then, further study was explored to analyze
the relationship between the four genes and these CAD
risk factors. Then, the results of ULR analyses showed
that sex and hyperlipidemia were significantly associated
with the diagnosis of CAD, but not with the other risk
factors (Table 2). The AUC values for sex and
hyperlipidemia are 0.626 and 0.618, respectively, with
P‐values less than .05 (Figure S3).

As indicated above, the result of stepwise MLR
analysis showed that the combination of clinical risk
factors with the four genes with a lower AIC value
indicated an association between NCF2, MYO1F, S1PR4,
and FCN1 expression levels in PBMCs and male sex, and
hyperlipidemia (Table 3). To determine whether these
factors have an additive effect on the prediction values,

TABLE 1 List of hub‐genes in the blue module

Substance BXH log 2 (FC) P‐value Module color Co‐expression node Nodes of PPI‐network notes

FGL2 0.2943 .0229 Blue 5 12

FCGR3B 0.2290 .0296 Blue 7 11

MYO1F 0.1736 .0224 Blue 8 11

MNDA 0.2896 .0158 Blue 8 14

CSF1R 0.1847 .0324 Blue 8 18

ALOX5 0.2524 .0078 Blue 9 8

S100A9 0.3014 .0051 Blue 10 11

NCF2 0.3801 .0013 Blue 11 15

S1PR4 0.2308 .00416 Blue 11 15

CLEC4E 0.2640 .0109 Blue 15 5

AMICA1 0.2795 .0060 Blue 17 14

FCN1 0.2165 .0192 Blue 20 10

TLR2 0.2602 .0052 Blue 22 20

Abbreviation: PPI, protein–protein interaction
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these genes were analyzed by combining these two risk
factors in the same group. The result showed that the
diagnostic prediction was obviously increased, that is,
AUC was 0.747 for NCF2, 0.734 for MYO1F, 0.740 for
S1PR4, 0.737 for FCN1, and 0.793 for the combination of
these four genes (Figure 6A‐E). Finally, to compare the
diagnostic accuracy between NCF2, MYO1F, S1PR4, and
FCN1 alone and the genes in combination with the risk
factors, ROC curve analysis was performed again. The
results indicated that a significant difference in
prediction between the genes alone and the combined
model (the genes plus risk factor groups) were found
(P= .025, .001, .015, .012, and .010, respectively; Figure
6A‐E), which suggested that the diagnostic accuracy of
the combined model enhanced the obstructive CAD
discrimination.

Given the similar diagnostic values for the genes NCF2,
MYO1F, S1PR4, and FCN1 in obstructive CAD,
Spearman‐rank correlation was used to analyze the genes
that correlated with the obstructive CAD and CAD
severity. The results indicated that these four genes were
correlated with one another significantly, but not
correlated with the other risk factors (Figure 6F). All
these data demonstrate that NCF2, MYO1F, S1PR4, and

FCN1 in PBMC combination with sex and hyperlipidemia
could be diagnostic biomarkers for obstructive CAD.

3.5 | Four hub genes could also be good
prediction biomarkers for ST‐segment
elevation myocardial infarction

STEMI is the significant risk factor for obstructive CAD.22

Previous studies have reported that nearly 65% of patients
presenting with STEMI had multivessel CAD, including
obstructive CAD.23,24 Therefore, we further validated
whether these four genes could be also be used as a
signature to predict the STEMI patients by using two
more datasets (GSE62646 and GSE59867).11,12 According
to the annotation of both the datasets, the mRNA
expression levels of FCN1, MYO1F, S1PR4, and NCF2
were increased in STEMI patients as compared to that in
stable CAD patients without a history of myocardial
infarction; although S1PR4 showed no statistical
difference between the two groups (Figure 7A,B). ROC
curve analysis also showed that the AUC of four hub
genes in the datasets of GSE59867 and GSE62646 were
0.881 and 0.941, respectively (P< .001; Figure 7C,D).
Interestingly, the AUC value was significantly reduced in

TABLE 2 Univariate and stepwise multivariate logistic regression of hub genes and clinical traits

Hub genes/clinical traits

Univariate logistic regression Stepwise multivariate logistic regression

OR 95% CI P‐value OR 95% CI P‐value

Gender 2.81 1.38‐5.74 .004*** 2.81 1.38‐5.74 .003***

BMI 0.97 0.93‐1.02 .278 　

Diabetes 1.34 0.66‐2.75 .422 　

Hyperlipid 3.06 1.44‐6.49 .004*** 3.06 1.44‐6.49 .009**

Hypertension 1.02 0.35‐2.93 .976 　

ALOX5 2.35 1.21‐4.55 .011* 　

AMICA1 2.31 1.24‐4.29 .008** 　

CLEC4E 2.15 1.16‐3.96 .014* 　

CSF1R 2.12 1.05‐4.31 .037* 　

FCGR3B 1.89 1.05‐3.41 .035* 　

FGL2 1.71 1.06‐2.75 .028* 　

MNDA 1.84 1.1‐3.07 .02* 　

S100A9 2.22 1.23‐4 .008** 　

TLR2 2.52 1.28‐4.95 .007** 　

MYO1F 2.53 1.12‐5.75 .026* 2.53 1.12‐5.75 .103

NCF2 2.28 1.33‐3.9 .003*** 2.28 1.33‐3.9 <.001***

S1PR4 3 1.37‐6.53 .006*** 3 1.37‐6.53 .036*

FCN1 2.17 1.11‐4.21 .023* 2.17 1.11‐4.21 .01**

Abbreviations: CI, confidence interval; HR, hazard ratio; OR, odds ratio
***P< .005.
**P< .01.
*P< .05.
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S1PR4‐excluded GSE62646 (Figure S4), although the
expression level of S1PR4 showed no significant changes
between STEMI and stable CAD patients. Notably, these
data demonstrate that this four‐gene signature could also
act as an accurate biomarker for STEMI patients.

3.6 | Functional enrichment analysis of
genes correlated with obstructive CAD

In the functional enrichment analysis of four‐finding
genes, we divided the 93 obstructive CAD patients into
two groups due to the expression levels of NCF2, MYO1F,
S1PR4, or FCN1 (high‐expression group vs low‐expression
group) and applied GSEA analysis to compare the different
pathways between the two groups. Our finding showed
that viral myocarditis,25 Leishmania infection,26

hematopoietic cell lineage,27 type I diabetes mellitus
pathways, and type II diabetes mellitus pathways28 were
enriched in patients with a higher expression of NCF2,
MYO1F, S1PR4, and FCN1 in PBMCs. Also, these
enriched pathways are previously reported as critical roles
of these genes in the development of atherosclerosis and
CADs. Whereas steroid biosynthesis, cell‐cycle pyruvate
metabolism, glutathione metabolism, pyrimidine
metabolism, and ubiquitin‐mediated proteolysis29,30 were
enriched in patients with a lower expression of NCF2,
MYO1F, S1PR4, and FCN1 (Figure 8A‐D). All these data
indicated that all these four hub genes might play similar
and critical roles in the development and progression of
obstructive CAD.

4 | DISCUSSION

Decades of research have provided a deep understanding of
the etiology of obstructive CAD, however, the predictive
biomarkers, especially noninvasive biomarkers, for obstruc-
tive CAD diagnosis, are still limited.5,31,32 A comprehensive
understanding of molecular mechanisms is primarily
important for the diagnosis and treatment of obstructive
CAD in clinical event. Great progress has been made in the
diagnosis technique; but in many cases, especially, for
obstructive CAD, it is still difficult to discriminate it from
nonobstructive CAD.33,34 In the current study, the data set

GSE90074 was utilized for screening new potential
noninvasive biomarkers for obstructive CAD. The datasets
(GSE62646 and GSE59867), including stable CAD and
STEMI patients, were used for further validations, an
important risk factor for obstructive CAD.22-24 By doing
this, the current study demonstrates that either gene,
including NCF2, MYO1F, S1PR4, and FCN1, combined
with the risk factors (including gender and hyperlipidemia),
in PBMCs, was identified as a novel biomarker for
obstructive CAD.

In this study, by deeply and systemically reanalyzing
the GSE90074 data set, KEGG and GO analyses of total
DEG demonstrate that during the development of
obstructive CAD, immune system cells activated in the
plaque, which is consistent with previous findings.35,36

WGCNA of gene modules associated with clinical
phenotypes identified three independent modules that
are significantly associated with obstructive CAD and
CAD classing. Furthermore, GO and KEGG enrichment
analysis of DEG in these three modules revealed that the
blue module was closely related to leukocyte activation
and migration, which showed the similar phenotype with
KEGG and GO analysis of total DEG. These findings
indicated that DEG in the blue module could well present
the phenotypic changes of PBMC in patients with
obstructive CAD. Consistent with this notion, further,
PPI network construction and ULR analysis unraveled 13
hub‐genes with co‐expression network nodes ≥5 in the
blue module. Interestingly, ROC curve analysis and
stepwise MLR analysis of blue module genes revealed
that the combination of NCF2, MYO1F, S1PR4, and
FCN1 could be used as a noninvasive biomarker for
obstructive CAD. Subsequent analysis of the diagnostic
value of these genes in obstructive CAD further
confirmed that NCF2, MYO1F, S1PR4, and FCN1
together with risk factors, gender, and hyperlipidemia,
could improve the diagnostic accuracy of distinguishing
obstructive CAD from free of obstructive CAD.

Further validation of the diagnostic accuracy of NCF2,
MYO1F, S1PR4, and FCN1 in STEMI patients showed that
these four hub genes could also act as accurate biomarkers
to discriminate STEMI patients from stable CAD patients.
The expression levels of NCF2, MYO1F, S1PR4, and FCN1
were relatively higher in STEMI patients than in stable

FIGURE 6 Receiver operating characteristic (ROC) curve analysis for the multivariate logistic regression (MLR) analyses and
correlogram of genes and clinical traits. A‐D, Four hub genes (FCN1, MYO1F, NCF2, and S1PR4) with the lowest Akaike information
criterion (AIC) value and two risk factors (sex and hyperlipid) were identified by MLR analysis in the data set GSE90074 (see also Table 2).
E, ROC curve analysis of the four hub genes alone and the four hub genes combined with the two risk factors for the diagnosis of obstructive
CAD. Area under the curve (AUC) indicates area and P‐value is shown under the ROC curve, respectively for A‐E. F, Correlogram of the
correlation between the four hub genes and clinical traits by Pearson correlation coefficient procedure. The number in each box represents
the P‐value of the Pearson correlation coefficients. The blue and red color gradient from dark to light in each box shows the degree of
positive or negative correlations respectively in genes and clinical traits. CAD, coronary artery disease
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FIGURE 7 The mRNA expression levels and ROC curve analysis of four‐gene signature in PBMCs of stable CAD and STEMI patients in
the data set GSE59867 or GSE62646. A,B, Relative expression levels of FCN1, MYO1F, NCF2, and S1PR4 in stable CAD and STEMI patients
for the datasets of GSE59867 (A) and GSE62646 (B), respectively. Boxplots showing median, 25%–75% percentiles and range of log 2 (gene
expression value). *P< .05; **P< .01; ***P< .001 (Student t test). C,D, ROC curve analysis of the four‐gene signature for the discrimination
of stable CAD and STEMI patients for the datasets of GSE59867 (C) and GSE62646 (D), respectively. AUC indicates area and P‐value is
shown under the ROC curve, respectively. AUC, area under the curve; CAD, coronary artery disease; mRNA, messenger RNA;
PBMC, peripheral blood mononuclear cell; ROC, receiver operating characteristic; STEMI, ST‐segment elevation myocardial infarction
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FIGURE 8 Gene set enrichment analysis of NCF2, MYO1F, FCN1, and S1PR4 in the PBMCs of obstructive CAD patients in the data set
GSE90074. Top two enriched KEGG pathways in high‐expression (red) and low‐expression (blue) group of NCF2 (A), MYO1F (B), S1PR4
(C), and FCN1 (D), respectively. CAD, coronary artery disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; PBMC, peripheral blood
mononuclear cell
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CAD patients. NCF2 is a component of the leukocyte
NADPH oxidase complex that produces superoxide.
Accumulating evidence has indicated that NCF2 plays
critical roles in the development of autoimmune diseases,
such as inflammatory bowel diseases, systemic lupus
erythematosus,37-39 duodenitis, and Crohnʼs colitis.40-42

Moreover, a recent study indicated that NCF2 may play
an important role in BP changes.43 MYO1F, a member of
the myosin I family, is mainly expressed in bone marrow,
spleen, appendix, and lymph nodes. MYO1F generally uses
actin filaments as tracks by the energy from ATP
hydrolysis.44 Interestingly, the specific function of MYO1F
is still unclear so far. Recent studies indicate that it has a
potential role in the pathogenesis of hearing loss,45,46 and it
is also critical for neutrophil migration in vivo or in 3‐D
environments.47,48 What is more, it plays an important role
in the modulation of cell adhesion and motility in the
immune system.49 FCN1, which encodes ficolin‐1, is
involved in complement lectin pathway and elevated in
patients with Takayasu arteritis50 or microscopic
polyangiitis.51 So, the abnormal expression of FCN1 was a
pathogenic factor and potential target of CADs.52 S1PR4 is
mainly expressed in hematopoietic and lymphoid cells and
plays a vital role in terminal megakaryocyte differentiation
to platelets.53 Although the expression of S1PR4 showed no
difference between STEMI and stable CAD patients, the
lack of S1PR4 significantly reduced the accuracy of
inspection. GSEA analysis also revealed that patients with

obstructive CAD with higher expression levels of NCF2,
MYO1F, S1PR4, and FCN1 in PBMC showed enriched
pathways in viral myocarditis, Leishmania infection, type I
diabetes mellitus, and hematopoietic cell lineage. These
pathways are critical for the development of atherosclerosis
and CADs.25-27 Since more than 65% of STEMI patients
suffer from obstructive CAD,23,24 it is presumable that this
four‐gene signature could also be developed as a potential
prognostic biomarker of obstructive CAD occurrence in
STEMI patients. However, this warrants another separate
study in the future.

In conclusion, a four‐gene signature (NCF2, MYO1F,
S1PR4, and FCN1) could act as a noninvasive diagnostic
biomarker for obstructive CAD. In combination with the
risk factor, sex, and hyperlipidemia, it could improve the
diagnostic accuracy of distinguishing obstructive CAD
from free of obstructive CAD. Therefore, our study
contributed a new potential noninvasive biomarker for
obstructive CAD. Undoubtedly, future well‐accepted
clinical studies with larger samples size, standardized
protocols, and more homogenized populations would be
needed to fully research the prognostics potential of this
four‐gene signature in patients with obstructive CAD.
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