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Herpesvirus infection of target cells is a complex process involving multiple host cell sur-
face molecules (receptors) and multiple viral envelope glycoproteins. Kaposi’s sarcoma
associated herpesvirus (KSHV or HHV-8) infects a variety of in vivo target cells such as
endothelial cells, B cells, monocytes, epithelial cells, and keratinocytes. KSHV also infects
a diversity of in vitro target cells and establishes in vitro latency in many of these cell
types. KSHV interactions with the host cell surface molecules and its mode of entry in the
various target cells are critical for the understanding of KSHV pathogenesis. KSHV is the
first herpesvirus shown to interact with adherent target cell integrins and this interaction
initiates the host cell pre-existing signal pathways that are utilized for successful infection.
This chapter discusses the various aspects of the early stage of KSHV infection of target
cells, receptors used and issues that need to be clarified, and future directions.The various
signaling events triggered by KSHV infection and the potential role of signaling events in
the different stages of infection are summarized providing the framework and starting point
for further detailed studies essential to fully comprehend the pathogenesis of KSHV.
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INTRODUCTION
Viruses are obligatory parasites that critically rely on their ability to
transmit their genome from infected to uninfected host organisms.
Being an inert particle, viruses have successfully evolved to exploit
the behavior and physiology of their host. Viral infection induces
the activation of various endogenous responses that enable it to
permeate through cell membranes and other barriers to reach the
cytoplasm or nucleus.

Herpesviruses have a large double stranded DNA genome
enclosed in the viral protein shell (capsid) surrounded by a
tegument layer which is enclosed in a lipid envelope with at
least eight distinct viral envelope glycoproteins. A characteris-
tic property of these viruses is that after primary infection they
establish lifelong latent infection in the infected host with peri-
odic reactivation and re-infection. KSHV or human herpesvirus-8
(HHV-8) is a member of the γ2-lymphotropic-oncogenic her-
pesviruses. KSHV is etiologically associated with Kaposi’s sar-
coma (KS) and with at least two lymphoproliferative malignan-
cies, primary effusion lymphoma (PEL) and multicentric Castle-
man’s disease (MCD). It is the newest member of the human
herpesvirus family and is closely related to γ-1 Epstein–Barr
virus (EBV), γ-2 herpesvirus saimiri (HVS) and Rhesus mon-
key rhadinovirus (RRV; Ganem, 2007a,b). KSHV has a double
stranded DNA genome of about ∼160-kb encoding more than
90 ORFs designated 4–75 by their homology to HVS ORFs.
The genome contains gene blocks conserved with other her-
pesviruses as well as divergent regions encoding more than 20
KSHV unique genes (K genes). KSHV encodes several pro-
teins that are homologs of host proteins with immunomodula-
tory, anti-apoptotic, signal induction, transcriptional regulation,

and other functions (Cesarman et al., 1996; Neipel et al.,
1997).

The first step of any viral infection is governed by binding
and entry into target cells. Therefore, to control KSHV infec-
tion, a detailed understanding of how KSHV infects its target
cells utilizing the varied set of cellular receptors, envelope gly-
coproteins, signaling, and modes of entry is essential. Recent
advances indicate that KSHV interacts with multiple host cell sur-
face receptors of adherent target cells and these interactions induce
a network of rapid intracellular signaling pathways, which facili-
tate the various steps of successful infection. Here, we review the
important steps involved in KSHV entry into target cells utilizing
viral envelope–cellular receptor interactions, and signal cascades
inducing dynamic cell membrane changes leading to a productive
latent infection.

KSHV TROPISM
To better understand the underlying multistep complex entry
mechanism(s) initiated by KSHV, one must appreciate the broad
variety of cell types infected both in vivo and in vitro.

In vivo KSHV has a broad tropism as suggested by the detec-
tion of its genome and transcripts in a variety of in vivo cell types
such as CD19+ peripheral blood B cells, endothelial cells, mono-
cytes, keratinocytes, and epithelial cells (Ganem, 2007b). Latent
KSHV DNA is present in vascular endothelial and spindle cells of
KS lesions, associated with expression of latency-associated ORF73
(LANA-1), ORF 72 (v-cyclin D), K13 (v-FLIP), and K12 (Kaposin)
genes and microRNAs (Boshoff et al., 1995; Dupin et al., 1999;
Ganem, 2007b). Lytic infection is also detected in <1% of infil-
trating inflammatory monocytic cells of KS lesions (Dourmishev
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et al., 2003; Ganem, 2007b). Available evidences suggest that B
cells and monocytes are the major reservoir of in vivo latent infec-
tion. Cell lines with B cell characteristics, such as BC-1, BC-3,
BCBL-1, HBL-6, and JSC have been established from PEL tumors
(Dourmishev et al., 2003; Ganem, 2007b). In PEL cells, in addi-
tion to the above set of latent genes, K10.5 (LANA-2) gene is also
expressed (Parravicini et al., 2000; Ganem, 2007b). About 1–3%
of PEL cells spontaneously enter lytic cycle and virus induced
from these cells by chemicals serve as the source of virus. Mul-
tiple genome copies of both KSHV and EBV exist in latent form
in BC-1, HBL-6, and JSC cells while BCBL-1 and BC-3 cells carry
only the KSHV genome (Ganem, 2007b). An endothelial cell line
carrying KSHV has not been established from KS lesions since KS
cells grow poorly in cell culture and viral DNA is lost within a few
passages (Ganem, 2007b).

Kaposi’s sarcoma associated herpesvirus has been shown
in vitro to infect several types of human cells such as B, endothelial,
epithelial, fibroblast cells, CD34+ stem cell precursors of dendritic
cells (DCs), and monocytes (Ganem, 2007b). KSHV also infects
owl monkey kidney cells, baby hamster kidney (BHK-21) cells,
Chinese hamster ovary (CHO) cells, and mouse fibroblasts cells
(Parravicini et al., 2000; Akula et al., 2001a,b, 2002; Birkmann et al.,
2001; Bechtel et al., 2003; Inoue et al., 2003; Garrigues et al., 2008;
Jarousse et al., 2008).

Infection of primary B cells by KSHV does not result in
immortalization and a lytic KSHV replication is seen in acti-
vated B cells. Another characteristic feature of in vitro infection
of human microvascular dermal endothelial cells (HMVEC-d),
human umbilical vein endothelial cells (HUVEC), human fore-
skin fibroblasts (HFF), human endothelial cells immortalized
by telomerase (TIME), and human endothelial cells (HEK-293),
monkey kidney cells (VERO, CV-1), and mouse fibroblasts (Bech-
tel et al., 2003) by KSHV is the expression of latency-associated
genes and the absence of productive lytic replication and thus
providing a reasonable model for studying in vitro latency. How-
ever, latent infection of KSHV in vitro is not persistent and leads
to the loss of viral genome over time (Grundhoff and Ganem,
2004).

Analysis of in vitro KSHV interaction with adherent target
cells and quantitation of infection has been hampered by the
absence of a lytic replication cycle and hence a plaque assay.

Since in vitro KSHV infection results in the expression of latency-
associated genes, various methods have been devised to assess
the different phase(s) of KSHV infection (Parravicini et al., 2000;
Table 1).

KSHV BINDING AND ENTRY INTO TARGET CELLS
Kaposi’s sarcoma associated herpesvirus uses multiple envelope
glycoproteins to complete the binding and entry processes. KSHV
binding to the target cells and identity of the receptors involved in
binding and entry were elucidated by using labeled virus binding
to the target cells at 4˚C as well as other methods (Table 1). These
studies have demonstrated that KSHV binds and enters a variety
of target cells which include human (293, HFF, HeLa, HMVEC-
d, HUVEC, TIME, BCBL-1, BJAB, Raji), monkey (Vero, CV-1),
hamster (BHK-21, CHO), and mouse (Du17) cells. This is demon-
strated by the detection of viral DNA, limited viral gene expression,
and GFP expression (Table 1). Real-time DNA PCR of internalized
KSHV DNA demonstrates a rapid internalization of viral DNA in
the infected endothelial and HFF cells (Krishnan et al., 2004).

KSHV ENVELOPE GLYCOPROTEINS-MEDIATORS OF BINDING
AND ENTRY
Kaposi’s sarcoma associated herpesvirus envelope glycoproteins
play critical roles in mediating virus attachment, entry, assembly,
and egress of virus. Like other herpesviruses, KSHV encodes five
conserved glycoproteins gB (ORF 8), gH (ORF 22), gL (ORF 47),
gM (ORF 39), and gN (ORF 53; Cesarman et al., 1996; Neipel
et al., 1997; Ganem, 2007a). In addition to these glycoproteins,
KSHV also encodes the unique lytic cycle associated glycoproteins
ORF 4, gpK8.1A, gpK8.1B, K1, K14, and K15 (Cesarman et al.,
1996; Neipel et al., 1997; Ganem, 2007a). Among these, ORF 4, gB,
gH/gL, gM/gN, and gpK8.1A are associated with KSHV envelopes
(Baghian et al., 2000; Parravicini et al., 2000; Akula et al., 2001a,b;
Birkmann et al., 2001; Wang et al., 2001; Naranatt et al., 2002;
Koyano et al., 2003).

Kaposi’s sarcoma associated herpesvirus gB is a major enve-
lope glycoprotein. It is synthesized as a 110-kDa precursor protein
which undergoes cleavage and processing to yield envelope asso-
ciated disulfide linked 75 and 54-kDa polypeptides with high
mannose and complex sugars (Baghian et al., 2000; Akula et al.,
2001a; Wang et al., 2003). KSHV-gB mediates viral binding and

Table 1 | Methods employed to study the various stages of in vitro KSHV infection.

Stage of infection Detection methods

1. Binding [H3] Thymidine labeled virus and FITC labeled (FACS) binding assay; viral DNA (ORF73 gene) DNA

quantitation by real-time DNA PCR; electron and confocal microscopy.

2. Signal induction Quantitation of signal molecules induction by Western blots and ELISA; use of chemical inhibitors or

dominant-negative signal molecules.

3. Viral DNA internalization (entry) Real-time DNA PCR for KSHV ORF73 gene after removal of unbound/partially bound virus by

trypsin–EDTA; electron and confocal microscopy.

4. Cytoplasmic trafficking of KSHV Confocal microscopy by colocalizing virus with microtubules and endosomal vesicles; physiological

ligand uptake assays.

5. Nuclear delivery of KSHV DNA Real-time DNA PCR for ORF73 gene in the isolated nuclei of infected cells.

6. Viral gene expression, host gene manipulation Real-time RNA PCR for KSHV and host gene expression; confocal microscopy and FACS for KSHV

ORF73 gene and GFP expression.
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entry by interacting with cell surface heparan sulfate and inte-
grins α3β1, αVβ3, and αVβ5 (Akula et al., 2001a,b, 2002; Veettil
et al., 2008). KSHV-gB interaction with target cells modulates
the host cell signaling pathways by inducing integrin associated
focal adhesion kinases (FAK), Src, PI3-K, and Rho-GTPase activ-
ities (Sharma-Walia et al., 2004). Studies have demonstrated that
besides playing a role in KSHV binding and entry of target cells, gB
is critical for virus maturation and egress (Krishnan et al., 2005).

Distinct from other herpesviruses, the KSHV gpK8.1 gene
encodes two alternatively spliced messages yielding glycoprotein
gpK8.1A and gpK8.1B. Both gpK8.1A and gpK8.1B contain N- and
O-linked sugars, and gpK8.1A is the predominant form detected
within infected cells and in the virion envelopes (Neipel et al., 1997;
Zhu et al., 1999a,b). Like gB, gpK8.1A also possesses the heparan
sulfate binding motif and interacts with cell surface heparan sul-
fate molecules (Wang et al., 2001). Similar to herpes simplex type 1
(HSV-1) gB glycoprotein, recent studies have reported that KSHV
gB and gpK8.1A are enriched in membrane microdomains, lipid
rafts (LRs), during early infection in endothelial cells (Bender et al.,
2003; Chakraborty et al., 2011).

Like in other α, β, and γ-herpesviruses, KSHV gH and gL form
a non-covalently linked complex consisting of 120-kDa gH and
42-kDa gL proteins. KSHV gL is required for processing and intra-
cellular transport of gH and this complex is critical for KSHV
entry (Naranatt et al., 2002). Recent studies show that KSHV gH,
as well as complement binding KSHV ORF4, also interacts with
cell surface heparan sulfate (Mark et al., 2006; Hahn et al., 2009).
Studies have demonstrated that anti-gH and anti-gL antibodies
inhibit KSHV entry without affecting binding to the target cells
(Naranatt et al., 2002).

Kaposi’s sarcoma associated herpesvirus gM and gN also form
a glycosylated heterodimeric complex and are involved in virus
penetration and egress. gN has been shown to be essential for
proper post translational modification and transport of gM to the
cell surface (Koyano et al., 2003). KSHV gM and gN forms a het-
erodimeric complex and were shown to inhibit cell fusion in an
in vitro cell fusion assay (Koyano et al., 2003).

CELLULAR RECEPTORS RECOGNIZED BY KSHV
Most cell surface molecules that herpesviruses bind fall into two
main categories depending on the functional consequences of the
interaction. The major groups include the attachment or binding
factors and entry receptors. Attachment factors promote binding
and concentration of viruses on target cells but may not be very
specific. Often, these involve charge interactions involving heparan
sulfate or other carbohydrate moiety bearing molecules.

The other group comprises entry receptors, including a broad
variety of cell surface molecules capable of either viral fusion to cell
membranes or initiating signaling to promote endocytosis. Entry
receptors are highly specific and vary by cell types. Often, these
molecules are internalized along with the virus, hence are actively
utilized by viruses.

HEPARAN SULFATE AS KSHV ATTACHMENT FACTOR IN
TARGET CELLS
Like many herpesviruses, KSHV utilizes ubiquitous heparan sul-
fate (HS) molecule for binding to most of its target cells. HS

bears carbohydrate residues that facilitate concentration of virus
particles on target cells owing to charge interactions. KSHV infec-
tion can be inhibited by soluble heparin but not by chondroitin
sulfates A and C (Akula et al., 2001a). Pre-treatment of KSHV
with soluble heparin prevents virus binding and subsequent sig-
nal induction. This is a specificity control for KSHV-induced
phenomena. Several B cell lines and primary B cells lack the
Ext1 enzyme, which promotes glycosylation in HS biosynthe-
sis. Due to this, B cells have low HS expression, and thereby
refractory to KSHV infection. However, expression of HS in
BJAB (EBV negative cell line) results in greater susceptibility
to KSHV infection (Jarousse et al., 2008). These studies sug-
gest that KSHV infection of BJAB cells depends on the level of
expression of HS; BJAB cells expressing HS were readily infected
while cells lacking HS were not infected (Kabir-Salmani et al.,
2008).

Kaposi’s sarcoma associated herpesvirus envelope glycopro-
teins gB, gpK8.1A, ORF4, and gH bind to cell surface HS molecules,
thereby emphasizing the importance of cell surface HS for KSHV
attachment to target cells (Birkmann et al., 2001; Akula et al.,
2002; Wang et al., 2003; Hahn et al., 2009). Incubation of KSHV
with soluble heparin and enzymatic removal of cell surface HS
by heparinase I and III inhibits KSHV infectivity. Binding of the
soluble forms of gB and gpK8.1A to target cells is saturable and
can be blocked by soluble heparin (Birkmann et al., 2001; Wang
et al., 2001, 2003).

Many proteins possess more than one of the two heparin bind-
ing domains (HBD), containing the XBBXBX and XBBBXXBX
sequences, where B is a positively charged basic amino acid (lysine,
arginine, or histidine) flanked by an additional positively charged
residue separated by hydrophobic amino acids “X.” The extracel-
lular domain of KSHV gB possesses 108HIFKVRRYRK117, which
is a BXXBXBBXBB type HBD, and is conserved throughout the γ2
herpesviruses. KSHV gpK8.1A also possesses two possible atypi-
cal heparin-binding motifs, 150SRTTRIRV157 (XBXXBXBX) and
182TRGRDAHY189 (XBXBXXBX) whereas KSHV gH lacks the
typical HBD.

Several lines of evidence indicate that KSHV-gB and gpK8.1A
bind to cell surface HS molecules (Akula et al., 2001b; Birkmann
et al., 2001; Wang et al., 2003). Binding of soluble forms of the
proteins made in baculovirus is saturable and can be blocked
by soluble heparin (Wang et al., 2001, 2003). Full length gB and
gpK8.1A in the virion envelope specifically bind heparin–agarose,
and can be eluted by high concentrations of soluble heparin, but
not by chondroitin sulfates (Wang et al., 2001; Akula et al., 2002).
KSHV-gpK8.1A binds to heparin with an affinity comparable to
that of glycoproteins B and C of herpes simplex virus and gpK8.1A
binds more strongly than gB (Wang et al., 2003).

DC-SIGN AS KSHV ENTRY RECEPTORS
Dendritic cell specific intercellular adhesion molecule-3 (ICAM-
3) grabbing non-integrin (DC-SIGN; CD209) is a C-type lectin
present on the dermal DC surface. It has been shown to be used
by many viruses as a receptor including human immunodeficiency
virus (HIV) and more recently by Bunyaviruses (Geijtenbeek et al.,
2003; Lozach et al., 2011). Similarly, KSHV also appears to utilize
DC-SIGN during infection of human myeloid DCs, macrophages,
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and activated B cells (Rappocciolo et al., 2006, 2008). DC-SIGN
blocking monoclonal antibodies and mannan efficiently inhib-
ited KSHV binding and infection. However, the pre-treatment
of cells with anti-DC-SIGN antibodies did not completely block
KSHV binding and infection possibly due to binding to HS and/or
other receptors. KSHV envelope glycoprotein(s) interacting with
DC-SIGN is not known yet and KSHV gB with its high man-
nose sugar is a potential candidate. Recent studies have shown
that activated B cells are infected more efficiently due to increased
expression of DC-SIGN. However, whether HS and other KSHV
receptors are also expressed at higher levels possibly contributing
to the increased infectivity in activated B cells need to be studied
further.

Recent studies have also elucidated that KSHV effectively binds
and enters THP-1, a human acute monocytic leukemic cell line,
using heparan sulfate and integrins (Kerur et al., 2010). Block-
ing DC-SIGN in these cells did not affect KSHV binding; however
KSHV entry was reduced, suggesting that KSHV utilized DC-SIGN
as part of the entry receptor(s) in addition to the previously identi-
fied integrins (α3β1, αVβ3, and αVβ5) in THP-1 cells (Kerur et al.,
2010).

KSHV IS THE FIRST HERPESVIRUS SHOWN TO UTILIZE
INTEGRINS AS ENTRY RECEPTORS IN ADHERENT CELLS
Several viruses utilize multiple integrins for target cell infection
and engaging integrin receptors leading to induction of potent
signaling responses critical for virus infectivity. KSHV-gB pos-
sesses an integrin-binding RGD (Arg-Gly-Asp) motif at amino
acids 27–29. The RGD motif is the minimal peptide sequence of
many integrin ligands known to interact with subsets of cellu-
lar integrins. Several studies have demonstrated that α3β1, αVβ3,
and αVβ5 integrins play roles in KSHV infection. Using RGD
peptides, antibodies against RGD-gB (RGDTFQTSSSPTPPGSSS),
and the extracellular matrix (ECM) protein fibronectin studies
have shown the role of integrins in KSHV infection of HMVEC-d
and HFF cells (Akula et al., 2002). In HMVEC-d and HFF cells,
KSHV interacts with integrin α3β1 as demonstrated by a 30–50%
reduction in infection by pre-treating cells with function block-
ing anti-α3 and β1 antibodies and by mixing virus with soluble
α3β1 integrin before infection, as well as the immunoprecipita-
tion of virus-α3 and β1 complexes by anti-KSHV-gB antibodies
(Akula et al., 2002). Though expression of α3 integrin in CHO
cells increases infectivity, the levels of infection do not reach that
observed in the HMVEC-d and HFF cells strongly suggesting that
KSHV uses multiple receptors (Akula et al., 2002; Naranatt et al.,
2003; Krishnan et al., 2004).

Virus binding and DNA internalization studies suggest that
integrins αVβ3 and αVβ5 also play roles in KSHV entry (Veet-
til et al., 2008). Variable levels of inhibition of virus entry into
adherent HMVEC-d, 293 and Vero cells, and HFF was observed by
pre-incubating virus with soluble αVβ3, αVβ5, and α3β1 integrins,
and cumulative inhibition was observed with a combination of
integrins. Confocal microscopy studies confirmed the association
of KSHV with α3β1 integrins (Veettil et al., 2008; Chakraborty
et al., 2011). A study also revealed the roles of integrins (α3β1,
αVβ3, and αVβ5) in the entry of KSHV in THP-1 and primary
monocyte cells (Kerur et al., 2010).

DISCREPANCIES REGARDING THE ROLE OF INTEGRINS IN
KSHV BIOLOGY
Two studies did not detect a role for α3β1 in KSHV infection. How-
ever, methodological differences could explain the discrepancies.
For example, Inoue et al. (2003) reported the inability of solu-
ble α3β1 integrin and RGD peptides to block KSHV infectivity
in the 293-T cell line. However, the validity of this observation is
questionable since in this study, cells were pre-treated with RGD
peptide and infected with KSHV by using centrifugation and poly-
brene. Both centrifugation and polybrene are known to enhance
virus infection without the need for the virus to interact with spe-
cific receptors. It is well known that polybrene forming a complex
with viral envelope is used for gene delivery into various target cells
bypassing the need of specific receptors. Moreover, Inoue et al.
(2003) studies also pre-incubated the cells with integrins, washed,
and infected with KSHV. This is not a correct design of experiment
since to demonstrate the role of integrin in any viral infection cells
need to be incubated first with anti-integrins antibodies, but not
soluble integrins, prior to viral infections. Similarly, virus needs to
be pre-incubated with soluble integrins before addition to cells to
demonstrate the role of respective integrin in viral infection.

Another study utilized a 15-mer-AHSRGDTFQTSSGCG pep-
tide of KSHV-gB and demonstrated that this peptide mediated the
human fibrosarcoma HT1080 cell adhesion which was blocked by
αVβ3 and αVβ5 antibodies while peptide bound beads detected
only αVβ3 integrin (Garrigues et al., 2008). The GCG amino acids
in the peptide used in this study are not present in the KSHV-gB
sequence and may potentially give rise to dimers and multimers
due to the cystine residue (Garrigues et al., 2008). Though HT1080
cell infection was inhibited by anti-αVβ3 antibodies, the ability of
anti-α3β1 and αVβ5 antibodies to block infection was not exam-
ined (Garrigues et al., 2008). Moreover, co-immunoprecipitation
and colocalization studies to demonstrate the direct association of
KSHV with integrins were not done in these studies. Hence, to dis-
proof that KSHV infection depends upon α3β1, studies should be
carried out with the same target cells that have been used to show
the role of α3β1 integrin in KSHV target cell infection. Moreover,
the differential ability of integrins to block infection remains ques-
tionable in HT1080 cells since another study could not infect these
cells (Veettil et al., 2008). Mouse keratinocytes lacking α3β1 were
infectable with KSHV and expression of human α3 resulted in only
55% of infection in these cells. Even though the level of αVβ3 in
these cells and the ability of anti-αVβ3 to block KSHV infection
were not tested, it was concluded that α3β1 expression must have
a dominant-negative effect on αVβ3 integrin. Later studies clearly
demonstrating the association of KSHV with α3β1 integrin and
LR-KSHV and α3β1 integrins (Veettil et al., 2008; Chakraborty
et al., 2011), it is clear the conclusions from the above two studies
is not correct and should not be considered further.

The discrepancies in the usage of different integrins were
expected since it is common for different cells to express dif-
ferent combinations of integrins and a specific integrin could
be one of the receptors in some but not in all target cells of
KSHV. Since herpesvirus–cell receptor interactions are temporar-
ily coordinated events mediated by interactions of viral glycopro-
teins with one receptor leading to conformational changes in the
viral glycoproteins allowing interaction with the next receptor(s),
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detection of α3 and β1 in HFF or HMVEC-d cells incubated with
virus or purified gB (Akula et al., 2002) could be representing the
event occurring during virus–host cell interactions under physio-
logical conditions. Further studies are required to determine the
role of additional receptor(s) in different target cells of KSHV.

Later studies demonstrated that αVβ3 and αVβ5 integrins also
play roles in KSHV entry of adherent target cells (Veettil et al.,
2008; Chakraborty et al., 2011; Table 2; Figure 1). Studies have also
demonstrated the neutralization of KSHV infection in HMVEC-d
and HFF cells upon blocking with anti-αVβ3 and αVβ5 antibodies.
Supporting these findings, KSHV entry was inhibited by soluble
α3β1, αVβ3, and αVβ5 integrins in HMVEC-d, HFF, 293, and
Vero cells (Veettil et al., 2008). Though a cumulative inhibition
was observed with combinations of integrins, complete block in
infection was not achieved which may be due to KSHV’s first inter-
action with HS. The role of integrin in KSHV infection of HUVEC
cells, B cells, monocytes, keratinocytes, and other cells has not been
studied (Table 2).

ROLE OF xCT AS A KSHV ENTRY RECEPTOR
Kaleeba and Berger (2006) identified the 12-transmembrane gluta-
mate/cysteine exchange transporter protein xCT as a fusion-entry
receptor in adherent cells. Ectopic expression of xCT rendered
the non-susceptible adherent target cells to become susceptible
to KSHV infection (Kaleeba and Berger, 2006). xCT is part of
the cell surface 125-kDa disulfide linked heterodimeric membrane
glycoprotein CD98 (4F2 antigen) complex containing a common
glycosylated heavy chain (80-kDa) and a group of 45 kDa light
chains. The xCT molecule is one of the light chains (Fenczik et al.,
2001; Feral et al., 2007; Kabir-Salmani et al., 2008; Veettil et al.,
2008). CD98 was initially identified as a molecule associated with
integrin α3 and plays multiple roles including amino acid trans-
port, cell adhesion, fusion, proliferation, and integrin activation.
It is interesting to note that CD98 and integrin α3 were identified
as fusion regulation protein 1 (FRP-1) and FRP-2, respectively, as
this interaction was shown to play crucial roles in cell–cell fusion
and virus-induced cell fusion (Fenczik et al., 2001; Feral et al.,
2007; Kabir-Salmani et al., 2008; Veettil et al., 2008). Studies show
that xCT is a component of a multimolecular signaling complex
formed during KSHV macropinocytosis in HMVEC-d cells (Veet-
til et al., 2008; Chakraborty et al., 2011). This suggests that xCT
plays a role within a multimolecular complex that may help to reg-
ulate the signaling pathways associated with the endocytic pathway

of the virus. It is possible that the xCT present in the multimole-
cular complex may initiate a distinct cellular signaling pathway to
control the various events associated with KSHV infection. Since
a direct interaction of KSHV envelope glycoproteins with xCT has
not been shown as yet, the exact role of xCT in the multimolecular
complex and its role in KSHV infection need to be investigated
further.

MULTIMOLECULAR INTEGRIN COMPLEX FORMATION
DURING EARLY KSHV INFECTION
CD98 also mediates membrane clustering, β1 integrin-mediated
signaling events, and stimulation of α3β1-dependent adhesion of
cells and signal transduction cascade of αVβ3 integrin (Fenczik
et al., 2001; Feral et al., 2007; Kabir-Salmani et al., 2008; Veettil
et al., 2008). Co-immunoprecipitation and immunofluorescence
studies in KSHV infected HMVEC-d cells have shown a time-
dependent interaction of CD98/xCT with integrins α3β1, αVβ5,
and αVβ3 (Veettil et al., 2008). Three different time-dependent
temporal patterns of association and dissociation of KSHV inter-
actions with cell surface molecules were observed. Integrin αVβ5
interaction with CD98/xCT predominantly occurred by 1 min
post-infection (p.i.) and dissociated at 10 min p.i., whereas α3β1–
CD98/xCT interaction was maximal at 10 min p.i. and dissociated
at 30 min p.i., and αVβ3–CD98/xCT interaction was maximal at
10 min p.i. and remained at the observed 30 min p.i. Confocal
microscopy studies confirmed the association of CD98/xCT with
α3β1 and KSHV. Studies also showed that α3β1–CD98/xCT inter-
actions could be inhibited by pre-incubating KSHV with soluble
heparin and α3β1 strongly suggesting that KSHV’s first contact
occurs with HS, and integrins are essential elements in subse-
quent CD98–xCT interactions (Veettil et al., 2008). These studies
demonstrated temporal interactions of KSHV with a family of
functionally related proteins such as HS, integrins, and CD98–
xCT molecules in endothelial, epithelial, and fibroblast cells (Wang
et al., 2001, 2003; Akula et al., 2002; Veettil et al., 2008).

BIOLOGICAL RELEVANCE OF UTILIZING MULTIPLE ENTRY
RECEPTORS BY KSHV
It is fascinating to note that KSHV uses multiple molecules to
enter target cells. The presence of multiple receptors is evolution-
arily advantageous for KSHV and one of the major reasons for
the broad tropism of the virus. Although virus–receptor interac-
tions are highly specific, the affinity of interactions are low (Marsh

Table 2 | Binding and entry receptors and entry pathways of KSHV in various in vitro human target cells.

Target cells Receptors recognized Entry pathway

Human foreskin fibroblast cells (HFF) Heparan sulfate (binding), α3β1, αVβ3, αVβ5, xCT/CD98 Clathrin-mediated endocytosis

Human microvascular dermal endothelial cells (HMVEC-d) Heparan sulfate (binding), α3β1, αVβ3, αVβ5, xCT/CD98 Macropinocytosis

Human umbilical vein endothelial cells (HUVEC) Heparan sulfate (binding) Macropinocytosis mediated

endocytosis

Human embryonic kidney epithelial cells (HEK-293 with

adenovirus 5 DNA nts 1–4344 integrated into chromosome

19 (19q13.2)

Heparan sulfate (binding) Endocytosis

Monocytes HS, DC-SIGN Endocytosis

B cells HS, DC-SIGN Endocytosis
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FIGURE 1 | Schematic model depicting the different overlapping phases

of KSHV entry and infection in endothelial (HMVEC-d) target cell. KSHV
infection is initiated by binding to the cell surface proteoglycan heparan
sulfate [HS; Stage 1: binding; inset electron microscopic, (EM) picture],
followed by subsequent temporal associations with integrins (α3β1, αVβ3,
αVβ5) and xCT molecules in the non-lipid raft (NLR) parts of the membranes.
KSHV’s interactions with integrins activate FAK at tyrosine 397, which creates
a binding site for the SH2 domain containing Src family kinases, subsequently
leading to the activation of PI3-K and Rho-GTPases (Stage 2: signal induction).
These rapid overlapping host cell signal induction play roles in actin
modulation, formation of endocytic vesicles, and virus entry and trafficking
through the cytosol leading into a productive infection (Blue arrows). KSHV
infection induces the phosphorylation of c-Cbl and the phosphorylated c-Cbl
forms a complex with p85-PI3-K, leading into the interaction of c-Cbl with
downstream molecules. c-Cbl mediates a rapid selective translocations of
KSHV into the lipid rafts (LRs) along with the α3β1, αVβ3, and xCT receptors.
KSHV-associated αVβ5 remains in the NLR parts of the membranes. Activated
c-Cbl localizes with LRs, associates with myosin IIA and actin, and is rapidly
recruited to membrane blebs. This also leads into c-Cbl mediated

ubiquitination of actin and myosin. c-Cbl mediated monoubiquitination of
translocated receptors is followed by productive macropinocytic entry.
Myosin IIA interactions with actin may be providing the ATP-dependent force
to generate actomyosin contraction, bleb retraction to form macropinosomes
along with KSHV (Stage 3: internalization; inset EM picture). NLR associated
KSHV bound αVβ5 and other receptors are polyubiquitinated and directed to a
clathrin-dependant lysosomal non-productive pathway. RhoA activates Dia-2
aiding in formation and movement of endosomes through the cytoplasm.
KSHV capsid is released from the endocytic vesicles by fusion of viral
envelope with endosomal vesicles (Stage 3: internalization; inset EM picture).
Released capsids are transported toward the nucleus utilizing a Rho-GTPase
dependant pathway that involves acetylation of microtubules (MT; Stage 4:
movement in cytoplasm). KSHV capsid disassembly at or near the nuclear
pore results in the delivery of KSHV DNA into the infected cell nucleus (Stage
5: nuclear delivery) followed by viral and host gene expression (Stage 6)
initiated by KSHV binding and entry induced ERK and NF-κB pathways. All
these events demonstrate that KSHV has evolved to utilize its interactions
with cellular receptors to manipulate host cell signaling and to induce an
environment that is conducive for a productive infection.

and Helenius, 2006). Hence, KSHV binding to multiple receptors
(mainly integrins) possibly increases binding avidity that leads to
receptor clustering, a key step to activate signaling pathways. It is
widely known that integrins are a signaling hub for a variety of
processes including adhesion, motility, and endocytosis.

Deciphering the interactions between entry receptors and sig-
naling leading to active endocytosis of viruses has been an active
area of research for the past decade. However, in KSHV biol-
ogy, recent advancements have revealed that receptor recruitment

by KSHV is tightly succeeded by an active modulation of host
cell membranes involving actin–myosin and other cellular signal-
ing (Raghu et al., 2009; Valiya Veettil et al., 2010; Chakraborty
et al., 2011). Detailed understanding of how KSHV induced such
changes in the cell membrane very early during infection comes
from its ability to manipulate a variety of host cell molecules to
regulate signaling. The usage of multiple receptors possibly adds
greater gradient to the succeeding signaling events required for
efficient entry into target cells.
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KSHV-INDUCED SIGNALING DURING EARLY INFECTION
Many viruses, including KSHV make use of host cell signaling to
enter target cells and establish productive infection. Binding and
interaction of KSHV glycoproteins with integrins and other cellu-
lar receptors initiates intracellular signaling cascades to induce
internalization. This internalization appears to be very rapid,
reaching a peak by 60-min p.i. (Krishnan et al., 2004) and there-
fore signaling induced by the virus is very active within this time
frame. Integrins are closely associated with FAK and Src kinases
and is known to regulate them through a variety of other pathways.
Since KSHV utilized a variety of integrins as its cellular receptor,
it is evident that the virus has evolved ways to induce the integrin
associated signaling.

Kaposi’s sarcoma associated herpesvirus induces the phospho-
rylation of FAK and the subsequent phosphorylation of a variety
of focal adhesion associated signal molecules such as Src, PI3-
K, Rho-GTPases (RhoA, Rac, and Cdc42), and diaphanous-2, as
well as several other downstream effector molecules, producing
actin rearrangements that eventually lead to the internalization
of KSHV. Induction of these signaling pathways is critical for
active internalization of KSHV in target cells. The fact that a
low multiplicity of infection is able to induce a sequential cas-
cade of signaling events is a unique feature of KSHV infection.
Several studies have elucidated that a low dose of KSHV (5–10
DNA copies/cell) is able to induce signaling events critical for
entry, expression of viral genes, and latent infection (Sharma-
Walia et al., 2005; Veettil et al., 2008; Valiya Veettil et al., 2010;
Chakraborty et al., 2011). KSHV induces macropinocytic blebs as
early as 1 min p.i., engage clustering of integrins, activate adaptors
like c-Cbl, mediate receptor translocations, and induce ERK1/2
for establishing latent infection (Sharma-Walia et al., 2005; Veet-
til et al., 2008; Valiya Veettil et al., 2010; Chakraborty et al.,
2011).

INTEGRIN ASSOCIATED SIGNALING: FOCAL ADHESION
KINASES AND THEIR RELEVANCE IN KSHV ENTRY
Focal adhesions are multifunctional organelles that mediate
cell–ECM adhesion, force transmission, cytoskeletal regulation,
and signaling. Focal adhesions consist of a complex network
of trans-plasma-membrane integrins and cytoplasmic linking
of the ECM to the actin cytoskeleton (Riveline et al., 2001).
FAK, a major component of focal adhesions, is a multido-
main non-receptor tyrosine kinase involved in signaling down-
stream of integrins. Ligand interaction with integrins activates
FAK by autophosphorylation at tyrosine 397, a key step ini-
tiating integrin outside-in signaling (Calderwood et al., 2000;
Giancotti, 2000). Activated FAK associates with a lot of other
signal molecules to regulate a broad range of functions includ-
ing cell growth, endocytosis, and apoptosis (Giancotti, 2000,
2003).

Kaposi’s sarcoma associated herpesvirus infection induced
tyrosine phosphorylation of FAK within minutes of infection
in HMVEC-d, HFF, 293, and FAK +/+ mouse Du17 fibrob-
lasts (Akula et al., 2002; Naranatt et al., 2003; Wang et al., 2003;
Sharma-Walia et al., 2004, 2005; Veettil et al., 2006; Raghu et al.,
2007). Soluble glycoprotein gB also induced FAK autophospho-
rylation (Wang et al., 2003; Sharma-Walia et al., 2004) and the

phosphorylated FAK colocalizes with Src, RhoA, and cytoskele-
tal proteins like vinculin and paxillin in the infected cells (Akula
et al., 2002; Wang et al., 2003; Sharma-Walia et al., 2004; Veettil
et al., 2006). Additionally, virus or gB pre-incubated with sol-
uble α3β1 integrin or a soluble form of gB in which the RGD
sequence had been mutated inhibited the activation of FAK (Akula
et al., 2002; Wang et al., 2003; Sharma-Walia et al., 2004). Since
FAK activation is a hallmark of integrin-mediated signaling, FAK
knockout cells or cells transfected with integrin have been used to
study the role of FAK in integrin-mediated signaling. KSHV infec-
tion studies with FAK negative (Du3) and FAK positive (Du17)
mouse fibroblasts and CHO cells transfected with human α3 inte-
grin demonstrated a significant role of FAK in KSHV infection
(Naranatt et al., 2003; Krishnan et al., 2006). Heparin inhibited
the binding of KSHV in both DU3 and DU17 cell types. FAK
negative Du3 cells showed an approximately 70% reduction in
KSHV DNA internalization and over-expression of FAK (Du17)
increased viral DNA internalization, thus suggesting that FAK
plays a significant role in signaling and KSHV entry. In addition to
this, over-expression of FAK-related non-kinase (FRNK), a FAK
dominant-negative inhibitor, significantly decreased KSHV entry
in DU17 cells. Decreased viral entry, nuclear delivery, and viral
gene expression in Du3 cells suggest that another protein may
be able to compensate for FAK’s function early during infection.
KSHV infection in Du3 cells induced the phosphorylation of the
FAK-related proline-rich tyrosine kinase (Pyk2) molecule, which
demonstrated that the Pyk2 molecule compensate for the loss of
some of the functions of FAK in FAK negative cells during KSHV
infection. Moreover, inhibition of Pyk2 by an autophosphoryla-
tion mutant of Pyk2 also significantly reduced viral entry in DU3
cells (Krishnan et al., 2006). Since activation of FAK plays a central
role in integrin-mediated signaling, rearrangement of actin and
endocytosis, KSHV must have evolved to take advantage of these
signaling pathways both to promote entry and the subsequent steps
of infection (Figure 1).

ROLE OF Src AND PI3-KINASES IN KSHV ENTRY AND
INFECTION
The autophosphorylation site of FAK (Tyr397) creates a binding
site for the SH2 domain of Src kinases and the p85 subunit of PI3-
K. KSHV infection induced a strong phosphorylation of Src within
minutes of infection, and the phosphorylated Src colocalized with
FAK (Veettil et al., 2006). KSHV-gB also induced the FAK depen-
dent Src phosphorylation in adherent target cells (Sharma-Walia
et al., 2004) and the activated Src kinases then phosphorylate a
number of FA components. Furthermore, Src is required for the
activation of PI3-K and other downstream targets such as Rho-
GTPases. The critical role of Src in the KSHV entry process has
been validated by multiple lines of evidences such as the failure of
KSHV to enter Src negative mouse fibroblast cells (unpublished
observation), increase in Src activity by LR disruption resulting in
enhanced virus entry (Raghu et al., 2007). Another observation
showed that RhoA-GTPase facilitated KSHV entry into adher-
ent target cells in a Src-dependent manner. This study suggests
that KSHV-induced Src is involved in RhoA activation, which in
turn results in positive feedback activation of Src to increase viral
entry.
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PI3-Kinases (PI3-K) are heterodimeric proteins, consisting of
a p85 regulatory subunit and a catalytic p110 subunit while phos-
phorylation of specific tyrosine residues on the p85 subunit is an
indication of PI3-K activation. PI3-kinases play crucial roles in
several signaling pathways and regulate multiple functions such as
Rho-GTPase activation, apoptosis, survival, and migration (Gian-
cotti, 2000; Sastry and Burridge, 2000). KSHV induces PI3-K
within 5 min p.i. which decreased after 15 min and this response
can be inhibited either by pre-incubating virus with integrin or
by the PI3-K inhibitors wortmannin and LY294002 (Naranatt
et al., 2003). LY294002 and wortmannin did not affect KSHV-
gB induced Src phosphorylation whereas the Src kinase inhibitor
SU6656 completely blocked KSHV-gB induced p85-PI3-K phos-
phorylation suggesting that PI3-K is downstream of Src (Sharma-
Walia et al., 2004). In FAK positive Du17 cells, KSHV-gB induced
PI3-K p85 phosphorylation whereas in FAK-null Du3 cells there
was no significant induction of PI3-K p85 phosphorylation. This
study suggests that FAK is an essential molecule for the induction
of PI3-K during KSHV infection. Treatment of cells with PI3-K
inhibitors wortmannin and LY294002 reduced PI3-K activation
and viral entry in a concentration dependent manner suggest-
ing the role of PI3-K activation in the entry of KSHV in target
cells. Induction of PI3-K eventually leads to the induction of Rho-
GTPases and their effectors (Sharma-Walia et al., 2004;Veettil et al.,
2006) which in turn regulates the remodeling of actin, endosome
formation, and the movement of endocytic vesicles. Therefore,
these studies using chemical inhibitors, dominant-negative pro-
teins, or cells lacking these molecules have demonstrated that FAK,
Src, and PI3-K activation were necessary for KSHV entry.

ACTIVATION OF RhoA AND ACTIN DYNAMICS DURING KSHV
INFECTION
RhoA, Rac, and Cdc42-Rho-GTPases are master regulators of
a diverse set of signaling pathways, including cytoskeleton
rearrangement and morphological changes (Giancotti, 2000; Hall
and Nobes, 2000; Ishizaki et al., 2001; Palazzo et al., 2001). Imme-
diately following infection, KSHV induces PI3-K Rho-GTPase-
dependent cytoskeletal rearrangements and the formation of
structures such as filopodia (Cdc42), lamellipodia (Rac), and stress
fibers (RhoA) in the target cells (Naranatt et al., 2003; Veettil
et al., 2006; Greene and Gao, 2009; Raghu et al., 2009). Soluble
gB induced the FAK-Src-PI3-K Rho-GTPase signaling pathway
and extensive cytoskeletal rearrangement in target cells (Sharma-
Walia et al., 2004). KSHV-induced RhoA colocalized with Src in
the infected cells (Sharma-Walia et al., 2004). Ezrin, an actin cross
linking protein with the plasma membrane, was also induced by
KSHV via Rho-GTPases, thereby modulating membrane changes
(Sharma-Walia et al., 2004). Treatment of target cells with a potent
RhoA inhibitor, Clostridium difficile toxin B (CdTxB), or transfect-
ing dominant-negative constructs of RhoA resulted in significant
inhibition of KSHV entry by modulation of Src activity (Veettil
et al., 2006).

Several studies have demonstrated that RhoA-GTPases mediate
rearrangement of cytoskeleton through the activation of its down-
stream effector molecules, formin family diaphanous 1 and 2 (Hall
and Nobes, 2000; Ishizaki et al., 2001; Palazzo et al., 2001). KSHV
infection induced diaphenous-2 without any significant activation

of Rac-1 and Cdc42-dependent PAK1/2 and stathmin molecules.
Dia-2 co-immunoprecipitated and colocalized with activated Src
in the infected cells which were inhibited by Src inhibitors (Veet-
til et al., 2006). Together with the reduced virus entry in RhoA
dominant-negative cells, these results suggest that activated RhoA-
dependent Dia-2 probably functions as a link between RhoA and
Src in KSHV infected cells, mediates the sustained Src activation,
and that KSHV-induced Src and RhoA play roles in facilitating
entry and nuclear delivery of viral DNA.

KSHV-INDUCED ADAPTOR MOLECULE c-Cbl AND
ASSOCIATED MEMBRANE DYNAMICS
The Cbl family of adaptor proteins plays important roles in signal
transduction as negative regulators by mediating the ubiquitina-
tion and down-regulation of proteins while it acting as a positive
regulator through their scaffold function in assembling signaling
complexes (Thien and Langdon, 2001; Schmidt and Dikic, 2005).
Recent evidences have elucidated that KSHV-induced c-Cbl tyro-
sine phosphorylation is required for membrane ruffling known as
blebs (Valiya Veettil et al., 2010). Blebs are protrusions from the
plasma membrane that have often been characterized as a pre-
ceding step in macropinocytosis and are known to be induced
by many viruses including vaccinia virus and KSHV early during
infection (Mercer and Helenius, 2008; Raghu et al., 2009; Valiya
Veettil et al., 2010). The role of c-Cbl in the entry and signaling of
any viral infection has not been reported. Hence it opens up new
directions of studies on the broad cellular requirements required
by viruses for infecting target cells.

Kaposi’s sarcoma associated herpesvirus is known to induce
a variety of endothelial cell membrane alterations including
filopodia and bleb formation (Raghu et al., 2009; Valiya Veettil
et al., 2010). These studies elegantly deciphered the mechanism
behind KSHV-induced membrane bleb formation. KSHV infec-
tion increased c-Cbl interaction with PI3-K in a time dependant
manner. In KSHV infected cells, activated c-Cbl is recruited to
the macropinocytic blebs and associated with its novel interact-
ing partner, myosin IIA inside the membrane blebs very early by
5 min p.i. Studies using shRNA against c-Cbl not only reduced
the macropinocytic blebs induced by KSHV, but also significantly
reduced viral entry by >70% and hence KSHV gene expres-
sion by 90% (Valiya Veettil et al., 2010). This study demon-
strates that recruitment of c-Cbl–myosin in macropinocytic blebs
very early during KSHV infection is essential for its entry via
macropinocytosis in endothelial cells. Although many viruses uti-
lize macropinocytosis to enter target cells, the mechanisms behind
it were unclear (Mercer and Helenius, 2008); however, the role
c-Cbl and myosin IIA in macropinocytic modulation of KSHV
potentiate new avenues of interest in the phenomena of membrane
dynamicity induced by viruses.

ROLE OF LIPID RAFTS: A SIGNALING PLATFORM UTILIZED BY
KSHV IN ENDOTHELIAL CELLS
Lipid rafts, the detergent resistant microdomains in the exo-
plasmic leaflet of plasma membranes, are made up of choles-
terol and sphingolipids (sphingomyelin and glyco-sphingolipids)
and play roles in clustering cell surface receptors and signal
molecules (Simmons, 2001). Lipid microdomains favor specific
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protein–protein interactions including ligand receptor interac-
tions activating signal cascades. KSHV binding was not affected
upon disruption of LRs by methyl beta cyclodextrin or nystatin,
but pre-treatment of HMVEC-d with these LR disrupting drugs
significantly reduced the expression of ORF73 and ORF50 (Raghu
et al., 2007). Although internalization of viral DNA was increased,
the association of internalized viral capsids with microtubules
was reduced upon LR disruption, microtubules disorganized, and
nuclei associated viral DNA decreased (Raghu et al., 2007).

Mechanistic studies on the role of LRs in KSHV infection
revealed more intricate details with relation to entry receptors
and signal molecules. A recent study reported that very early
during infection (1 min p.i.), c-Cbl induced the selective translo-
cation of KSHV into LRs along with α3β1, αVβ3, and xCT
receptors, but not αVβ5 (Chakraborty et al., 2011). Evidence also
suggests that activated c-Cbl localized to LRs at the junctional
base of macropinocytic blebs, thereby aiding macropinocytosis
(Chakraborty et al., 2011). Such partitioning of entry receptors
in LRs by specific signaling adaptors was not reported before and
evokes new insights to the molecular mechanisms of viral–host
cell interactions, often favoring viral internalization.

The role of LRs is complex and affects KSHV-induced signal-
ing. For instance Raghu et al. (2007) reported that LR disruption
affects signal pathways induced by KSHV such that phospho-Src
levels had increased without affecting FAK or ERK1/2. However,
KSHV-induced PI3-K, Rho-GTPases, and NF-κB activation were
significantly reduced. The fact that p-Src increased with LR dis-
ruption is indicative of a strong regulation of Src by LRs. LR
disruption also affects PI3-K and RhoA with subsequent reduction
in KSHV-induced RhoA mediated acetylation and aggregation of
MTs (Raghu et al., 2007).

Cellular signaling can be generated in many ways. Viruses
most often activate cellular signaling directly by using receptors
or induce signaling by clustering specific cell-surface proteins
or lipids (Marsh and Helenius, 2006). KSHV serves an excellent
model system in this regard as it utilizes both pathways; firstly
by activating associated integrin signaling and secondly by clus-
tering activated integrins and signal molecules in LRs, generating
significant amplification of the signaling response; however, the
molecular partners behind such signaling amplification are yet to
be studied.

RECEPTOR UBIQUITINATION: A CRITICAL STEP REQUIRED
FOR PRODUCTIVE KSHV INTERNALIZATION
Ubiquitination of receptors has been recognized as an internaliza-
tion signal based on the nature and type of ubiquitin modifications
(Levkowitz et al., 1998; Dupin et al., 1999). Studies have revealed
an important role of c-Cbl, an E3-ubiquitin ligase, in differential
ubiquitination of KSHV integrin receptors (Chakraborty et al.,
2011). Essentially, LR translocated integrins (α3β1 and αVβ3) were
monoubiquitinated leading to productive macropinocytic entry,
whereas non-LR associated αVβ5 was polyubiquitinated leading
to clathrin mediated entry that was targeted to lysosomes, the
non-infectious pathway (Chakraborty et al., 2011). This elucidates
the complexities of viral endocytic mechanisms and the ability
of KSHV to utilize E3-ubiquitin ligases to regulate and sort out
productive pathways.

DIVERSE INTERNALIZATION PATHWAYS OF KSHV IN TARGET
CELLS
Current evidences show that KSHV enters human B cells (Rappoc-
ciolo et al., 2008), fibroblast (Akula et al., 2003), epithelial (Inoue
et al., 2003; Liao et al., 2003), and endothelial cells (Raghu et al.,
2009) by endocytosis. KSHV was detected by electron microscopy
in large endocytic vesicles within 5 min of HMVEC-d and HFF
cell infection while fusion of virion envelope with the endocytic
vesicles was also observed (Akula et al., 2001a, 2003). Viral capsids
were detected in the vicinity of the nuclear membrane by 15 min
p.i. and anti-KSHV-gB and gpK8.1A antibodies colocalized with
virus-containing endocytic vesicles (Akula et al., 2001a; Greene
and Gao, 2009; Raghu et al., 2009; Table 2).

The roles of different endocytic pathways have been studied
using specific inhibitors of each type. Clathrin-mediated endocy-
tosis is the predominant pathway of entry in HFF cells. Chlor-
promazine, an inhibitor of clathrin-mediated endocytosis, signif-
icantly inhibited entry in HFF cells, whereas nystatin, an inhibitor
of caveolae and cholera toxin B, a LR inhibiting agent did not
have any effect on entry. A significant inhibition of gene expres-
sion was also observed after blocking endosomal acidification
by NH4Cl and bafilomycin A in HFF cells (Akula et al., 2003;
Raghu et al., 2009) suggesting that post internalization endoso-
mal acidification was required for KSHV trafficking. In addition
to this, electron microscopy revealed KSHV virions in large endo-
cytic vesicles within 5-min of HFF cell infection and fusion of
virion envelope with endocytic vesicles was also observed (Akula
et al., 2003; Raghu et al., 2009). Evidence for clathrin-mediated
endocytosis has also been observed in BJAB and 293 cells (Akula
et al., 2001a; Inoue et al., 2003). KSHV enters THP-1 cells and
primary monocytes by clathrin and caveolin dependant endo-
cytosis, which required endosomal acidification (Kerur et al.,
2010).

In HMVEC-d and HUVEC cells, entry and gene expression of
KSHV were significantly blocked by macropinocytosis inhibitors
EIPA and rottlerin. Macropinocytosis of KSHV is an actin depen-
dant endocytic pathway and it was also inhibited by cytochalasin
D (Raghu et al., 2009). Cytochalasin D inhibited actin polymer-
ization and formation of lamellipodial extensions significantly
inhibited the entry and expression of KSHV (Naranatt et al.,
2003; Greene and Gao, 2009; Raghu et al., 2009). The LR inhibit-
ing agents reduced viral gene expression in HMVEC-d cells but
not in HUVEC or HFF cells, indicating the role of LRs in KSHV
infection (Greene and Gao, 2009; Raghu et al., 2009). Colocaliza-
tion studies using clathrin-mediated endocytosis marker, trans-
ferrin and macropinocytosis marker, dextran showed significant
association of KSHV with dextran but not with transferrin or
the caveolar marker caveolin. The dynamin inhibitor, dynasore,
did not affect viral entry into endothelial cells while inhibit-
ing entry into HFF cells (Raghu et al., 2009). The small GTPase
Rab34, a key regulator of macropinocytosis, associated with KSHV
and Rab34-siRNA considerably decreased KSHV gene expression
(Raghu et al., 2009). These studies suggested that KSHV uti-
lizes the actin polymerization-dependent, dynamin-independent
macropinocytic pathway involving a Rab34 GTPase-dependent
late endosome and low-pH environment for its infectious entry
into HMVEC-d and HUVEC cells (Table 2).
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Recent studies have confirmed the role of LRs in aiding the
macropinocytosis of KSHV bound receptors in endothelial cells,
whereas non-LR bound receptors were targeted toward a clathrin
mediated non-infectious lysosomal pathways (Chakraborty et al.,
2011). This study suggests that both macropinocytosis and
clathrin-mediated endocytosis are occurring in endothelial cells,
however the former being productive while the latter is degrada-
tive. KSHV internalized by clathrin-mediated endocytosis clearly
associated with lysosomal compartments (Chakraborty et al.,
2011). Another report suggested that clathrin-mediated endocy-
tosis is the predominant pathway of entry in endothelial cells. This
discrepancy could be due to optimal concentration of the inhibitor
used and the method of quantification used to analyze the entry of
KSHV (Greene and Gao, 2009). The detection of KSHV by ORF65
(KSHV capsid protein) in perinuclear regions of HUVECs does
not necessarily correlate with a productive endocytosis pathway
and hence needs further clarification (Table 2).

Some evidences have also revealed the role of fusion of KSHV
envelope glycoproteins with target cell membranes (Akula et al.,
2001a; Wang et al., 2001, 2003; Naranatt et al., 2002). The min-
imal fusion machinery of KSHV probably comprises of gB, gH,
and gL since anti-gB, gH, gL, and gpK8.1A antibodies neutralize
KSHV infection without affecting virus binding to the target cells
(Akula et al., 2001a; Wang et al., 2001, 2003; Naranatt et al., 2002).
However the mechanism of neutralization is not known. Multiple
mechanisms could be possible depending upon the glycoprotein
and the targeted region of the glycoproteins. For example, neu-
tralization could be due to: (a) interference in the interaction of
KSHV glycoproteins with integrins and other receptors; (b) inter-
ference at the activation of a subset of signal molecules that are
essential for the c-Cbl mediated receptor translocation, ubiquiti-
nation,bleb formation,and macropinocytosis; and (c) interference
of fusion of viral envelope with the endosomal membrane. Further
studies need to be carried out to precisely define the mechanism
behind the neutralization by these antibodies. Nevertheless, these
studies suggested that these glycoproteins play critical roles in the
entry process after attachment has occurred, possibly as a result of
interaction with additional cell surface molecules.

POST ENTRY STEPS: KSHV TRAFFICKING AND PRODUCTIVE
INFECTION OF KSHV
Like most herpesviruses, KSHV replicates in the nucleus of
infected cells. Therefore, to reach the nucleus KSHV capsids traffic
through the crowded cytosol before releasing viral DNA into the
nucleus (Lyman and Enquist, 2009). Delivery of KSHV DNA into
the infected cell nucleus reached a peak by 90 min p.i. suggesting
the rapidness of the host cellular trafficking utilized by the virus
(Naranatt et al., 2003, 2005; Krishnan et al., 2004; Veettil et al.,
2006; Raghu et al., 2009).

Productive infection comprised of KSHV internalized by
macropinocytosis in endothelial cells or by clathrin-mediated
endocytosis in fibroblast cells utilize the extensive microtubule
(MT) network to traffic through the cytosol, tightly regulated
by Rho-GTPases. Microtubule bundles colocalized with KSHV
capsids and this colocalization was abolished by the microtubule
destabilizing agent, nocodazole, and PI3-K inhibitor affecting the
Rho-GTPases (Naranatt et al., 2003, 2004). Depolymerization of

microtubules did not affect KSHV binding and internalization, but
nuclear delivery of viral DNA and infection in HFF, HMVEC-d,
and HUVEC cells was inhibited (Naranatt et al., 2005; Veettil et al.,
2006; Raghu et al., 2009). Inhibition of Rho-GTPase activities by
CdTxB abolished microtubular acetylation and subsequently the
delivery of viral DNA to the nucleus. Conversely, activation of
Rho-GTPases by Escherichia coli cytotoxic necrotizing factor sig-
nificantly increased the intracellular trafficking and delivery of
viral capsids to the nucleus. Similarly, nuclear delivery of viral
DNA was increased in cells expressing a constitutively active RhoA
mutant and decreased in cells expressing a dominant-negative
mutant of RhoA (Naranatt et al., 2005). Taken together, these
studies indicate that KSHV induces Rho-GTPases, modulates sta-
bilization of microtubules and promotes the rapid trafficking of
viral capsids toward the nucleus (Table 3).

Kaposi’s sarcoma associated herpesvirus utilizes ATP depen-
dant directional transport along microtubules governed by motor
proteins. Dynein motor proteins responsible for minus-end trans-
port from the periphery to the cell center actively carry KSHV
to the vicinity of the nuclear membrane. Inhibition of dynein
activity by sodium orthovanadate significantly reduced the infec-
tion and delivery of KSHV DNA into the nucleus (Naranatt et al.,
2005). These studies demonstrate that KSHV movement across
the cytoplasm to reach the nucleus is a series of well-orchestrated
phenomenon probably involving viral proteins and host pro-
teins. Further studies are essential to define this process and the
mediating viral and host proteins.

Cross talk between ECM and integrins activates FAK, which
initiates a cascade of intracellular signals that eventually acti-
vate the mitogen activated protein kinase (MAPK) pathways. As
early as 5 min p.i., KSHV activates MEK (MAPK/ERK kinase) and
extracellular-signal-regulated kinase (ERK; Naranatt et al., 2005).
Soluble KSHV gpK8.1A, but not gB, induced MEK-mediated
ERK1/2 phosphorylation as early as 5 min p.i., and ERK1/2 phos-
phorylation facilitated the establishment of KSHV infection in
HFF and HMVEC-d cells (Sharma-Walia et al., 2005). PI3-K and
protein kinase C-ζ (PKC-zeta) are recruited as upstream mediators
of the KSHV ERK pathway and inhibitors specific for PI3-K, PKC-
ζ, MEK, and ERK significantly reduce virus infectivity without
affecting virus binding to the target cells (Table 3).

Table 3 | Host molecules and their roles in KSHV entry/infection in

HMVEC-d and HFF cells.

Molecules Function in KSHV biology

Heparan sulfate (HS) Binding receptor

Integrins (α3β1, αVβ3, αVβ5) Entry receptors

xCT/CD98 Entry (fusion) receptor

FAK Initiate endocytosis

Src Initiate endocytosis

PI3-K, RhoA, Dia-2, Ezrin Entry, actin modulation, endocytosis, and

nuclear trafficking

c-Cbl KSHV-receptor translocations into LR and

adaptor for macropinocytosis in HMVEC-d

cells

ERK and NF-κB Viral and host gene expression
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Rapid activation of NF-κB as early as 5–15 min p.i. led to
the translocation of p65-NF-κB into the nucleus (Sadagopan
et al., 2007). KSHV incubated with heparin significantly reduced
NF-κB activation. During the observed 72 h periods of in vitro
KSHV latency, a sustained moderate level of NF-κB induction
was observed, and inhibition of IκB phosphorylation by Bay11-
7082 drastically reduced this activation (Sadagopan et al., 2007).
In contrast, high levels of ERK1/2 activation during the earlier time
points and a moderate level of activation at later time points were
observed. The p38-MAP kinase was activated only during the later
time points, and AKT was activated at lower levels in a cyclic man-
ner. Studies with UV-KSHV suggested a role for virus entry stages
in NF-κB induction and requirement of KSHV viral gene expres-
sion for sustained induction. Though inhibition of NF-κB did not
have any effect on KSHV entry into cells, expression of viral latent
ORF 73 and lytic ORF 50 genes was significantly reduced. Sev-
eral transcription factors were activated during KSHV infection,
and inhibition of NF-κB significantly affected the activation of
Jun D, Jun B, phospho-c-Jun, cFos, and FosB factors. These results
suggested that during in vitro infection, KSHV induces sustained
levels of NF-κB to regulate viral genes thus possibly regulating the
establishment of latent infection.

Productive KSHV primary infection in adherent cells involves
an initial lytic phase (2 h p.i.) succeeded by a latent phase (24 h
p.i.) with a decline of lytic phase (Krishnan et al., 2004). A report
by Yoo et al. (2005) suggests that KSHV infection is permissive in
HUVECs at early time points with an initial production of infec-
tious virus particles (lytic cycle), while the surviving cells later
enter a latent phase with spontaneous lytic replication. However,
the percentage of cells that were infected, cells that entered into
lytic cycle and cells that entered latency were not determined in
these studies. Hence, these studies need to be reexamined.

PERSPECTIVES AND FUTURE DIRECTIONS
Kaposi’s sarcoma associated herpesvirus exemplifies an excellent
model for viruses requiring multiple cellular molecules to enter
target cells. Although, integrins and associated signaling, adaptor
molecules and a host of pre-existing signaling molecules have been
identified to play a crucial role in KSHV entry and infection, the
nature and mechanism by which the virus is able to successfully
utilize the sequential series of host signaling still remains a mys-
tery. Moreover, there is a difference in the entry pathways of KSHV
in infectable cell types, making this interesting story more com-
plicated. What is clear from studies so far is that KSHV overcomes
cellular barriers making conditions conducive to infection by uti-
lizing more than one endocytic mechanism. However, further
studies need to be performed to ensure whether differential activa-
tion of signal responses by KSHV coupled to different endosomal
vesicles accounts for the varied modes of entry. Moreover, whether
KSHV utilizes more than one E3-ubiquitin ligase and their mod-
ulation by viral induced cellular targets remains to be explored.
Another interesting future study involves the recognition of KSHV
in the endosomal vesicles that direct productive trafficking of virus
away from the lysosomal compartments. Cellular signaling targets
of KSHV are broad and hence critical molecules regulating such
multiple pathways need to be targeted for therapeutics. These stud-
ies will shed valuable insights into the molecular mechanisms of
cytosolic entry of KSHV.
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