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With the increasing number of people suffering from cancer, this illness has

become a major health problem worldwide. Exploring the biological functions

and signaling pathways of carcinogenesis is essential for cancer detection and

research. In this study, a mutation dataset for eleven cancer types was first

obtained from a web-based resource called cBioPortal for Cancer Genomics,

followed by extracting 21,049 features from three aspects: relationship to GO

and KEGG (enrichment features), mutated genes learned by word2vec (text

features), and protein-protein interaction network analyzed by node2vec

(network features). Irrelevant features were then excluded using the Boruta

feature filtering method, and the retained relevant features were ranked by four

feature selection methods (least absolute shrinkage and selection operator,

minimum redundancy maximum relevance, Monte Carlo feature selection and

light gradient boosting machine) to generate four feature-ranked lists.

Incremental feature selection was used to determine the optimal number of

features based on these feature lists to build the optimal classifiers and derive

interpretable classification rules. The results of four feature-ranking methods

were integrated to identify key functional pathways, such as olfactory

transduction (hsa04740) and colorectal cancer (hsa05210), and the roles of

these functional pathways in cancers were discussed in reference to literature.

Overall, this machine learning-based study revealed the altered biological

functions of cancers and provided a reference for the mechanisms of

different cancers.

KEYWORDS

pan-cancer, cancer mutation, enrichment, embedding, feature selection, rule learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.979336/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.979336/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.979336/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.979336&domain=pdf&date_stamp=2022-09-29
mailto:zbzeng@shu.edu.cn
mailto:tohuangtao@126.com
mailto:cai_yud@126.com
https://doi.org/10.3389/fonc.2022.979336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.979336
https://www.frontiersin.org/journals/oncology


Lu et al. 10.3389/fonc.2022.979336
1 Introduction

Cancer is one of the most common causes of death in human

beings. According to World Health Organization (WHO), about

10 million patients died because of cancer in 2020. Early cancer

diagnosis significantly improves the survival, but more than half

of patients with cancer have been diagnosed in advanced stages

(1). The average 5-year survival rate after surgery in the early

stage is 91%, which is higher than the 26% survival rate in the

late stage (2).

The identification of tumor type and tissue origin is of

paramount importance for cancer treatment. Most cancer

types are diagnosed via invasive biopsy; however, non-invasive

early detection is lacking (3). Circulating tumor DNA (ctDNA)

could be a potential biomarker for early cancer diagnosis (4).

Despite the multiple challenges in developing non-invasive

liquid biopsy based on ctDNA in blood plasma, such as the

limited materials of cancer DNA in blood plasma to achieve a

high sensitivity (5), enormous efforts and progresses have been

made in the past decades. Studies on identification methods for

tumor tissue of origin mainly focused on characterizing and

utilizing tumor-specific DNA methylation, gene expression

profiling, and genomic alteration (6–8). Machine learning

methods, especially deep learning models, have been

developed and widely used to identify tumor tissue of origin

(9). In our previous study, we developed a bioinformatics

pipeline based on machine learning algorithms to identify the

tissue of origin in five tumors according to the enrichment of

gene ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) using the mutated genes (10); the approach

was proven to be of high efficacy and robustness. However, the

limitation of previous methods in analyzing small datasets

restricted our previous analysis with only five cancer types.

In this study, we applied machine learning algorithms to

investigate a large mutation data, which involved eleven cancer

types. Each sample was represented by three feature types: (1)

relationship to GO terms and KEGG pathways; (2) word

embeddings of mutated genes; (3) network embeddings of

mutated genes. Several machine learning algorithms were

applied to such dataset. First, the irrelevant features were

excluded by Boruta feature selection. Then, remaining features

were deeply analyzed by four different feature selection methods,

resulting in four feature-ranked lists. In the next step, each

feature list is subjected to incremental feature selection (IFS) (11)

combined with the different classification algorithms to

determine the optimal number of features and build the

optimal classifiers. Some essential features were identified by

each feature selection method and those identified by multiple

methods were deemed to be more important. Features related to

GO terms and KEGG pathways were analyzed. Furthermore,

this study also reported several classification rules, indicating

different patterns on various cancer types. From the results
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yielded by four feature selection methods, they were quite

different, suggesting that the four methods are complement

with each other. Incorporating multiple methods in the

pipeline can help us achieve a more comprehensive result.
2 Materials and methods

2.1 Data sources

Mutation data with eleven cancer types were acquired from

the cBioPortal for Cancer Genomics (http://cbio.mskcc.org/

cancergenomics/pancan_tcga /) (12, 13). This dataset mainly

includes bladder urothelial carcinoma (BLCA), breast invasive

carc inoma (BRCA), colon adenocarc inoma/rectum

adenocarcinoma esophageal carcinoma (COADREAD),

glioblastoma multiforme (GBM), head and neck squamous cell

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),

acute myeloid leukemia (LAML), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), ovarian

serous cystadenocarcinoma (OV), and uterine corpus

Endometrial Carcinoma (UCEC). A total of 3478 samples

were obtained, and the sample size for each cancer type is

listed in Table 1. This cancer mutation dataset was then used

in the next step of the analysis.
2.2 Feature representation

In this work, three approaches were utilized to encode the

feature vectors to extract relevant information from each cancer

sample in the mutant dataset: GO and KEGG enrichment

theory, word2vec, and node2vec. Accordingly, three feature

types were generated from each sample, namely, enrichment,

text and network features, respectively. A total of 21,049 features

were created, with 20,293 enrichment features derived from GO
TABLE 1 Number of samples under different cancer types.

Cancer type Sample size

BLCA 100

BRCA 513

COADREAD 499

GBM 276

HNSC 306

KIRC 473

LAML 201

LUAD 230

LUSC 177

OV 456

UCEC 247
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and KEGG, 256 text features yielded by word2vec, and 500

network features generated by node2vec. A detailed description

of these features is presented below.
2.2.1 Enrichment features derived
from GO and KEGG

GO terms and KEGG pathways give crucial functional

information for gene characterization in biology study and the

discovery of underlying biological mechanisms. The data

obtained could be helpful for further research when GO terms

and KEGG pathways are used for feature encoding. As a

commonly used approach in quantifying the overlap between

the gene set and GO terms or KEGG pathways, the GO and

KEGG enrichment theory (14) were used to measure the impact

of alterations in biological functions among patients with cancer.

For a specific cancer individual p and a GO term GOj, GGO

represents the gene set that is annotated byGOj, and Gp represents

the variant gene set for individual p. The relationship between p

and GOj is defined as the hypergeometric test p-values of Gp and

GGO, called GO enrichment score, which can be computed by

ScoreGO(p, GOj) = − log10 o
n

k=m
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whereN andM indicate the total number of human genes and the

number of genes in GGO, respectively; n denotes the number of

mutant genes inGp, andm represents the number of genes both in

Gp and GGO. According to the high enrichment score, the

mutation in patient p has a deep functional impact on the GO

term GOj.

Similarly, for the KEGG pathway, the enrichment score for a

cancer individual p and a KEGG pathway Kj can be calculated as

follows, called KEGG enrichment score,

ScoreKEGG(p,Kj)  = − log10 o
n
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where N and n are defined as shown in Eq. 1, and M and m

indicate the number of genes in pathway Kj and the number of

genes both in Gp and Kj. A total of 20,293 GO terms and KEGG

pathways were adopted in this study, with the enrichment scores

between patients with cancer and these functional terms serving

as the feature values. Each patient with cancer is represented by

20,293 enrichment scores, which can be used for subsequent

feature analysis. For convenience, such features were called

enrichment features. These features were calculated by our in-

house program.
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2.2.2 Text features generated by Word2vec
Word2vec is a natural language processing model that uses

unsupervised learning to learn word associations from a text

corpus (15). It obtains the word embedding vectors by training

two-layer neural networks to reconstruct linguistic contexts of

words, making the semantic and syntactic similar words close in

distance in a specific space. Words are embedded in a

continuous vector space, with close vectors for similar words.

The training algorithms of word2vec are mainly CBOW or Skip-

gram. Here, the word2vec algorithm in Gensim (https://github.

com/RaRe-Technologies/gensim) was adopted. It took the name

of each gene as a word and the genes presenting in each sample

as sentences. The second class of features was the average of the

vectors corresponding to the genes under each sample. In

summary, word2vec program with default parameters was

used to produce a 256-dimensional feature vector for each

sample based on gene names. For convenience, these features

were called text features.
2.2.3 Network features
generated by Node2vec

The gene interaction network provides information on the

features of gene interactions. In this study, gene names were

inputted into a gene network based on the PPI network in

STRING (16). Each node in this network represents a gene,

each edge denotes the interaction between two genes.

Evidently, each edge indicates a PPI. To reflect different

strengths of PPIs, edges are assigned the confidence scores of

their corresponding PPIs. Thus, this gene interaction network

is a weighted version. The feature vector of each gene is

obtained using node2vec (17).

The node2vec algorithm can be regarded as a generalized

version of Skip-gram, which can process network data. It first

generates several paths starting from each node in the network.

Each path is extended from the current endpoint to one of its

neighbors in a well-defined way. After a predefined number of

paths have been generated, they are fed into the word2vec with

Skip-gram, where nodes in paths are termed as words and paths

are considered as sentences, to yield the feature vector of each

node. The node2vec program was retrieved from https://snap.

stanford.edu/node2vec/. Default parameters were used.

The gene interaction network mentioned above was fed into

the node2vec program, assigning a vector feature for each node

(gene). The feature vector of each sample was further

constructed from the feature vectors of genes and was defined

as the mean vector of the feature vectors of genes related to the

sample. In this study, a 500-dimensional feature vector was

generated for each of the samples from the gene interaction

network. For convenience, these features were called

network features.
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2.3 Feature selection methods

2.3.1 Boruta feature filtering
A total of 21,049-dimensional feature vectors were obtained

after feature encoding. Directly employing these features for

analysis would require massive computation. Therefore, non-

essential features were eliminated from the dataset using Boruta

feature selection (18). In each iteration round, Boruta compares

the importance of the original feature to that of the shadow

feature with random forest (RF) classifier. If the original feature

is statistically more important than the shadow features, then the

original feature is deemed important. If the original feature is

statistically less essential than the shadow feature, then the

original feature is considered unimportant. After Boruta

analysis, the important features were retained for the next step

of feature ranking, and the computational efficiency

was improved.

In this work, the Boruta program from https://github.com/

scikit-learn-contrib/boruta_py was used and executed with

default parameters.

2.3.2 Least absolute shrinkage
and selection operator

Lasso (19) is a regression model that uses L1 regularization

technology. The overfitting problem is reduced by adding a high

penalty to parameters with high coefficients and great prediction

errors, thus reducing the number of parameters and lowering the

feature dimension because some feature coefficients are reduced

to 0 and eliminated from the model. As a result, Lasso is

frequently used for the selection of features that are prioritized

by importance according to their coefficients. The Lasso package,

obtained from Scikit-learn (20), was applied on the features

selected by Boruta. Its default parameters were adopted. The

obtained feature list was called Lasso feature list.

2.3.3 Minimum redundancy maximum relevance
mRMR (21) is a feature selection method that has been

widely applied in biology. Its main goal is to maximize the

correlation between features and categorical variables while

minimizing feature-to-feature redundancy. Mutual

information between individual features and category variables

is used to determine the correlation between features and

categories, and mutual information between features and

features is used to calculate the redundancy. A ranked feature

list can be obtained after feature selection using mRMR. The

mRMR program was derived from http://home.penglab.com/

proj/mRMR/, and it was executed with default parameters. The

list yielded by mRMR was called mRMR feature list.

2.3.4 Monte Carlo feature selection
MCFS (22) is used to identify the essential features in the

dataset for a particular classification problem. The method
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resamples the original dataset c times, separates it into c pairs

of training and test sets, randomly selects m features from all

features for s times to build a decision tree (DT), and generates s

DTs each time. Finally, the entire procedure yields c × s DTs.

The relative importance (RI) is computed for each feature

based on these DTs. Features are sorted in descending order of

RI values to produce a ranked feature list. Here, MCFS was

implemented using the dmLab software provided by Draminski

(22) with parameters u and v set to 1, which can be obtained at

http://www.ipi-pan.eu/staff/m.draminski/mcfs.html. Features

with RI scores equal to 0 from the calculation results were

deleted in the next analysis. The list yielded by MCFS was

termed as MCFS feature list.

2.3.5 Light gradient boosting machine
LightGBM (23) is a fast gradient boosting DT implementation

that recurrently fits a new DT by using the negative gradient of

the loss function of the current DT as the approximate value of

the residual. This approach saves computer resources by

employing two strategies called gradient-based one-side

sampling and exclusive feature bundling. Given that

LightGBM is based on a tree model, the importance of a

feature can be quantified by the number of times the feature is

involved in building the DTs. In this study, a python version of

the LightGBM program with default parameters, which can be

downloaded from https://lightgbm.readthedocs.io/en/latest/,

was used to rank features selected by Boruta. This list was

called LightGBM feature list.
2.4 Incremental feature selection

Features selected by Boruta were sorted in descending

order of importance using the Lasso, mRMR, MCFS, and

lightGBM algorithms. However, the features in each feature

list that were critical to the classification of cancer types were

not determined. Therefore, IFS (11) was used to detect the

optimal number of features in each ranked list and build the

optimal classifiers.

Given a feature list, IFS produces a series of feature subsets

depending on a specified interval step initially. For example,

when the interval is 5, the first feature subset includes the top 5

features in the list, and the second feature subset includes the top

10 features. All possible feature subsets can be generated when

the interval was set as 1. The sample data including each of these

feature subsets are then applied to train a classifier with a given

classification algorithm (e.g., DTs (24), random forest (RF) (25),

and support vector machine (SVM) (26)). Such classifier is tested

by 10-fold cross-validation (Kohavi, 1995). When training the

classifier, we adopted Synthetic Minority Oversampling

Technique (SMOTE) (27) to balance the sample sizes of

different cancer types in this study. Ultimately, all classifiers
frontiersin.org
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built by the succession of feature subsets were compared using a

performance metric to determine the optimal number of features

and the consequent optimal classifier.
2.5 Synthetic minority
oversampling technique

In this study, the sample sizes for the eleven cancer types

were markedly unequal as indicated in Table 1. The obtained

results are frequently unsatisfactory when the classifier is built by

directly utilizing an unbalanced sample dataset. Hence,

overcoming the categorization difficulty provided by uneven

data has become a machine learning challenge. SMOTE is a

synthetic sampling strategy in which new samples for a minority

class are generated using any randomly selected sample and its

nearest neighbors (27). In this study, SMOTE was utilized in the

imblearn module (with default parameters) to synthesize new

samples for minority cancer types and generate an equal number

of cancer samples in each type in the training set.
2.6 Classification algorithms

In IFS method, one classification algorithm was necessary.

To fully test each feature subset, three classic classification

algorithms: DT (24), RF (25), and SVM (26), were employed

in this study. These classification algorithms have been applied

to tackle various medical or biological problems (28–36).

2.6.1 Support vector machine
SVM is one of the most classic classification algorithms. The

main idea is todetermine ahyperplaneby learning thedistributionof

samples indifferent classes.Generally, suchhyperplane in theoriginal

feature space is difficult to obtain. SVM adopts the kernel trick to

translate samples to a high-dimensional feature space. In this case,

such hyperplane is easy to discover. The class of a test sample is

determined according to the side of the hyperplane it belongs to.

2.6.2 Random forest
RF is also a classic classification algorithm, which is quite

different from SVM. In fact, it is an ensemble algorithm

consisting of several DTs. Each DT is built on a new dataset, in

which sampleswere randomly selected,with replacement, from the

original dataset.And suchnewdataset has samenumber of samples

in the original dataset. Furthermore, each DT is constructed based

on randomly selected features. The predicted results of RF are

determined by themajority voting on the results yielded by all DTs.

2.6.3 Decision tree
Above two classification algorithms are generally deemed to

be powerful. However, their decision principles are quite
Frontiers in Oncology 05
complicated, which is impossible for us to understand. This is

a great block for us to learn new knowledge from a large dataset.

For this study, we cannot extract mutation patterns on different

cancer types only based on RF and SVM. In view of this, DT was

also used in this study, which is deemed to be a type of white-box

algorithm. It employs a tree structure and contains leaf nodes

and branch nodes. The branch nodes are in charge of classifying

samples, whereas the leaf nodes are responsible for determining

classes. Besides the tree representation, a DT can also be

represented by a set of IF-THEN rules. Each rule is obtained

by a path from root node to one leaf node. These rules make the

classification procedures completely open, providing

opportunities for us to understand different patterns on

various cancer types.

In this work, the corresponding packages that implement

above SVM, RF and DT, in scikit-learn (20) were employed.

Each package was performed with default parameters.
2.7 Performance measurement

In the IFS, the classifiers were trained using training

samples consisting of the feature subsets. The performance

of the classifiers was then evaluated using 10-fold cross-

validation (37). The commonly used main model metrics for

each class are accuracy (recall), precision and F1 score (38–

41). Here, F1 score was used as the main metric to measure the

performance of the classifier on one class, which can be

calculated as follows:

F1 score =
2� precious� recall
precious + recall

(3)

As above F1 score only measures the performance of the

classifier on one class. F1 scores on all classes can be integrated to

give an overall evaluation on the classifier. There are two ways to

integrate these scores. The first way is to calculate the mean of all

F1 scores. Such obtained measurement is called macro F1. The

second way further considers the class sizes, the weighted mean

of all F1 scores is computed, which is termed as weighted F1. As

the sizes of different cancers are quite different, weighted F1 was

more proper than macro F1 to fully evaluate the overall

performance of classifiers. Thus, it was selected as the key

measurement in this study.

Besides, the overall accuracy (ACC) and Matthew

correlation coefficients (MCC) (42, 43) were also employed.

ACC is a generally measurement, which indicates the

proportion of correctly predicted samples. MCC is much more

complex. However, it is deemed as a balanced measurement even

if the sizes of classes are quite different. To compute MCC, two

matrices X and Y should be constructed in advance, where X

stores the true class of each sample and Y includes the predicted

class of each sample. Then, the MCC can be computed by
frontiersin.org
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MCC =
cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(X,X)cov(Y ,Y)
p ; (4)

where cov(Y,X) stands for the covariance of two matrices.
3 Results

In this study, we first downloaded a mutation dataset

containing 3478 cancer samples from the cBioPortal for

Cancer Genomics database, which included eleven cancer

types. Three feature types (enrichment, text and network

features) were generated to represent each cancer sample. The

Boruta feature filtering method was used to remove irrelevant

features and selected features were further analyzed by Lasso,

mRMR, MCFS, and LightGBM methods, respectively, to

produce four feature-ranked lists. Each feature list was

subjected to IFS combined with classification algorithms and

model evaluation measurements to determine the optimal

number of features, build the optimal classifiers, and extract

the important classification rules. The entire analysis pipeline is

shown in Figure 1. This section details the obtained results.
3.1 Results of feature selection methods

First, a large dataset containing 3,478 samples and 21,049

features was generated. To filter key informative features from

these features, the Boruta feature filtering method was applied to

such dataset. 18,835 features were excluded and 2,214 important

features were retained, which are provided in Supplementary
Frontiers in Oncology 06
Table S1. Among the selected 2,214 features, enrichment

features were most, followed by network and text features. The

numbers of selected features on three types are shown in

Figure 2. Enrichment features were important to classify

samples into different cancer types. However, considering the

fact that the original enrichment features were much more than

other two feature types, such result was reasonable.

Furthermore, the selected enrichment features only occupied

8.33% of all enrichment features, and such proportions for text

and network features were 60.16% and 74.00%, respectively. It

was indicated that text and network features also provided key

contributions on the classification of cancer samples.

In the next step, a refined dataset with 3,478 samples and

2,214 selected features was produced. Four feature selection

methods (Lasso, mRMR, MCFS, and LightGBM) were

executed on such dataset to analyze the importance of the

2,214 features. Four feature lists: Lasso, mRMR, MCFS and

LightGBM feature lists, were obtained. These lists are also

provided in Supplementary Table S1.
3.2 Results of IFS method on different
feature lists

We obtained four feature-ranked lists but were still unable

to determine the features in each list that could effectively

distinguish cancer types. Therefore, we employed the IFS

combined with classification algorithms to determine the

optimal results. For each list, IFS first generated a series of

feature subsets with interval 5, on which the DT, RF, and SVM
FIGURE 1

Computational framework of this study. First, the cancer samples obtained from the cBioPortal for Cancer Genomics database are represented
by three feature types, derived by GO and KEGG enrichment, word2vec, and node2vec. Then, the Boruta feature filtering is adopted to exclude
irrelevant features and retained features are ranked by Lasso, mRMR, MCFS, and LightGBM methods in four feature-ranked lists. These feature
lists are subjected to incremental feature selection combined with classification algorithms to determine the optimal number of features, build
optimal classifiers, and extract important classification rules. Furthermore, the Venn diagram analysis is conducted on the key features identified
by different feature selection methods.
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classifiers were constructed. We then used 10-fold cross-

validation for evaluation with weighted F1 as the key

performance metric. The results of the IFS on different

feature selection methods are provided in Supplementary

Table S2.

For the IFS results on the Lasso feature list, an IFS curve was

plotted for each classification algorithm, as shown in Figure 3,

where weighted F1 was set as Y-axis and number of features was

set as X-axis. It can be observed that the highest weighted F1

values for DT, RF and SVM were 0.4215, 0.6134 and 0.6772,

respectively. These values were obtained by using top 1770, 2055

and 1905, respectively, features in the list, which constituted the

optimal feature subsets for three classification algorithms,

respectively. Furthermore, the optimal DT, RF and SVM

classifiers were built using the corresponding optimal feature
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subsets. The values of ACC, MCC andMacro F1 yielded by these

optimal classifiers are listed in Table 2. Evidently, the optimal

SVM classifier provided the highest performance. The

performance of the optimal classifiers on eleven cancer types

are illustrated in Figure 4A, from which we can see that the

optimal SVM classifier provided the best performance on all

cancer types. This further confirmed the superiority of the

optimal SVM classifier.

With regard to the IFS results on the mRMR feature list,

three IFS curves were also plotted, as illustrated in Figure 5. DT,

RF and SVM provided the highest weighted F1 of 0.4347, 0.6170

and 0.6200, respectively. Top 490, 1505 and 1810, respectively,

features in the mRMR feature list were used to generate such

performance. On these features, the optimal DT, RF and SVM

classifiers were built . Their additional performance
FIGURE 3

IFS curves of different classification algorithms on the Lasso feature list. Three classification algorithms provided highest weighted F1 values of
0.4215, 0.6134 and 0.6772, respectively, based on top 1770, 2055 and 1905, respectively, features in the list.
FIGURE 2

Pie chart to show the distribution of features selected by Boruta on three feature types. Enrichment features are most, followed by network and
text features.
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measurements are listed in Table 2 and Figure 4B. The optimal

SVM classifier still gave the highest performance. However, its

superiority to the optimal RF classifier was not very evident. The

optimal DT/RF classifier gave almost the equal performance of
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the optimal DT/RF classifier on Lasso feature list, but the

performance of the optimal SVM classifier was evidently

declined compared with that of the optimal SVM classifier on

the Lasso feature list.
TABLE 2 Detailed performance of the optimal classifiers for different feature selection methods and classification algorithms.

Feature selection method + classification algorithm Number of features ACC MCC Macro F1 Weighted F1

Lasso + DT 1770 0.4218 0.3574 0.4270 0.4215

Lasso + RF 2055 0.6236 0.5844 0.6503 0.6134

Lasso + SVM 1905 0.6811 0.6443 0.7275 0.6772

mRMR + DT 490 0.4373 0.3748 0.4454 0.4347

mRMR + RF 1505 0.6268 0.5880 0.6547 0.6170

mRMR + SVM 1810 0.6271 0.5873 0.6611 0.6200

MCFS + DT 460 0.3982 0.3325 0.4088 0.3966

MCFS + RF 385 0.6024 0.5615 0.6200 0.5917

MCFS + SVM 550 0.5871 0.5401 0.6254 0.5823

LightGBM + DT 1880 0.4278 0.3645 0.4281 0.4273

LightGBM + RF 315 0.6288 0.5893 0.6529 0.6218

LightGBM + SVM 2015 0.6803 0.6430 0.7275 0.6771
A B

DC

FIGURE 4

Performance of the optimal classifiers on eleven cancer types for different feature lists. (A) Lasso feature list; (B) mRMR feature list; (C) MCFS
feature list; (D) LightGBM feature list.
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For the IFS results on the MCFS feature list, we also plotted

an IFS curve for each classification algorithm to clearly show its

performance on different feature subsets, as illustrated in

Figure 6. When top 460, 385 and 550, respectively, features in

the list were used, DT, RF and SVM provided the highest

weighted F1 values of 0.3966, 0.5917 and 0.5823, respectively.

Accordingly, the optimal DT, RF and SVM classifiers were built

with these optimal features. Their ACC, MCC and Macro F1 are

listed in Table 2 and their performance on eleven cancer types is

shown in Figure 4C. The optimal RF and SVM classifiers were

almost at the same level. Relatively speaking, the optimal RF

classifier was slightly better than the optimal SVM classifier.

These three optimal classifiers gave lower performance than

above optimal classifiers using the same classification algorithm.
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As for the IFS results on the LightGBM feature list, similar

investigation was conducted. Figure 7 shows the three IFS curves

of three classification algorithms. It can be observed that DT, RF

and SVM provided the highest weighted F1 values of 0.4273,

0.6218 and 0.6771, respectively, when top 1880, 315 and 2015,

respectively, features in the list were adopted. These features

were used to build the optimal DT, RF and SVM classifiers.

Other overall measurements of these optimal classifiers are listed

in Table 2. And their performance on all cancer types is shown in

Figure 4D. Evidently, the optimal SVM classifier was better than

other two classifiers. The performance of these classifiers is quite

similar to that of the optimal classifiers on the Lasso feature list.

Among above optimal classifiers, the optimal SVM classifiers

on the Lasso and LightGBM feature lists were evidently better
FIGURE 5

IFS curves of different classification algorithms on the mRMR feature list. Three classification algorithms provided highest weighted F1 values of
0.4347, 0.6170 and 0.6200, respectively, based on top 490, 1505 and 1810, respectively, features in the list.
FIGURE 6

IFS curves of different classification algorithms on the MCFS feature list. Three classification algorithms provided highest weighted F1 values of
0.3966, 0.5917 and 0.5823, respectively, based on top 460, 385 and 550, respectively, features in the list.
frontiersin.org

https://doi.org/10.3389/fonc.2022.979336
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2022.979336
than other classifiers. They can be efficient tools to classify

cancer samples into different types.
3.3 Investigation on key features

Several optimal classifiers were built in Section 3.2. Features

used in these classifiers were deemed to be related to cancer

classification. Here, we investigated the distribution of these

features on three feature types. The distribution is shown in

Figure 8. Except the results on MCFS feature list, enrichment

features always occupied most. Network features were most for

the results on MCFS feature list. Based on different feature
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selection methods, some common features can be extracted,

whereas some exclusive features can also be discovered by a

certain feature selection method. Integrating the results derived

from different feature selection methods can give a full overview

on cancer classification.

As mentioned in Section 3.2, the optimal SVM classifier

was generally the best among all optimal classifiers on a certain

feature list. However, these classifiers were of low efficiency due

to the large number of features used. In view of this, we

carefully checked the IFS results with SVM, trying to finding

out a SVM classifier with high performance but with less

features. Finally, the SVM classifiers using top 350 features in

the Lasso feature list, top 375 features in the mRMR feature list,
FIGURE 7

IFS curves of different classification algorithms on the LightGBM feature list. Three classification algorithms provided highest weighted F1 values
of 0.4273, 0.6218 and 0.6771, respectively, based on top 1880, 315 and 2015, respectively, features in the list.
A B

DC

FIGURE 8

Distribution of the optimal features for different classification algorithms and feature lists. (A) Lasso feature list; (B) mRMR feature list; (C) MCFS
feature list; (D) LightGBM feature list.
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top 150 features in the MCFS feature list and top 315 features

in the LightGBM feature list were picked up. For convenience,

these classifiers were called feasible SVM classifiers. Their

performance is listed in Table 3. It can be observed that their

performance is slightly lower than the corresponding optimal

SVM classifiers. However, they were more efficient than the

optimal classifiers as much less features were involved. Since

the optimal features except those used in the feasible classifiers

can provide limited improvement, features used in the feasible

classifiers were evidently more important than the rest optimal

features. Further investigation on these features was helpful to

uncover the essential differences of various cancer types. Thus,

four feature sets consisting of features in four feasible SVM

classifiers were set up and a Venn diagram was plotted, as

shown in Figure 9. Detailed intersections are listed in

Supplementary Table S3. The results showed that the four

feature sets intersected in one important feature (hsa04740),

with 26 intersections in three feature sets. These features were

deemed to be highly related to cancer classification. Among

these 27 (1 + 26) features, 20 were enrichment features

(occupied 74%), three were network features and four were

text features. The biological implications of these features for

cancer classification would be presented in Section 4.1.
3.4 Classification rules derived from the
optimal DT classifiers

Although SVM generally achieved the best performance in

the above tasks, it is a black-box algorithm that is difficult to

interpret in a biological sense. Meanwhile, DT has a low

predictive power but can provide easily understandable

decision rules because of its IF-THEN rule architecture, which

simplifies the discussion on the biological implications of the

features. In view of this, DT was used to conduct some

additional investigations.

On each feature list, the number of the optimal features for

DT had been determined via IFS method. Based on these

features, DT was applied to all cancer samples and a tree was

learned. A set of classification rules was extracted from such tree,

which is provided in Supplementary Table S4. The number of

rules for each cancer type under different feature selection

methods is shown in Figure 10. The results showed that BRCA

and HNSC were given plenty of classification rules. The
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biological importance of these rules would be discussed in

Section 4.2.
4 Discussion

We compared the optimal feature sets identified by the four

feature selection methods and found that these methods

generated different results (Figure 9). A total of 195 optimal

features were identified by two or more feature selection

methods, and 772 features were method-specific. The features

shared by multiple methods may play key roles in cancer-type-

specific development. For example, the feature hsa04550, which

is the KEGG pathway of “Signaling pathways regulating

pluripotency of stem cells - Homo sapiens (human)” was

shared by three methods. Tumorigenesis and the generation of

induced pluripotent stem cells (iPSCs) are highly similar

processes, and iPSCs from different cell types are led by

different reprogramming processes (44). Only one feature was

shared by all four methods, which is hsa04740, the KEGG

pathway “Olfactory transduction - Homo sapiens (human)”.

Previous studies found that the 301 olfactory receptor genes

showed different expression patterns in 968 cancer cell lines

derived from different cancer types (45); this finding indicated

the specific roles of this pathway in different cancers.
4.1 Clustering of optimal GO terms
features indicated the functional groups
in categorizing the cancer types

Given the abundance of algorithm-specific features, we

applied Revigo to cluster the GO terms to assess the relevance

of these features in cancer categorization (46). This relevance

infers the distance between two GO terms according to the pair-

wise semantic similarity. We highlighted the GO terms

representing the clusters and ranked the top by four

algorithms by displaying their descriptions.

4.1.1 Analysis of biological process
Our literature review confirmed the relevance of these GO

terms and clusters to cancer type classification (Figure 11A). For

example, a cluster was enriched with GO terms involved in T cell

responses. T-cell apoptosis could be triggered by up-regulating
TABLE 3 Performance of the feasible SVM classifiers for different feature selection methods.

Feature selection method Number of features ACC MCC Macro F1 Weighted F1

Lasso 350 0.6449 0.6038 0.6903 0.6401

mRMR 375 0.5604 0.5150 0.5756 0.5527

MCFS 150 0.5472 0.4957 0.5874 0.5416

LightGBM 315 0.6521 0.6124 0.6887 0.6472
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FAS/FASL system in cancer cells. The mutations in FAS and

FASL genes reduce the risks of certain types of cancer but not the

others, indicating that T cell apoptosis behaves differently in

different cancers. IN the present study, cellular responses,

especially immune responses involved in T cells, were one of

the most critical function groups in distinguishing cancer types.

The polymorphisms of the fundamental immunosuppressive

cytokine, cytotoxic T-lymphocyte antigen-4 (CTLA4, CD152),

which terminates the T-cell response and prohibits T-cell

activation, are associated with the risk of breast and cervical

cancers (47). This finding proved again the relevance of these
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GO term clusters to cancer types. In addition, the GO terms

involved in fibroblast growth factor receptor (FGFR) signaling

pathway are clustered because FGFRs are recurrently altered in

many human cancers. The prevalence of the mutations in this

gene depends on the cancer type (48). The other three GO terms

clusters include chromosome damage or rearrangement, cellular

or tissue development, and regulations of biological processes,

including epigenetic modifications. These biological processes

have specific signatures in different cancers: different tumors

with different origin of cell types are underlined by cancer-type-

specific tumorigenesis processes because of the diverse
FIGURE 10

Number of rules under each cancer type obtained by the four optimal DT classifiers on four feature lists.
FIGURE 9

Venn diagram to show the intersection of key features identified by different feature selection methods. Lasso, mRMR, MCFS and LightGBM
indicate the feature subsets identified by the feature selection methods with the same names.
frontiersin.org

https://doi.org/10.3389/fonc.2022.979336
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2022.979336
characteristics of different cell types. Studies using the Pan-

Cancer Analysis of Whole Genome (PCAWG) and The Cancer

Genome Atlas (TCGA) data identified chromoanagenesis

landscape in different cancers (49), implying the different

distributions of mutation types. Moreover, different tumor

development mechanisms are caused by aneuploidy, a context-

dependent, cancer-type-specific oncogenic event (50).

4.1.2 Analysis of molecular function
In contrast to biological process, we saw only 1 cluster enriched

in the other two categories of GO terms, molecular function and

cellular component.This clusterwas found in theGOtermcategory

of cellular function and was enriched by several protein-protein

binding functions, such as I-SMAD binding. The nuclear

accumulation of active Smad complexes transduces the

transforming growth factor beta-superfamily signals from

transmembrane receptors into the nucleus. Genetic and

epigenetic changes, such as DNA mutations, methylation, and

miRNA expression, contribute to the transcriptional activity of

TGF-b signaling in all cancer types (51). Previous studies identified
the mutation hotspots in SMAD and inhibitors, indicating that the

different alterations of Smad and the binding proteins play an

important role in different cancer types by regulating TGF-b
signaling through various ways.

4.1.3 Analysis of cellular component
In addition to the only cluster enriched by GO terms

involved in protein-protein binding, the other GO terms in

Cellular Component and Molecular Function showed less

similarity with each other (Figures 11B, 11C). However, the

top ranked GO terms were well recognized as highly cancer type

specific. For example, the top GO term in Cellular Component

was cell projection membrane, which is a cell protrusion that is

involved in many biological functions, such as cancer cell

invasion, cell motility, and cytokinesis. Glypicans play a role in
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cellular and tissue development, morphogenesis, and cell

motility and show differential expression in different cancer

types by behaving as tumor promoters and suppressors in a

cancer type-specific manner (52).

In summary, we confirmed that these algorithm-specific

features are extensively relevant to cancer types. Each method

has a unique strength in a different aspect; therefore, all four

methods must be incorporated for the comprehensive inference

of cancer type classification.
4.2 Biological relevance of identified
rules to cancer type classification

Besides essential features, several interesting classification

rules were also obtained in this study (Supplementary Table S4).

Here, some rules were examined. We found some features that

can distinguish multiple cancer types with high impacts (passed

counts >= 100). For example, the feature GO:0019002 (GMP

binding) can classify BRCA, COADREAD, KIRC and OV, which

is expected because GMP is the pharmacological target for

treating multiple types of cancers (53–55). Another GO term

group that can be used to classify multiple cancer type contains

two GO terms, namely, GO:0031049 (programmed DNA

elimination) and GO:0031052 (programmed DNA elimination

by chromosome breakage), which are also involved in

oncogenesis. Activation-induced deaminase is crucial in

tumorigenesis because it is implicated in B cell lymphomas.

DNA deaminases show preferred targeting, which provides

solutions to identify their mutation foot-print in tumors. This

finding also indicated their roles in genetic mutation in various

cancer types (56). In addition to GO terms, some KEGG

pathways can classify multiple cancer types, such as hsa00562

(Inositol phosphate metabolism - Homo sapiens (human)). We

found it could be used to distinguish BRCA and COADREAD in
A B C

FIGURE 11

(A) GO term clustering of Biological Process identified by only one of the four algorithms. The distance between two GO terms were inferred
based on pair-wise semantic similarities. (B) GO term clustering of Cellular Component identified by only one of the four algorithms. The
distance between two GO terms were inferred based on pair-wise semantic similarities. (C) GO term clustering of Molecular Function identified
by only one of the four algorithms. The distance between two GO terms were inferred based on pair-wise semantic similarities.
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this study. The main influential pathway contributing to CRC

was inositol phosphate metabolism (57), which also had the

most impact on the metabolic pathway in breast cancer. All these

previous findings support our results and suggest the robustness

of the methods in the present study.
5 Conclusion

This study was conducted on a cancer mutation dataset.

After feature coding, irrelevant features were excluded using

Boruta feature selection. Different feature ranking and IFS

methods were then employed to identify the optimal number

of features, construct efficient classifiers and extract interpretable

classification rules. The results of the four methods were

combined to identify the most important functional pathways

and features, which were further discussed and validated with

academic literature, providing a new understanding of the

altered biological functions of different cancer types.
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