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Abstract
Background Breast cancer (BC), which is the most common malignant tumor in females, is associated with increasing 
morbidity and mortality. Effective treatments include surgery, chemotherapy, radiotherapy, endocrinotherapy and molecular-
targeted therapy. With the development of molecular biology, immunology and pharmacogenomics, an increasing amount 
of evidence has shown that the infiltration of immune cells into the tumor microenvironment, coupled with the immune 
phenotype of tumor cells, will significantly affect tumor development and malignancy. Consequently, immunotherapy has 
become a promising treatment for BC prevention and as a modality that can influence patient prognosis.
Methods In this study, samples collected from The Cancer Genome Atlas (TCGA) and ImmPort databases were analyzed 
to investigate specific immune-related genes that affect the prognosis of BC patients. In all, 64 immune-related genes related 
to prognosis were screened, and the 17 most representative genes were finally selected to establish the prognostic prediction 
model of BC (the RiskScore model) using the Lasso and StepAIC methods. By establishing a training set and a test set, 
the efficiency, accuracy and stability of the model in predicting and classifying the prognosis of patients were evaluated. 
Finally, the 17 immune-related genes were functionally annotated, and GO and KEGG signal pathway enrichment analyses 
were performed.
Results We found that these 17 genes were enriched in numerous BC- and immune microenvironment-related pathways. The 
relationship between the RiskScore and the clinical characteristics of the sample and signaling pathways was also analyzed.
Conclusions Our findings indicate that the prognostic prediction model based on the expression profiles of 17 immune-related 
genes has demonstrated high predictive accuracy and stability in identifying immune features, which can guide clinicians in 
the diagnosis and prognostic prediction of BC patients with different immunophenotypes.
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Background

Breast cancer (BC), which is the most common malignant 
tumor and the leading cause of cancer-related deaths in 
women in underdeveloped countries, affected 882,900 indi-
viduals and resulted in 324,300 deaths in 2012 alone; that 
year, BC accounted for 25% and 15% of all cancer cases and 
cancer deaths among females, respectively [1]. Generally, 
BC is associated with reproductive and endocrine risk fac-
tors, including oral contraceptive use, nulliparity and long 
menstrual periods [2]. On the contrary, some potentially 
modifiable risk factors include alcohol consumption, obesity, 
physical inactivity, and menopausal hormone therapy [3].

Some large-scale clinical data indicate that systemic 
adjuvant chemotherapy should generally not be recom-
mended for most patients with early BC following surgery or 
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radiotherapy, since chemotherapy would result in far greater 
toxicity relative to the survival benefit of the patients [4–6]. 
However, patients with a low likelihood of survival who 
do not undergo chemotherapy will quickly relapse, which 
results in the invasion of adjacent tissues and distant metas-
tasis [7]. Consequently, it is particularly important to deter-
mine the relevant survival risk of patients through subgroup 
classification and early diagnosis and to provide additional 
systemic adjuvant chemotherapy to high-risk patients.

According to recent studies, BC can be classified into the 
following four subtypes: Luminal A (ER + /PR + /HER2 −, 
grade 1 or grade 2), Luminal B (ER + /PR + /HER2 + , 
or ER + /PR + /HER2 − grade 3), HER2-overexpressing 
(ER − /PR − /HER2 +), and triple-negative breast can-
cer (TNBC, ER − /PR − /HER2 −) [8]. Among them, the 
Luminal A subtype is associated with a favorable progno-
sis and sensitivity to endocrine therapy, which means that 
only endocrine therapy is the general treatment approach 
[9]. On the contrary, the Luminal B subtype is associated 
with a high tumor proliferation rate. The HER2-negative 
Luminal B subtype can usually be treated with endocrine 
therapy + chemotherapy, while the HER2-positive Luminal 
B subtype is generally treated with chemotherapy + anti-
HER2 treatment + endocrine therapy [10]. Moreover, the 
HER2 overexpressing subtype is characterized by a poor 
prognosis and rapid progression and is mainly treated with 
chemotherapy + anti-HER2 therapy [11]. Specifically, 
the negative expression of ER, PR and HER2 in TNBC is 
related to its unique biological characteristics and potent 
heterogeneity, and the only standard treatment recommended 
for this subtype is chemotherapy [12]. Recently, progress 
has been made in the early diagnosis and treatment of BC, 
which makes BC a treatable disease; however, multidrug 
resistance (MDR) remains a major challenge in the treatment 
of metastatic BC, as the typical survival time of patients 
with metastatic BC is only 2–3 years [13]. Unfortunately, 
this general classification method cannot accurately reflect 
individual differences [14]. It is worth noting that the exist-
ing large-scale databases that contain gene expression data, 
including the TCGA and ImmPort, enable us to search for 
potentially reliable BC biomarkers to predict and classify 
patient prognosis [15].

Increasing evidence has supported the idea that immuno-
cytes in the tumor microenvironment can remarkably pro-
mote or inhibit tumor growth, and thus, they can serve as 
indicators of BC prognosis. In addition, immune escape has 
been verified as a novel cancer marker [16]. In recent years, 
through immunotherapies, such as the BC vaccine, mono-
clonal antibodies (MAb), antibody–drug conjugates (ADCs), 
checkpoint inhibitors and stimulating molecule agonist anti-
bodies, great progress has been achieved in the treatment of 
BC patients [17–20]. Moreover, tumor-infiltrating lympho-
cytes (TILs) and tumor-related macrophages in BC tissues 

have also been found to have crucial functions in the immune 
escape mechanism of tumor cells, and thus, they are remark-
ably related to patient prognosis [21, 22]. Nonetheless, the 
molecular events of tumor cell–immunocyte interaction in 
the BC microenvironment should be further examined and 
summarized, as the contribution of these events and their 
potential roles in predicting the prognosis of BC patients 
should be determined [23].

In this study, a prognostic prediction model for BC was 
developed and verified based on immune-related genes 
retrieved according to the clinical features of patients 
whose data were collected from the TCGA and ImmPort 
databases. Our findings are promising in that they may help 
clinicians evaluate the prognosis and therapeutic options for 
BC patients as well as therapeutic effects.

Materials and methods

Preprocessing of preliminary sample data and initial 
screening of BC immune‑related genes

The most recent clinical follow-up data were downloaded 
on December 14, 2018 through the TCGA GDC API. In 
all, 1222 RNA-Seq data samples were included, as shown 
in Table S1. Overall, 1109 of these 1222 data samples were 
tumor tissues, while the remaining 113 were normal tissues. 
In addition, an immune-related gene set, which covered 1811 
genes, was also downloaded from the ImmPort database on 
October 8th, 2018, as shown in Table S2.

First, the retrieved 1109 RNA-seq data samples were 
preprocessed according to the steps described below: (1) 
39 samples with no clinical data and 21 with 0 OS (overall 
survival) were removed, (2) the normal tissue sample data 
was removed, (3) genes of FPKM (Fragments Per Kilobase 
Million) < 1 were also removed from all samples, and (4) 
only the expression profiles of immune-related genes were 
preserved. Altogether, 1376 genes were used for the sub-
sequent analysis of the model. The preprocessed data are 
shown in Table S3, while the sample statistics of the clinical 
information are displayed in Table 1.

Second, 1068 samples were classified into the training 
set and test set, and random grouping with replacement 
was performed for all samples for 500 times in advance to 
eliminate the impact of random allocation bias on model 
stability. Grouping was performed based on the training set: 
test set ratio of 0.7:0.3 since the BC sample size was over 
1000. Specifically, the most suitable training and test sets 
were selected based on the following criteria: (1) similar 
age distributions, clinical stages, follow-up times and death 
proportions between the two groups; and (2) close binary 
sample sizes in the two randomly divided datasets after clus-
tering the gene expression profiles. The final training set data 
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(n = 533) are displayed in Table S4, and the test set data are 
shown in Table S5 (n = 535). Moreover, the clinical infor-
mation statistics of both the test set and training set samples 
are presented in Table 1. The final information of both the 
training set and test set samples is shown in Table 1. No 
significant difference was observed between the training set 
and test set data, as verified by the P value, which indicated 
reasonable sample grouping.

Single‑factor survival analysis of immune‑related 
genes in the training set

All immune-related genes were analyzed using the univari-
ate Cox proportional hazards regression model; at the same 

time, survival data were evaluated by the survival coxph 
function of R software [24], and p < 0.05 served as the sig-
nificance threshold.

Screening of specific immune‑related genes for BC 
prognosis and construction of the prognostic 
prediction model

First, the least absolute shrinkage and selection operator 
(Lasso, Tibshirani, 1996) algorithm was used to further nar-
row the range of prognosis-specific immune-related genes 
under the condition of maintaining high accuracy. Moreover, 
the glmnet package of R software was used for the lasso Cox 
regression analysis. Next, to further compress the number of 
immune-related genes, the R package MASS was employed 
for stepwise regression analysis using the Akaike informa-
tion criterion (AIC), which considered the degree of fit of the 
statistical model as well as the number of parameters used 
in fitting. The StepAIC method in the MASS package origi-
nated from the most complex model, in which one variable 
was deleted sequentially to reduce the AIC; a smaller value 
was indicative of a superior model, which demonstrated a 
sufficient degree of fit and fewer parameters of the model. 
The risk model of 17 genes (Table S7) was finally obtained 
using this algorithm. The results of the stepwise regression 
are presented in Table S8. The formula was as follows:

RiskScore = PIK3CA*0.025861691 + CCR7*0.014541
227 + SEMA7A*0.158263093 + ACVR2A* − 0.43717333
2 + CBL*0.231921725 + PLXNB2*0.014940811 + P LXN 
D1* 0.0 330 74364 +   APO BEC 3 F * −  0. 314 321194 +  N FAT 
C2*  −  0.2571565 3 7 +  NF KBI Z * −  0. 046 977 1 78 + TN F SF4 
*0. 169 7 699 6 +  DA XX*  − 0.03439 5 422  +  TLR 2*0.0230 3 
790 5 +  SE MA3B* −   0.0 449 733 58 + HSP A 2*  − 0 .02 313
1493 + TPT1* − 0.001623522 + CCL22* − 0.077745415.

Afterwards, the expression profiles of related genes 
were collected from both the training set and test set; sub-
sequently, they were incorporated into the model to cal-
culate the RiskScore of all the samples. Then, the median 
RiskScore served as the threshold by which the samples 
were classified into either the high-risk group (Risk-H) or 
the low-risk group (Risk-L); afterwards, a receiver-operating 
characteristic (ROC) curve analysis, Kaplan–Meier (KM) 
analysis and gene-clustering analysis were performed to 
comprehensively assess the efficiency, accuracy and stabil-
ity of the model in predicting and classifying the prognosis 
of BC patients.

Functional annotations and signaling pathway 
enrichment of immune‑related genes specific 
for prognosis

The gene families of the 17 screened genes were annotated 
according to the human gene classification in the HGNC 

Table 1  Sample statistics of training set and test set

Clinical Features Overall Train Testing p value

OS 1068 533 535 0.862408
T 1068 533 532 0.356377
T1 279 155 124
T2 616 291 325
T3 132 70 62
T4 38 17 21
TX 3 0 3
N 1068 526 525 0.613292
N0 502 256 246
N1 357 182 175
N2 119 58 61
N3 73 30 43
NX 17 7 10
M 1068 461 444 0.688259
M0 883 451 432
M1 22 10 12
MX 163 72 91
Stage 1068 521 525 0.424994
I 181 106 75
II 606 297 309
III 239 109 130
IV 20 9 11
X 22 12 10
Age 1068 533 535 0.515704
0 ~ 40 75 42 33
40 ~ 50 219 118 101
50 ~ 60 283 143 140
60 ~ 70 277 124 153
70 ~ 100 214 106 108
IHC_Her2 1068 306 296 0.701374
0 59 31 28
1 + 263 134 129
2 + 194 101 93
3 + 86 40 46
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(Human Gene Nomenclature) database [25]. Specifically, 
the clusterProfiler package of R software was used for the 
KEGG (Kyoto Encyclopedia of Genes and Genomes) and 
GO (Gene Ontology) enrichment analyses for the above-
mentioned 17 immune-related genes specific for prognosis. 
Specifically, the gene sets that intersected with the 17 genes 
were compared in each GO term and KEGG pathway. The 
GO term or KEGG pathway was considered annotated by 
the genes if there was an intersection, and finally, all the GO 
terms and KEGG pathways that annotated to the 17 genes 
were obtained.

Correlation between the RiskScore and signaling 
pathways as well as the clinical features 
of the samples

First, the KEGG functional enrichment scores of all sam-
ples were analyzed using the single-sample gene set enrich-
ment analysis (ssGSEA) function of the R software package 

GSVA [26]. In addition, the correlation with the RiskScore 
was calculated, and a clustering analysis was performed 
according to the enrichment score of each sample in each 
pathway.

Subsequently, the correlations of related factors (includ-
ing T, N, M, Stage, Age and HER2 expression) with the 
RiskScore were evaluated. Then, the nomogram model and 
forest plot were established using the clinical features (such 
as T, N, M, Stage, Age and HER2 expression) as well as the 
RiskScore, and the correlations of the RiskScore and the 
various clinical features with patient survival were assessed. 
The analysis process is shown in the Figure workflow.
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Results

Retrieval of immune‑related genes based 
on the survival and prognosis of BC patients

First, related data were downloaded from the TCGA and 
ImmPort databases and were then preprocessed (see “Mate-
rials and methods”). Subsequently, all the immune-related 
genes and survival data were analyzed by a univariate Cox 
proportional hazards regression model using the survival 
coxph function of R, with the significance level set at 
p < 0.05, as shown in Table S6. Eventually, 62 significantly 
different immune-related genes that were also associated 
with prognosis were discovered. The relationships of the p 
values of these 62 genes with the HR and expression levels 
are shown in Fig. 1.

Screening of prognosis‑specific immune‑related 
genes and construction of the prognostic prediction 
model for BC

Sixty-two immune-related genes were recognized, but many 
of these genes are not suitable for clinical detection. Con-
sequently, the scope of immune-related genes was further 
narrowed to guarantee high accuracy. Thus, the R software 
package glmnet was used for the lasso Cox regression to 
refine the prognostic genes identified above, which led to a 
reduction in gene numbers from 62 to 29. Moreover, the R 
package MASS was employed for stepwise regression analy-
sis using the AIC, which considered the degree of fit of the 
statistical model and the number of parameters used for fit-
ting. On the contrary, the StepAIC method in the MASS 
package originated from the most complex model, in which 
one variable was deleted sequentially to reduce the AIC; a 
smaller value suggested a superior model, which indicates 
a sufficient degree of fit and fewer parameters of the model. 
Finally, the risk model of 17 genes was obtained using this 

algorithm (Table S7). The formula is provided in the “Mate-
rials and methods”.

Subsequently, training set samples were incorporated into 
the formula to calculate the RiskScore for all the samples, 
and the median RiskScore served as the threshold by which 
the samples were divided into either the high risk (Risk-H) 
or low risk (Risk-L) group. Furthermore, ROC curve analy-
sis of the prognostic classification for the RiskScore was per-
formed using the survivalROC package of R software. The 
OS distribution of the samples was approximately > 2 years 
(Fig. S1); as a result, the model predicting effect for the 3-, 
5- and 10-year survival was evaluated in this study, with 
an average AUC of approximately 0.789, as presented in 
Fig. 2a. In addition, the sample distribution in the Risk-H 
and Risk-L groups under different OS periods is presented 
in Fig. 2b. As could be observed, no obvious difference in 
sample size was detected between the 0- and 1-year OS of 
the Risk-H and Risk-L groups; moreover, the sample size in 
the Risk-H group after the 5th year was dramatically smaller 
than that in Risk-L group, which had become markedly sig-
nificant as the OS extended (Fig. 2c). The clustering results 
of the training set samples are presented in Fig. 2d. Obvi-
ously, the abovementioned 17 genes could be markedly clus-
tered into high and low expression groups, while samples 
in the training set could also be assigned to two groups; the 
RiskScore values of the two subclasses were also compared 
(Fig. 2e).

In addition, to further confirm the stability and reliabil-
ity of the prognostic prediction model, the expression pro-
files of these 17 genes were obtained from the test set and 
then integrated into the model for model verification; at the 
same time, the RiskScore of the samples was also calculated. 
Afterwards, data in the test set were used to evaluate the 
ability of the model to predict the 3-, 5- and 10-year survival 
rates. As shown in Fig. 3a, the average 3–10-year AUC is 
0.726. The sample distribution in both the Risk-H and Risk-
L groups at different OS periods is also displayed in Fig. 3b. 
No significant difference was observed in OS between the 

Fig. 1  The relationships 
between the p values of 62 
genes and the HR and expres-
sion levels. a The relationships 
of the p values of 62 genes and 
the HR is shown. b The rela-
tionships of the p values of 62 
genes and the expression levels. 
Red dots represent significantly 
different immune-related genes 
(p < 0.05) associated with 
prognosis
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Risk-H group and Risk-L group at 0 and 1 year; in addition, 
the sample size in the Risk-H group after the 3rd year was 
notably reduced compared with that in the Risk-L group, 
which became more obvious as the OS increased (Fig. 3c). 
The clustering results for the samples in the test set and the 
difference in RiskScore values between the two groups are 
shown in Fig. 3d and e, respectively.

To further validate the stability as well as the reliability 
of the prognostic prediction model, the expression profile 
data of the abovementioned 17 genes were extracted from 
a total of 1068 samples, followed by substitution into the 
model. This was performed to calculate the RiskScore values 
for model validation, as previously described. The series of 
results are shown in Fig. 4. Taken together, the verification 
results based on the test set data suggested that the prognos-
tic model established on the basis of the expression profiles 
of these 17 immune-related genes displayed excellent pre-
diction accuracy and stability in identifying immune-related 
features.

Finally, the KM survival curves of the risk model, which 
were constructed based on the 17 genes in predicting the 
Risk-H and Risk-L groups for the training set, test set and 
all samples, are shown in Fig. 5. Figure 5a shows the KM 

survival curve of the training set (p < 0.0001), Fig. 5b shows 
the KM survival curve of the test set (p < 0.01), and Fig. 5c 
shows the KM survival curve of all the samples (p < 0.0001).

Functional annotations of immune‑related genes 
and signaling pathway enrichment specific 
to prognosis

First, the gene families of the 17 obtained genes were anno-
tated in accordance with the human gene classification in the 
HGNC database. As presented in Table 2, two genes were 
enriched into the Plexins family, and two genes were also 
significantly enriched in the Semaphorins family (p < 0.01). 
Moreover, the clusterProfiler package of R software was also 
used for the enrichment analyses of the 17 abovementioned 
immune-related genes specific to prognosis. The results of 
the GO enrichment are displayed in Fig. 6a, the results of 
the KEGG pathway enrichment analysis are presented in 
Fig. 6b, and data related to the GO and KEGG analyses are 
shown in Table S9 and Table S10, respectively. These results 
demonstrate that most of the abovementioned genes could be 

Fig. 2  Verification of the stability of the prognostic prediction model 
included 17 immune-related genes for the BC patient training set. a 
The predicted survival according to the ROC curves of the 17-gene 
risk model in the training set. b The distribution of samples in the 
Risk-H and Risk-L groups of the training set divided through the 

17-gene risk model under different OS periods. c The level of Risk-L 
group/total sample size with the extension in OS in the training set. 
d The clustering results of the training set samples. e Difference in 
the RiskScore between the two groups, which were clustered by the 
expression of 17 genes in the training set samples
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enriched in multiple immunity- and cancer-related biological 
processes and signaling pathways.

Correlation of the RiskScore with the signaling 
pathways and clinical features of the samples

First, the KEGG functional enrichment scores of samples 
in the training set and test set and then those of all samples 
were analyzed using the ssGSEA function of the R soft-
ware package GSVA. Moreover, the correlations with the 
RiskScore were also calculated according to the enrichment 
scores of all pathways in all samples. In all, 45 related KEGG 
pathways were obtained and are shown in Tables S11-S13. 
Among them, the top 50% of pathways were selected for the 
clustering analysis according to their enrichment scores, as 
shown in Fig. 7. The JAK/STAT signaling pathway, Insulin 
signaling pathway and Pathways in cancer had the best cor-
relation with a correlation coefficient of approximately 0.36.

Thereafter, the correlations of various factors (includ-
ing T, N, M, Stage, Age and HER2 expression) with the 
RiskScore were also analyzed, as shown in Fig. 8. Clearly, 
obvious associations were found between other features and 
the RiskScore (p < 0.05), which reveals that the RiskScore 
model was dependent on these clinical features.

On the contrary, the nomogram model was constructed 
using the RiskScore along with the clinical features. A 
nomogram is a method that can be used to intuitively and 
effectively demonstrate the results of a risk model, which 
can conveniently predict outcomes. In the nomogram, the 
straight-line length was used to examine the impacts of 
different variables (and their values) on the outcome. In 
this study, the nomogram model was established using the 
clinical features (including T, N, M, Stage, Age and HER2 
expression) together with the RiskScore, as shown in Fig. 9. 
According to the model results, the RiskScore features 
remarkably affected the prediction of the survival rate, which 
indicates that the risk model based on the 17 genes could 
efficiently predict prognosis.

Finally, the forest plot was established using both the 
RiskScore and the clinical features. Notably, the forest plot 
allows us to simply and intuitively illustrate the pooled sta-
tistical results of different research factors, which generally 
treats an ineffective line vertical to the X-axis (generally at 
the coordinate of X = 1 or 0) as the center, while several 
segments parallel to the X-axis represent the effect size and 
95% confidence interval (CI) of each study. In this study, the 
forest plot was generated using the clinical features, such as 
T, N, Stage, Grade, Age, Alcohol consumption and Smoking 

Fig. 3  Verification of the reliability of the prognostic prediction 
model included 17 immune-related genes for the BC patient test set. a 
The survival predicted by the ROC curves of the 17-gene risk model 
in the test set. b The distribution of samples in the Risk-H and Risk-L 
groups of the test set divided through the 17-gene risk model under 

different OS periods. c The level of Risk-L group/total sample size 
with the extension in OS in the test set. d The clustering results of 
the test set samples. e Difference in the RiskScore between the two 
groups, which were clustered by the expression of 17 genes in the test 
set samples
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status; the RiskScore was also calculated by the risk model, 
as shown in Fig. 10. The HR of the RiskScore was evidently 
increased compared with the HRs of other clinical features 
(p < 0.05). The multivariate Cox regression analyses of the 
various clinical features and the RiskScore are presented in 
Table S14.

Conclusions

BC is a highly complex and heterogeneous malignancy that 
is associated with heterogeneous molecular profiles, clini-
cal responses to therapeutics and prognoses [27]. Tumor 
heterogeneity is responsible for the various BC subtypes, 
which each have different prognoses and sensitivities to 
chemotherapy [28]. In addition, no consistent therapeutic 

Fig. 4  Verification of the reliability of the prognostic prediction 
model included 17 immune-related genes for all the BC patients in 
both sets. a The survival predicted by the ROC curves of the 17-gene 
risk model. b The distribution of all the samples in the Risk-H and 
Risk-L groups divided through the 17-gene risk model under different 

OS periods. c The level of Risk-L group/total sample size with the 
extension in OS. d The clustering results of all the samples. e Differ-
ence in the RiskScore between the two groups, which were clustered 
by the expression of 17 genes

Fig. 5  The KM survival curve of the 17-gene-based risk model in predicting the OS of the Risk-H and Risk-L groups in the training set (a), test 
set (b) and all samples (c)
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benefits can be achieved among different patients from clini-
cal medication, which can be ascribed to their potential tox-
icities and side effects. As a result, postoperative systemic 
adjuvant chemotherapy remains a source of controversy in 
clinical practice. Therefore, it is crucial to discover potential 
BC biomarkers that can predict patient prognosis and recur-
rence, as well as to administer early adjuvant chemotherapy 
to high-risk patients who may benefit [29].

BC has been recognized to be immunogenic, as it involves 
multiple putative tumor-associated antigens (TAAs), such 
as HER2 and Mucin 1 (MUC1) [30, 31]. Notably, over 
the last decade, these TAAs have been treated as targets 
for the development of new cancer vaccines and bispecific 

antibodies (bsAbs), among which, some have been trans-
lated into tumor-specific immune responses and have been 
verified to be clinically beneficial [32]. Immunocytes in BC 
tissue primarily consist of T-lymphocytes (70–80%), while 
the remaining components are derived from B lymphocytes, 
macrophages, natural killer cells and antigen-presenting 
cells (APCs) [33, 34]. Of these, T cells can be activated 
through recognition of the tumor antigens presented by 
APCs; typically, the intensity and quality of T cell activa-
tion signals are related to a variety of interactions between 
the receptor and ligand [35].

Substantial evidence has supported the concept that 
immunocytes in the tumor microenvironment can effectively 

Table 2  17-gene function 
annotation results

Gene family Genes p value Padj

Plexins PLXNB2/PLXND1 2.77E-05 0.000471545
Semaphorins SEMA7A/SEMA3B 0.000115948 0.001971113
Type 2 receptor serine/threonine kinases ACVR2A 0.004392947 0.074680102
Nuclear factors of activated T cells NFATC2 0.004392947 0.074680102
Phosphatidylinositol 3-kinase subunits PIK3CA 0.006582604 0.11190426
Toll-like receptors TLR2 0.008039856 0.136677545
Apolipoprotein B mRNA-editing enzyme 

catalytic subunits
APOBEC3F 0.009495095 0.161416623

Heat shock 70-kDa proteins HSPA2 0.013124409 0.223114961
Tumor necrosis factor superfamily TNFSF4 0.013848769 0.235429069
Endogenous ligands CCL22 0.155987949 1
Ankyrin repeat domain containing NFKBIZ 0.164081906 1
Ring finger proteins CBL 0.201688899 1
CD molecules CCR7 0.253455841 1
Unknown DAXX/TPT1 1 1

Fig. 6  The GO (a) and KEGG pathway (b) enrichment analyses of the 17 specific immune-related genes
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enhance or suppress tumor growth, which can thereby serve 
as a prognostic indicator in BC patients. The interactions 
between the immune system and incipient cancer cells, 
which is also referred to as immunoediting, can be divided 
into 3 phases, namely, elimination, equilibrium, and escape 
[36]. Of these phases, the elimination process suggests that 
the innate and adaptive arms of the immune system will 
recognize the new antigens (derived from mutations or trans-
locations) on the surface of incipient cancer cells, which is 
associated with MHC-I; alternatively, the distress signals 
can be expressed by the transformed cells with chromosomal 
changes (such as aneuploidy or hyperploidy). Finally, the 
immune system will eliminate these abnormal cells [37]. 
The equilibrium status will be reached when the immune 
system fails to eliminate the transformed cells but can stop 
them from further progression, and such a process has been 
deemed to be the dormancy phase during the development 
of primary cancer. This phase is mediated by the equilib-
rium between cells and cytokines (such as IL-12, IFN-γ, 
TNF-α, CD4 TH1, CD8 + T cells, NK cells and γδT cells) 
that promote elimination as well as those that promote the 
persistence of nascent tumors (including IL-23, IL-6, IL-10, 
TGF-β, NKT cells, CD4 Th2, Foxp3 + regulatory T [Treg] 
cells, and MDSCs) [38]. On the contrary, monocytes play 
a crucial role in this process, during which they may differ-
entiate into proinflammatory M1 or anti-inflammatory M2 
types as a result of the effects of the tumor microenviron-
ment [39]. Immune escape of cancer cells may occur through 
various mechanisms. In HR-positive BC, the absence of 
strong tumor antigens and low MHC-I expression allow for 
tumor progression that is unnoticed by the immune system 

[40]. Estrogen exerts an immunosuppressive effect on the 
tumor microenvironment, which can boost tolerance to weak 
immunogenic cancers; moreover, estrogen receptor (ER) 
can be expressed on most immunocytes, including mac-
rophages, T and B lymphocytes, and NK cells [41]. The 
immune response can be polarized to the Th2- rather than 
the Th1-effector immune response in the presence of estro-
gen [42, 43]. In HER2-positive cancer cells, MHC-I presen-
tation is negatively correlated with HER2 expression [44]. 
Typically, triple-negative breast cancer (TNBC) exhibits a 
spectrum of MHC-I presentation and high antigen expres-
sion in the tumor, but immune escape in TNBC has been 
found to be predominantly related to the development of 
the immunosuppressive tumor microenvironment (including 
Tregs, MDSCs and PD-1/PD-L1) [45]. As a result, in the era 
of immunotherapy, it is particularly important to be familiar 
with the molecular events in the tumor-immune microenvi-
ronment to search for biomarkers related to survival predic-
tion in patients with BC of any subtype.

In this study, 17 prognosis-specific immune-related 
genes were discovered through mining, statistics and 
sorting of big data such as that found in the TCGA and 
ImmPort databases; moreover, a prognostic prediction 
model was also constructed, and the RiskScore of the 
patients was calculated. Finally, prediction ability and 
verification were determined. Our findings suggest that the 
prognostic prediction model that was constructed based 
on the expression profiles of specific immune-related 
genes can further classify patients with a definite clini-
cal stage into different subgroups based on the predicted 
survival results. Furthermore, the RiskScore is calculated 

Fig. 7  Correlation of the RiskScore with signaling pathways. The 
KEGG functional enrichment score of each sample was analyzed, 
and the correlation with the RiskScore was calculated based on the 

enrichment score of each pathway in each sample. The top 30 KEGG-
related pathways are shown. The clustering analysis was performed 
according to the enrichment score in the training set
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according to the expression profiles of specific immune-
related genes and should be used in combination with the 
clinical features of patients, which should more precisely 
predict BC patient survival. Taken together, this model 

may contribute to the identification of new BC markers 
in the clinic and can provide multiple targets for the pre-
cise medical treatment of BC. The model can also be used 
for the accurate classification of patients at the molecular 

Fig. 8  The relationship between different clinical factors and the 
RiskScore of BC patients. Comparison of the RiskScore for the 
different factors of T (a), N (b), M (c), stage (d), age (e) and Her2 

expression status (f). The horizontal axis represents the different clin-
ical factors, and the vertical axis represents the RiskScore
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subtype level. Finally, this model is promising in that it 
can guide clinicians in determining the prognosis, clinical 
diagnosis and appropriate therapy for BC patients with 
different immunophenotypes.
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